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Abstract
In this paper, we define a sequence, which is a generalized version of the Lucas
sequence, similar to the generalized Fibonacci sequence given in Koruoğlu and Şahin
in Turk. J. Math. 2009, doi:10.3906/mat-0902-33. Also, we give some connections
between the generalized Fibonacci sequence and the generalized Lucas sequence,
and we find polynomial representations of the generalized Fibonacci and the
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Koruoğlu and Şahin in Turk. J. Math. 2009, doi:10.3906/mat-0902-33.
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1 Introduction
In [], Hecke introduced groups H(λ), generated by two linear fractional transformations

T(z) = –

z

and S(z) = –


z + λ
,

where λ is a fixed positive real number. Hecke showed that H(λ) is discrete if and only if
λ = λq =  cos π

q , q ∈N, q ≥ , or λ ≥ . These groups have come to be known as the Hecke
Groups, and we will denote them H(λq), H(λ) for q ≥ , λ ≥ , respectively. The Hecke
group H(λq) is the Fuchsian group of the first kind when λ = λq or λ = , and H(λ) is the
Fuchsian group of the second kind when λ > . In this study, we focus on the case λ = λq,
q ≥ . The Hecke group H(λq) is isomorphic to the free product of two finite cyclic groups
of orders  and q, and it has a presentation

H(λq) =
〈
T , S | T = Sq = I

〉 ∼= C ∗ Cq, []. ()

The first several of these groups are H(λ) = � = PSL(,Z) (the modular group), H(λ) =
H(

√
), H(λ) = H( +

√


 ), and H(λ) = H(
√

). It is clear that H(λq) ⊂ PSL(,Z[λq]), for
q ≥ . The groups H(

√
) and H(

√
) are of particular interest, since they are the only

Hecke groups, aside from the modular group, whose elements are completely known (see,
[]).
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The extended Hecke group, denoted by H(λq), has been defined in [] and [] by adding
the reflection R(z) = /z to the generators of the Hecke group H(λq). The extended Hecke
group H(λq) has a presentation

〈
T , S, R | T = Sq = R = I, RT = TR, RS = Sq–R

〉 ∼= D ∗Z Dq. ()

The Hecke group H(λq) is a subgroup of index  in H(λq). It is clear that H(λq) ⊂
PGL(,Z[λq]) when q >  and H(λ) = PGL(,Z) (the extended modular group �).

Throughout this paper, we identify each matrix A in GL(,Z[λq]) with –A, so that they
each represent the same element of H(λq). Thus, we can represent the generators of the
extended Hecke group H(λq) as

T =

(
 –
 

)
, S =

(
 –
 λq

)
and R =

(
 
 

)
.

In [], Koruoglu and Sahin found that there is a relationship between the generalized
Fibonacci numbers and the entries of matrices representations of some elements of the
extended Hecke group H(λq). For the elements

h = TSR =

(
λq 
 

)
and f = RTS =

(
 
 λq

)

in H(λq), then the kth power of h and f are

hk =

(
ak ak–

ak– ak–

)
and f k =

(
ak– ak

ak ak+

)
,

where a = , a = , and for k ≥ ,

ak = λqak– + ak–. ()

For all k ≥ ,

ak =
√

λ
q + 

[(λq +
√

λ
q + 



)k+

–
(λq –

√
λ

q + 



)k+]
. ()

Notice that this real numbers sequence is a generalized version of the common Fibonacci
sequence. If λq = , this sequence coincides with the Fibonacci sequence.

The Fibonacci and the Lucas sequence have been studied extensively and generalized in
many ways. For example, you can see in [–]. In this paper, firstly, we define a sequence
bk , which is a generalization of the Lucas sequence. Then we give some properties of these
sequences and the relationships between them. To do this, we use some results given in
[–]. In fact, in [] and [], Özgür found two sequences, which are the generalization
of the Fibonacci sequence and the Lucas sequence, in the Hecke groups H(λ), λ ≥  real.
But the Hecke groups H(λ) are different from the Hecke groups H(λq), λq =  cos π

q , q ∈N,
q ≥ .
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2 Some properties of generalized Fibonacci and generalized Lucas sequences
Firstly, we define a sequence bk by

bk = λqbk– + bk– ()

for k ≥ , where b = , b = λq.

Proposition  For all k ≥ ,

bk =
(λq +

√
λ

q + 



)k

+
(λq –

√
λ

q + 



)k

. ()

Proof To solve (), let bk be a characteristic polynomial rk . Then we have the equation

rk = λqrk– + rk– ⇒ r – λqr –  = .

The roots of this equation are

r, =
λq ±

√
λ

q + 


.

Using these roots r,, we can find a general formula of the general term bk . If we write bk

as combinations of the roots r,, then we have

bk = A
(λq +

√
λ

q + 



)k

+ B
(λq –

√
λ

q + 



)k

.

To determine constants A and B, we use two boundary conditions b =  and b = λq, thus,

b =  = A + B,

b = λq = A
(λq +

√
λ

q + 



)
+ B

(λq –
√

λ
q + 



)
.

So,

λq = A
(
λq +

√
λ

q + 
)

+ ( – A)
(
λq –

√
λ

q + 
)

,

A =  and B = .

Then we obtain the formula of bk as

bk =
(λq +

√
λ

q + 



)k

+
(λq –

√
λ

q + 



)k

.

This completes the proof. �



İkikardes and Sarıgedik Journal of Inequalities and Applications 2013, 2013:398 Page 4 of 13
http://www.journalofinequalitiesandapplications.com/content/2013/1/398

Notice that this formula is a generalized Lucas sequence. If λq =  (the modular group
case q = ), we get the Lucas sequence.

Now, we have two sequences ak and bk , which are generalizations of the Fibonacci and
the Lucas sequences. Let us write out the first  terms of ak and bk .

ak bk

a =  b = 
a =  b = λq

a = λq b = λ
q + 

a = λ
q +  b = λ

q + λq

a = λ
q + λq b = λ

q + λ
q + 

a = λ
q + λ

q +  b = λ
q + λ

q + λq

a = λ
q + λ

q + λq b = λ
q + λ

q + λ
q + 

a = λ
q + λ

q + λ
q +  b = λ

q + λ
q + λ

q + λq

a = λ
q + λ

q + λ
q + λq b = λ

q + λ
q + λ

q + λ
q + .

Here, it is possible to extend ak and bk backward with the negative subscripts. For ex-
ample, a– = , a– = –λq, a– = λ

q + , and so on. Therefore, we can deduce that

a–k = (–)k+ak ()

and

b–k = (–)kbk . ()

The sequences ak and bk have some similar properties of the Fibonacci and the Lucas
numbers Fn and Ln. Now, we investigate some properties of these sequences ak and bk .

Proposition 

ak + ak+ =
(
λ

q + 
)
ak+ and bk + bk+ =

(
λ

q + 
)
bk+. ()

Proof We will use induction on k. For k = , we have

a + a =  + λ
q + λq = λq

(
λ

q + 
)

= a
(
λ

q + 
)
.

For k = , we get

a + a =  + λ
q + λ

q + 

=
(
λ

q + 
)(

λ
q + 

)
=

(
λ

q + 
)
a.

Now let us assume that the proposition holds for k = , . . . , n. We show that it holds for
k = n + . By assumption, we have

an– + an+ =
(
λ

q + 
)
an+ and an + an+ =

(
λ

q + 
)
an+.
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From (), we obtain

an+ + an+ = (λqan + an–) + (λqan+ + an+)

= λq(an + an+) + an– + an+

= λq
(
λ

q + 
)
an+ +

(
λ

q + 
)
an+

=
(
λ

q + 
)
(λqan+ + an+)

=
(
λ

q + 
)
an+.

Then we get

ak + ak+ =
(
λ

q + 
)
ak+.

Similarly, it can be shown that

bk + bk+ =
(
λ

q + 
)
bk+. �

Proposition 

bk = ak+ + ak–. ()

Proof We will use the induction method on k. If k = , then

b = a + a.

We suppose that the equation holds for k = , , . . . , n – , i.e.,

bn– = an+ + an–.

Now, we show that the equation holds for k = n. Then we have

bn =
(
λ

q + 
)
bn– – bn–

=
(
λ

q + 
)
(an– + an–) – (an– + an–)

=
(
λ

q + 
)
an– – an– +

(
λ

q + 
)
an– – an–

= an+ + an–. �

Proposition 

bk + bk+ =
(
λ

q + 
)
ak+. ()

Proof For k = , we have

b + b =  + λ
q + 

= λ
q + 

=
(
λ

q + 
)
a.
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For k = , we have

b + b = λq + λ
q + λq

= λ
q + λq

= λq
(
λ

q + 
)
.

Now, we assume that the proposition holds for k = , . . . , n. We show that it holds for k =
n + . By assumption, we have

bn + bn+ =
(
λ

q + 
)
an+ and bn– + bn+ =

(
λ

q + 
)
an.

Then we find

bn+ + bn+ = (λqbn + bn–) + (λqbn+ + bn+)

= λq(bn + bn+) + (bn– + bn+)

= λq
(
λ

q + 
)
an+ +

(
λ

q + 
)
an

=
(
λ

q + 
)
(λqan+ + an)

=
(
λ

q + 
)
an+. �

Proposition 

ak– + ak+ =
(
λ

q + 
)
bk . ()

Proof We will use induction on k. For k = , we find

a– + a = (–)a + a

= a

= 
(
λ

q + 
)
b.

For k = , we get

a– + a = (–)a + a

= –a + a

= –λq + λ
q + λq

= λ
q + λq

= λq
(
λ

q + 
)

= b
(
λ

q + 
)
.

Now, let us suppose that the proposition holds for k = , . . . , n. We show that it holds for
k = n + . By assumption, an– + an+ = (λ

q + )bn and an– + an+ = (λ
q + )bn–. Hence we
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get

an– + an+ = λqan– + an– + λqan+ + an+

= λq(an– + an+) + an– + an+

= λq
(
λ

q + 
)
bn +

(
λ

q + 
)
bn–

=
(
λ

q + 
)
(λqbn + bk–)

=
(
λ

q + 
)
bn+. �

Proposition 

ak = akbk . ()

Proof We will use the induction method on k. For k = , we have

ab =  = a.

For k = , we have

ab = λq = a.

We suppose that the equation holds for k = , . . . , n – , i.e.,

a(n–) = an–bn–.

Now, we show that the equation holds for k = n. By equalities (), () and (),

anbn = an(an+ + an–)

= an
((

λ
q + 

)
an– – an–

)
+ an–

((
λ

q + 
)
an– – an–

)
=

(
λ

q + 
)
anan– +

(
λ

q + 
)
an–an– – anan– – an–an–

=
(
λ

q + 
)
an–(an + an–) – anan– – an–an–

=
(
λ

q + 
)
an–bn– – anan– – an–an–

=
(
λ

q + 
)
an–bn– – an–(λqan– + an–) – an–(an– – λqan–)

=
(
λ

q + 
)
an–bn– – an–an– – an–an–

=
(
λ

q + 
)
an–bn– – an–(an– + an–)

=
(
λ

q + 
)
an–bn– – an–bn–

=
(
λ

q + 
)
an– – an– (by assumption)

= an. �

Proposition 

b
k –

(
λ

q + 
)
a

k = (–)k . ()
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Proof Using () and the definitions of ak and bk , we have

b
k –

(
λ

q + 
)
a

k = (ak– + ak+) –
(
λ

q + 
)
a

k

= a
k– + ak–ak+ + a

k+ – λ
qa

k – a
k

= a
k– + ak–(λqak + ak–) + (λqak + ak–) – λ

qa
k – a

k

= a
k– + λqak–ak + a

k– + λ
qa

k + λqakak– + a
k– – λ

qa
k – a

k

= a
k– + λqak–ak – a

k

= ak–(ak– + λqak) – a
k

= ak–ak+ – a
k

= 
(
ak–ak+ – a

k
)
.

In [], Yayenie and Edson obtained a generalization of Cassini’s identity for the positive
real numbers a and b. If we take a = λq and b = λq in generalized Cassini’s identity, we get

ak–ak+ – a
k = (–)n,

and so,

b
k –

(
λ

q + 
)
a

k =  · (–)n. �

Proposition 

ak · ak+ – ak+ · ak+ = (–)k+λq. ()

Proof We will use the induction method on k. For k = , we have

a · a – a · a = –λq = (–)λq.

For k = , we have

a · a – a · a = λ
q + λq – λq

(
λ

q + 
)

= (–)λq.

Now, we assume that the proposition holds for k = , . . . , n. We show that it holds for k =
n + . From assumption an · an+ – an+ · an+ = (–)n+λq, and, thus,

an+ · an+ – an+ · an+ = an+(λqan+ + an+) – an+(λqan+ + an)

= λqan+an+ + an+an+ – λqan+an+ – an+an

= an+an+ – an+an

= –(–)n+λq

= (–)n+λq. �
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Proposition 

am+ · ak – am · ak– = am+kλq. ()

Let m be fixed. We will use the induction method on k. For k = , we have

am+ · a – am · a– = λqam,

since a =  and a– = (–)a = –λq. For k = , we find

am+ · a – am · a– = am+ – am

= λqam+ + am – am

= λqam+,

since a =  and a– = . Now, we assume that the proposition holds for k = , . . . , n. We
show that it holds for k = n + . By assumption,

am+ · an – am · an– = λqam+n

and

am+ · an– – am · an– = λqam+n–.

Thus, we have

am+ · an+ – am · an– = am+(λqan + an–) – am(λqan– + an–)

= λq(am+an – aman–) + (am+an– – aman–)

= λqλqam+n + λqam+n–

= λq(λqam+n + am+n–)

= λqam+n+.

Now, we give a formula for ak and bk .

Proposition  For all k ≥ ,

ak =

⎧⎨
⎩


k–

∑ k–


i=
( k

i+
)
λ

k–(i+)
q (λ

q + )i if k is even,


k–
∑ k–


i=

( k
i+

)
λ

k–(i+)
q (λ

q + )i if k is odd
()

and

bk =

⎧⎨
⎩


k–

∑ k

i=

( k
i
)
λk–i

q (λ
q + )i if k is even,


k–

∑ k–


i=
( k

i–
)
λ

k–(i–)
q (λ

q + )i if k is odd.
()
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Proof Let k be even. By (),

ak =
√

λ
q + 

[(λq +
√

λ
q + 



)k

–
(λq –

√
λ

q + 



)k]

=


k–
√

λ
q + 

[(
k


)
λk–

q

√
λ

q +  +
(

k


)
λk–

q

(√
λ

q + 
)

+ · · · +
(

k
k – 

)
λq

(√
λ

q + 
)k–

]

=


k–

[(
k


)
λk–

q +
(

k


)
λk–

q
(
λ

q + 
)

+ · · · +
(

k
k – 

)
λq

(
λ

q + 
)k–

]

=


k–

[ k–
∑

i=

(
k

i + 

)
λk–(i+)

q
(
λ

q + 
)i

]
.

Similarly, if k is odd, then we get

ak =


k–

k–
∑

i=

(
k

i + 

)
λk–(i+)

q
(
λ

q + 
)i. �

Proposition 

k+
i=

ai =
ak+ + ak+ – 

λq
()

and

k+
i=

bi =
bk+ + bk+ – (λq + )

λq
. ()

Proof From (), we have

ak+ – ak+ = λqak+ + ak – ak+

= (λq – )ak+ + ak ,

and so,

n =  ⇒ a – a = (λq – )a + a,

n =  ⇒ a – a = (λq – )a + a,

...

n = k –  ⇒ ak+ – ak = (λq – )ak + ak–,

n = k ⇒ ak+ – ak+ = (λq – )ak+ + ak .
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If we sum both sides, then we obtain

ak+ – a = (λq – )(a + a + · · · + ak+) + (a + a + · · · + ak)

= λq(a + a + · · · + ak+) + a – ak+.

Since a =  and a = , we have

ak+ –  = λq(a + a + · · · + ak+) – ak+,

ak+ + ak+ –  = λq(a + a + · · · + ak+),

ak+ + ak+ – 
λq

= a + a + · · · + ak+,

k+
i=

ai =
ak+ + ak+ – 

λq
.

Similarly, it is easily seen that

k+
i=

bi =
bk+ + bk+ – (λq + )

λq
. �

3 Polynomial representations of ak and bk

Before we find the polynomial representations of ak and bk , note the following identities

(
k
p

)
+ 

(
k + 
p – 

)
–

(
k

p – 

)
=

(
k + 

p

)
()

and

(
k
p

)
+

(
k – 
p – 

)
=

(
k – 
p – 

)
p + k

p
()

Theorem  Let {ak} denote the generalized Fibonacci sequence. Then, the polynomial rep-
resentations of ak and ak+ are

ak = (λq)k– +
(

k – 


)
(λq)k– +

(
k – 



)
(λq)k–

+ · · · +
(

k + 
k – 

)
(λq) +

(
k + 
k – 

)
(λq)

and

ak+ = (λq)k + (k – )(λq)k– +
(

k – 


)
k – 


(λq)k–

+
(

k – 


)
k – 


(λq)k– + · · · +

(
k + 
k – 

)


k – 
(λq) + .

Proof We will use the induction method on k. For k = , we have a = λq, and for k = ,
we have a = (λq) + λq. Now, suppose that the equality is true for k = , , . . . , n. We will
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show that it holds for k = n + . By assumption,

an– = (λq)n– +
(

n – 


)
(λq)n– +

(
n – 



)
(λq)n–

+ · · · +
(

n + 
n – 

)
(λq) +

(
n

n – 

)
(λq)

and

an = (λq)n– +
(

n – 


)
(λq)n– +

(
n – 



)
(λq)n–

+ · · · +
(

n + 
n – 

)
(λq) +

(
n + 
n – 

)
(λq).

From (), we have ak+ = (λ
q + )ak – ak–, and by definition of ak , we get

an+ =
(
λ

q + 
)[

(λq)n– +
(n–


)
(λq)n– +

(n–


)
(λq)n–

+ · · · +
(n+

n–
)
(λq) +

(n+
n–

)
(λq)

]

–

[
(λq)n– +

(n–


)
(λq)n– +

(n–


)
(λq)n–

+ · · · +
(n+

n–
)
(λq) +

( n
n–

)
(λq)

]

= (λq)n+ +
((

n – 


)
+ 

)
(λq)n– +

[(
n – 



)
+ 

(
n – 



)]
(λq)n–

+ · · · +
[(

n + 
n – 

)
+ 

(
n + 
n – 

)]
(λq) + 

(
n + 
n – 

)
λq.

From (), we get

an+ = (λq)n+ +
(

n


)
(λq)n– +

(
n – 



)
(λq)n–

+ · · · +
(

n + 
n – 

)
(λq) +

(
n + 
n – 

)
(λq).

Now, we compute ak+. By definition of ak , we get

ak+ =

λq

(ak+ – ak)

=

λq

⎡
⎢⎢⎢⎣

((λq)k+ +
(k


)
(λq)k– +

(k–


)
(λq)k–

+ · · · +
(k+

k–
)
(λq) +

(k+
k–

)
(λq))

–((λq)k– +
(k–


)
(λq)k– +

(k–


)
(λq)k–

+ · · · +
(k+

k–
)
(λq) +

(k+
k–

)
(λq))

⎤
⎥⎥⎥⎦ .

From (), we get

ak+ = (λq)k + (k – )(λq)k– +
(

k – 


)
k – 


(λq)k–

+
(

k – 


)
k – 


(λq)k– + · · · +

(
k + 
k – 

)


k – 
(λq) + . �
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Theorem  Let {bk} denote the generalized Lucas sequence. Then, the polynomial repre-
sentations of bk and bk+ are

bk = (λq)k + (k)(λq)k– +
(

k – 


)
k


(λq)k–

+
(

k – 


)
k


(λq)k– + · · · +
(

k
k – 

)
k

k – 
(λq) + 

and

bk+ = (λq)k+ + (k + )(λq)k– +
(

k – 


)
k + 


(λq)k–

+
(

k – 


)
k + 


(λq)k– + · · · +

(
k + 
k – 

)
k + 
k – 

(λq).

Proof From (), it is easy to find the polynomial representations of bk and bk+. �
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9. Djordjević, GB, Srivastava, HM: Some generalizations of certain sequences associated with the Fibonacci numbers.

J. Indonesian Math. Soc. 12, 99-112 (2006)
10. Edson, M, Yayenie, O: A new generalization of Fibonacci sequence and extended Binet’s formula. Integers 9(6),

639-654 (2009)
11. Mushtaq, Q, Hayat, U: Horadam generalized Fibonacci numbers and the modular group. Indian J. Pure Appl. Math.

38(5), 345-352 (2007)
12. Raina, RK, Srivastava, HM: A class of numbers associated with the Lucasnumbers. Math. Comput. Model. 25(7), 15-22

(1997)
13. Vajda, S: Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications. Ellis Horwood, Chichester

(1989)
14. Yilmaz Özgür, N: Generalizations of Fibonacci and Lucas sequences. Note Mat. 21(1), 113-125 (2002)
15. Yilmaz Özgür, N: On the sequences related to Fibonacci and Lucas numbers. J. Korean Math. Soc. 42(1), 135-151

(2005)

doi:10.1186/1029-242X-2013-398
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