Arithmeticity of vector-valued Siegel modular forms

 in analytic and \boldsymbol{p}-adic casesTakashi Ichikawa (Saga University)
November 2, 2012, 15th Hakuba Autumn Workshop

Contents

§1. Introduction
§2. Classical modular forms
§3. Nearly holomorphic modular forms
(§2-3 are refinements of part of Shimura's work)
$\S 4$. \boldsymbol{p}-adic modular forms
(Extension of Katz's results on elliptic and Hilbert modular forms)
§5. \boldsymbol{p}-adic Siegel-Eisenstein series
$\S 6$. Related results and problems

§1. Introduction

$\underline{\text { Terminology. Modular forms }=\text { Vector-valued Siegel modular forms. }}$
Aim. Construct \boldsymbol{p}-adic counterparts of nearly holomorphic modular forms, i.e.,

Classical modular forms

| Shimura's diff. operator |
| :---: | :---: | :---: | :---: |
| Nearly holomorphic |
| modular forms |
| (Eisenstein series) |\quad| same values at |
| :---: |
| p-ordinary CM points |\quad| |
| :---: | :---: |

Elliptic modular case (Katz). For positive integers $\boldsymbol{k}, \boldsymbol{l}$ such that $\boldsymbol{k}-\boldsymbol{l}>\mathbf{2}$ is odd,

$$
\frac{k!\pi^{l}}{2 \cdot \operatorname{Im}(z)^{l}} \sum_{(a, b) \in \mathbb{Z}^{2}-\{(0,0)\}} \frac{(a+b \bar{z})^{l}}{(a+b z)^{k+1}} \longleftrightarrow \sum_{n=1}^{\infty} q^{n} \sum_{n=d d^{\prime}} d^{k}\left(d^{\prime}\right)^{l}
$$

which is used to construct \boldsymbol{p}-adic (Hecke) \boldsymbol{L}-functions.

$$
\begin{aligned}
(\because) \text { LHS } & =\delta^{l}\left(\text { const. }+\sum_{n=1}^{\infty} q^{n} \sum_{n=d d^{\prime}} d^{k-l}\right) ; \delta=\frac{1}{2 \pi \sqrt{-1}}\left(\frac{\mathrm{wt}}{z-\bar{z}}+\frac{\partial}{\partial z}\right) \\
& \leftrightarrow\left(q \frac{d}{d q}\right)^{l}\left(\text { const. }+\sum_{n=1}^{\infty} q^{n} \sum_{n=d d^{\prime}} d^{k-l}\right)=\text { RHS. }
\end{aligned}
$$

§2. Classical modular forms

Notations We consider modular forms of degree $g>1$, level $N \geq 3$, weight ρ.

- $\mathcal{H}_{g}=\left\{Z={ }^{t} Z \in M_{g}(\mathbb{C}) \mid \operatorname{Im}(Z)>0\right\}$: Siegel upper half-space.
- $\Gamma(N)=\left\{\left.\gamma=\left(\begin{array}{ll}A_{\gamma} & B_{\gamma} \\ C_{\gamma} & D_{\gamma}\end{array}\right) \in S p_{2 g}(\mathbb{Z}) \right\rvert\, \gamma \equiv 1_{2 g}(N)\right\}:$ congruence subgroup
$\Rightarrow \exists$ Shimura model of $\mathcal{H}_{g} / \Gamma(N)$ over $\mathbb{Z}\left[1 / N, \zeta_{N}\right] ; \zeta_{N}=e^{2 \pi \sqrt{-1} / N}$.
- $\rho: G L_{g} \rightarrow G L_{d}:$ representation over a sub $\mathbb{Z}\left[1 / N, \zeta_{N}\right]$-algebra R of \mathbb{C}.

Classical modular forms are holomorphic maps $f: \mathcal{H}_{g} \rightarrow \mathbb{C}^{d}$ satisfying

$$
f(\gamma(Z))=\rho\left(C_{\gamma} Z+D_{\gamma}\right) \cdot f(Z) \quad\left(\gamma \in \Gamma(N), Z \in \mathcal{H}_{g}\right)
$$

\underline{q}-expansion principle. $f \in \mathcal{M}_{\rho}(\boldsymbol{R}) \stackrel{\text { def }}{=}\{$ modular forms $/ \boldsymbol{R}$ of wt. $\rho\}$ if and only if

$$
f(Z)=\sum_{T} a(T) q^{T / N} \Rightarrow a(T) \in R^{d}
$$

Arithmeticity. For a field $\boldsymbol{k} \supset \boldsymbol{R}$, any classical modular form $\boldsymbol{f} \in \boldsymbol{\mathcal { M }}_{\rho}(\boldsymbol{k})$ satisfies
(A) $\left\{\begin{aligned} \alpha & : k \text {-rational CM point with basis } w_{1}, \ldots, w_{g} \text { of regular } 1 \text {-forms, } \\ P & \doteqdot(\text { period symbols }) \in G L_{g}(\mathbb{C}) \text { s.t. }{ }^{t}\left(w_{i}\right)=P \cdot{ }^{t}\left(d u_{i}\right) ; \quad\left(u_{i}\right) \in \mathbb{C}^{g} \\ & \Rightarrow \rho(P /(2 \pi \sqrt{-1}))^{-1} \cdot f(\alpha) \in \boldsymbol{k}^{d} .\end{aligned}\right.$

§3. Nearly holomorphic modular forms

Nearly holomorphic modular forms are analytic maps $f: \mathcal{H}_{g} \rightarrow \mathbb{C}^{d}$ satisfying

- $f(\gamma(Z))=\rho\left(C_{\gamma} Z+D_{\gamma}\right) \cdot f(Z)\left(\gamma \in \Gamma(N), Z \in \mathcal{H}_{g}\right)$.
- $f(Z)=\sum_{T} a(T) q^{T / N}$, where $a(T)$ consists of polynomials of the entries of $(\pi \cdot \operatorname{Im}(Z))^{-1}$.

For a subfield \boldsymbol{k} of \mathbb{C} containing $\boldsymbol{\zeta}_{\boldsymbol{N}}$,

$$
\mathcal{N}_{\rho}(k) \stackrel{\text { def }}{=}\{f: \text { nearly holomorphic } \mid a(T) \text { : polynomials } / k\} .
$$

Arithmeticity. Any nearly holomorphic modular form $\boldsymbol{f} \in \boldsymbol{\mathcal { N }}_{\rho}(\boldsymbol{k})$ satisfies (A) when $\boldsymbol{H}_{\mathrm{DR}}^{1}$ of the corresponding CM abelian variety splits over \boldsymbol{k}.
(\because) Express \boldsymbol{f} as the image of $\mathcal{M}_{\rho^{\prime}}(\boldsymbol{k})$ by Shimura's diff. operator defined as

$$
D_{\rho^{\prime}}^{e}: \mathbb{E}_{\rho^{\prime}} \xrightarrow{(1)} \mathbb{E}_{\rho^{\prime}} \otimes\left(\Omega_{\mathcal{H}_{g}}^{1}\right)^{\otimes e} \xrightarrow{(2)} \mathbb{E}_{\rho^{\prime}} \otimes\left(\operatorname{Sym}^{2}\left(\pi_{*}\left(\Omega_{\mathcal{X} / \mathcal{H}_{g}}^{1}\right)\right)\right)^{\otimes e} .
$$

Here $\left\{\begin{array}{l}\mathbb{E}_{\rho^{\prime}}: \text { automorphic bundle associated to } \rho^{\prime}, \\ (1) \Leftarrow \text { Gauss-Manin connection + Hodge decomposition, }\end{array}\right.$
$(2) \Leftarrow$ Kodaira-Spencer map for $\mathbb{C}^{g} /\left(\mathbb{Z}^{g}+\mathbb{Z}^{g} \cdot Z\right)\left(Z \in \mathcal{H}_{g}\right)$.
Remark. Shimura already proved the algebraicity of these CM values.

§4. \boldsymbol{p}-adic modular forms

\underline{p}-adic modular forms (Serre). For a prime $\boldsymbol{p} \nmid \boldsymbol{N}$ and a \boldsymbol{p}-adic field $\boldsymbol{K} \ni \zeta_{N}$,

$$
\overline{\mathcal{M}}_{\rho}(\boldsymbol{K}) \stackrel{\text { def }}{=}\left\{\lim _{i} f_{\rho_{i}} \mid f_{\rho_{i}} \in \mathcal{M}_{\rho_{i}}(\boldsymbol{K}), \rho=\lim _{i} \rho_{i}: \text { continuous hom. }\right\}
$$

where $\lim _{i} f_{\rho_{i}}$ is the limit as the Fourier expansions.
Theorem. If the representation $\boldsymbol{\rho}$ is defined over the integer ring of \boldsymbol{K}, then $\exists 1$ injective \boldsymbol{K}-linear map $\boldsymbol{\iota}_{p}: \mathcal{N}_{\rho}(\boldsymbol{K}) \rightarrow \overline{\mathcal{M}}_{\rho}(\boldsymbol{K})$ satisfying $\left\{\begin{array}{l}\boldsymbol{\alpha}: p \text {-ordinary } \mathrm{CM} \text { point with basis of regular } 1 \text {-forms, } \\ \boldsymbol{P}_{\boldsymbol{p}} \doteqdot \text { matrix of Kashio-Yoshida's } \boldsymbol{p} \text {-adic period symbols }\end{array}\right.$ $\Rightarrow \rho(P /(2 \pi \sqrt{-1}))^{-1} \cdot f(\alpha)=\rho\left(P_{p}\right)^{-1} \cdot \iota_{p}(f)(\alpha)\left(f \in \mathcal{N}_{\rho}(K)\right)$.

Definition. We call elements of $\operatorname{Im}\left(\iota_{p}\right)$ "nearly algebraic" p-adic modular forms.

Proof of Theorem.

- Construction of $\iota_{p}: p$-adic diff. operator (\leftrightarrow Shimura's diff. operator $\boldsymbol{D}_{\rho}^{e}$)

$$
D_{p, \rho}^{e}(f) \stackrel{\text { def }}{=} \sum_{1 \leq i \leq j \leq g} q_{i j} \frac{\partial D_{p, \rho}^{e-1}(f)}{\partial q_{i j}}\left(f \in \overline{\mathcal{M}}_{\rho}(K)\right) .
$$

- Definition of $\iota_{p}(f)$ for $f \in \mathcal{N}_{\rho}(k)$: Multiplying a modular form $\equiv 1(p)$,

$$
\begin{aligned}
& \exists \boldsymbol{g}_{i} \in \mathcal{M}_{\rho \otimes \tau^{e_{i}}}(\boldsymbol{K}) \text { s.t. } \boldsymbol{f}=\sum_{i}\left(\boldsymbol{\theta}_{e_{i}} \circ \boldsymbol{D}_{\rho \otimes \tau^{e_{i}}}^{e_{i}}\right)\left(\boldsymbol{g}_{i}\right) \\
& \left(\boldsymbol{\tau}^{e_{i}}=\left(\operatorname{Sym}^{2}\left(\boldsymbol{K}^{g}\right)^{\otimes e_{i}}\right)^{\vee}, \boldsymbol{\theta}_{e_{i}}: \text { contraction }\right) \\
\Rightarrow & \iota_{p}(\boldsymbol{f}) \stackrel{\text { def }}{=} \sum_{i}\left(\boldsymbol{\theta}_{e_{i}} \circ \boldsymbol{D}_{p, \rho \otimes \tau^{e_{i}}}^{e_{i}}\right)\left(\boldsymbol{g}_{\boldsymbol{i}}\right) .
\end{aligned}
$$

- Preserving \boldsymbol{p}-ordinary CM values: For $\boldsymbol{H}_{\mathrm{DR}}^{1}$ of \boldsymbol{p}-ordinary CM abelian varieties, Unit root space decomposition in $\boldsymbol{D}_{p, \rho}^{e}=$ Hodge decomposition in $\boldsymbol{D}_{\rho}^{e}$.
- Well-definedness and uniqueness of ι_{p} : In Serre-Tate's local moduli, \exists nontriv. quasi-canonical lifts of ordinary abelian varieties \rightarrow canonical lift.
- Injectivity of ι_{p} : Hecke orbit of a point is dense in $\mathcal{H}_{g} / \Gamma(N)$.

§5. \boldsymbol{p}-adic Siegel-Eisenstein series

Siegel-Eisenstein series. For a Dirichlet character $\boldsymbol{\chi}$ modulo \boldsymbol{M}, put

$$
E_{h}(Z, s, \chi)=\sum_{\gamma \in\left(P \cap \Gamma_{0}(M)\right) \backslash \Gamma_{0}(M)} \frac{\operatorname{det}(\operatorname{Im}(Z))^{s} \cdot \chi\left(\operatorname{det}\left(D_{\gamma}\right)\right)}{\operatorname{det}\left(C_{\gamma} Z+D_{\gamma}\right)^{h} \cdot\left|\operatorname{det}\left(C_{\gamma} Z+D_{\gamma}\right)\right|^{2 s}}
$$

$\left\{\begin{array}{l}\text { abs. convergent, nearly holomorphic modular form of weight } h, \text { level } M \\ \text { if } s \text { is an integer satisfying }(g+1-h) / 2<s \leq 0\end{array}\right.$
$\underline{\boldsymbol{p} \text {-adic Siegel-Eisenstein series. Let }}$

$$
\left\{\begin{array}{l}
N \geq 3 \text { be a multiple of } M, \text { and } p \nmid N \text { be a prime, } \\
h, s \text { be integers such that }(g+1-h) / 2<s \leq 0, \\
E_{h+2 s}(Z, 0, \chi)=\sum_{T} b_{h+2 s}(T) q^{T}, \varepsilon_{g}(h)=\prod_{j=0}^{g-1}(h-j / 2)
\end{array}\right.
$$

Then $\pi^{g s} \boldsymbol{E}_{\boldsymbol{h}}(Z, s, \chi)$ is defined over a cyclotomic field, and

$$
\begin{aligned}
\iota_{p}\left(\pi^{g s} E_{h}(Z, s, \chi)\right)=\prod_{i=0}^{-s-1} \varepsilon(h & +2 s+2 i)^{-1} \sum_{T} b_{h+2 s}(T) \operatorname{det}(T)^{-s} q^{T} \\
(\because) \pi^{-g} \varepsilon_{g}(h) E_{h+2}(Z,-1, \chi) & =\left(\left(\mathbf{i d}_{\mathbb{E}_{\rho}} \otimes \operatorname{det}\right) \circ D_{\rho}\right)\left(E_{h}(Z, 0, \chi)\right) \\
& \leftrightarrow \theta\left(E_{h}(Z, 0, \chi)\right) ; \theta: \text { theta operator. }
\end{aligned}
$$

§6. Related results and problems

Related results.

- Unitary modular case: Harris-Li-Skinner (2006), Eischen (2011-).
- Vector-valued \boldsymbol{p}-adic diff. operators: Böcherer-Nagaoka (2007-).

Problems.

- Construct \boldsymbol{p}-adic Siegel-Eisenstein measures and \boldsymbol{p}-adic \boldsymbol{L}-functions.
$\Rightarrow\left\{\begin{array}{l}\text { Panchishkin (2000) gave such measures in the holomorphic case, } \\ \text { Böcherer-Schmidt (2000) gave } \boldsymbol{p} \text {-adic measures for the standard } \boldsymbol{L} .\end{array}\right.$
- Characterize nearly algebraic modular forms in the space of \boldsymbol{p}-adic ones.
- \exists ? Relation between nearly algebraic modular forms and overconvergent ones.
\Rightarrow Darmon-Rotger stated in the elliptic modular case:
\{overconv. modular forms $\} \not \ni\{$ nearly overconv. $(\stackrel{?}{=}$ nearly alg. $)$ forms $\}$.
- \exists ? Application of nearly algebraic modular forms to certain Selmer groups.
\Rightarrow Skinner-Urban applied unitary modular forms to Sel(elliptic curves).

References

[BN1] S. Böcherer and S. Nagaoka, On mod p properties of Siegel modular forms, Math. Ann. 338 (2007) 421-433.
[BN2] S. Böcherer and S. Nagaoka, On p-adic properties of Siegel modular forms, Preprint.
[BN3] S. Böcherer and S. Nagaoka, On vector-valued p-adic Siegel modular forms, In preparation.
[BS] S. Böcherer and C. G. Schmidt, p-adic measures attached to Siegel modular forms, Ann. Inst. Fourier 50 (2000) 1375-1443.
[CP] M. Courtieu and A. Panchishkin, Non-archimedean L-functions and arithmetical Siegel modular forms, Second edition. Lecture Notes in Math., vol. 1471, Springer, Berlin, 2004.
[DR] H. Darmon and V. Rotger, Diagonal cycles and Euler systems I: A p-adic Gross-Zagier formula, Preprint.
[E1] E. E. Eischen, p-adic differential operators on automorphic forms on unitary groups, Ann. Inst. Fourier 62 (2012), to appear.
[E2] E. E. Eischen, A p-adic Eisenstein measure for unitary groups, arXiv:1106.3692v4.
[HLS] M. Harris, J-S. Li and C. M. L. Skinner, p-adic L-functions for unitary Shimura varieties I: Construction of the Eisenstein measure, Doc. Math. (2006), no. Extra Vol., 393-464.
[I] T. Ichikawa, Vector-valued p-adic Siegel modular forms, J. reine angew. Math., to appear.
[Ka] H. Katsurada, An explicit formula for Siegel series, Amer. J. Math. 121 (1999), 415-452.
[K1] N. M. Katz, p-adic interpolation of real analytic Eisenstein series, Ann. of Math. 104 (1976), 459-571.
[K2] N. M. Katz, The Eisenstein measure and p-adic interpolation, Amer. J. Math. 99 (1977), 238-311.
[K3] N. M. Katz, p-adic L-functions for CM fields, Invent. Math. 49 (1978), 199-297.
[P] A. A. Panchishkin, On the Siegel-Eisenstein measure and its applications, Israel J. of Math. 120 (2000), 467-509.
[S] G. Shimura, Arithmeticity in the theory of automorphic forms, Mathematical Surveys and Monographs, vol. 82, Amer. Math. Soc., Providence, 2000.
[SU] C. Skinner and E. Urban, Nearly overconvergent unitary modular forms and Selmer groups for elliptic curves, http://www.math.ucla.edu/ galois07/Hida.abstract.pdf

