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1. Introduction

The Euler numbers En are the integers defined by

∞∑
n=0

Enxn

n! = sec x + tan x. (1.1)

In 1879, D. André [1,2] gave a combinatorial interpretation for the Euler numbers En . These num-
bers count the number of permutations π = π1π2 · · ·πn of elements in the set [n] := {1,2, . . . ,n}
such that the sign of πi − πi+1 equals (−1)i , 1 � i < n. Such permutations are called alternating
or up-down permutations. Alternating permutations have rich combinatorial structure and have been
studied extensively over the last century [7–11,13,16,22,30]. Particular emphasis has been placed upon
the enumeration of alternating permutations by various weights and conditions.

In this paper, we undertake a combinatorial analysis of several new q-analogues of the Euler
numbers. The resulting expressions provide new enumerations for alternating permutations. The asso-
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ciated generating functions are quotients of basic hypergeometric series and arise in several contexts
related to the work of S. Ramanujan [17–19,29]. In particular, the generating functions from Section 4
appear in the expansions of Ramanujan’s Hadamard product for the generalized Rogers–Ramanujan
series from page 57 of his Lost Notebook [25], [4, Chapter 13]:

∞∑
n=0

qn2
zn

(q;q)n
=

∞∏
n=1

(
1 + zq2n−1

1 − ∑∞
j=1 q jn y j

)
, (1.2)

where

y1 = 1

(1 − q)ψ2(q)
, y2 = 0, y3 = q + q3

(q;q)3ψ2(q)
−

∑∞
n=1

(2n−1)q2n−1

1−q2n−1

(1 − q)3ψ6(q)
,

y4 = y1 y3. (1.3)

The functions ψ(q) and (α;q)n appearing in (1.2) and (1.3) are defined by

ψ(q) :=
∞∑

n=0

qn(n+1)/2, (α;q)n :=
n−1∏
j=0

1 − αq j, |q| < 1. (1.4)

In [20], Ismail and Zhang observed that the polynomials appearing in the expansion (1.2), as the
coefficients of (q;q)−1

j ψ−2(q) in y j , are symmetric about the middle coefficient(s). We explain this
symmetry in Sections 4, 5, 7, and 8 by unraveling the combinatorial significance of these polynomials.

The series appearing in this paper arise in an entirely different setting in the work of Prodinger and
Cristea [23,24]. These authors employ generating functions to determine the probability that a random
word over the infinite alphabet {1,2,3, . . . , } satisfies certain inequality conditions. They assume that,
within a word, each letter j occurs with (geometric) probability pq j−1, independently, for 0 < q < 1
and p = 1 − q. In Sections 2–3, we derive direct combinatorial interpretations for certain generating
functions from [23,24]. Quotients of the series considered in the present paper also have beautiful
continued fraction representations [15,23,24].

For nonnegative integers A, B, C, D , consider the following q-analogue of tan x:

∞∑
n=0

f2n+1(q)x2n+1

(q;q)2n+1
=

∑∞
n=0

(−1)nqAn2+Bnx2n+1

(q;q)2n+1∑∞
n=0

(−1)nqCn2+Dnx2n

(q;q)2n

. (1.5)

When (A, B, C, D) = (0,0,0,0), f2n+1(q) is the q-tangent number T2n+1(q) of F.H. Jackson [21].
In [18], Huber proves that the coefficients T o

2n+1(q) of (q;q)−1
2n+1ψ

−2(q) in y2n+1 in (1.2) are
f2n+1(q) for (A, B, C, D) = (1,1,1,0). In this paper, we discuss q-tangent numbers corresponding
to (A, B, C, D) given in the following table. Let τ

αβ

2n+1 represent the probability that a word from
{1,2,3, . . .} of length 2n + 1 defined in the preceeding paragraph satisfies the inequality condi-
tions αβ .

f2n+1 (A, B) (C, D) Probability

T2n+1 (0,0) (0,0) τ
�>

2n+1, τ
�<

2n+1

T o
2n+1 (1,1) (1,0) τ<>

2n+1

T e
2n+1 (1,0) (1,0) τ><

2n+1

The column on the right contains the numbers considered by Prodinger for which the series (1.5)
is an associated generating function [23, Theorem 2.2].

For each value of A, B, C and D , the quotient (1.5) induces a corresponding recursion relation for
the function f2n+1(q). From these formulas, we obtain the following related polynomials. For a poly-
nomial p(q), let p̂(q) denote the dual of p(q) (see [23, Remark 3.3]). Several of the dual polynomials
occur in connection with probabilities from [23].
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(A, B) (C, D) f2n+1 Relevant relations Probability

(0,1) (0,1) T des
2n+1 T des

2n+1(q) = qn T2n+1(q) −
(2,1) (2,−1) T̂2n+1 T̂2n+1(q) = T2n+1(q) −
(2,0) (2,−2) T̂ des

2n+1 T̂ des
2n+1(q) = q−2n T des

2n+1(q) −
(1,0) (1,−1) T̂ o

2n+1 T̂ o
2n+1(q) = q−n T o

2n+1(q) τ
��
2n+1

(1,1) (1,−1) T̂ e
2n+1 T̂ e

2n+1(q) = q−n−1 T e
2n+1(q) τ

��
2n+1

In Section 2, a well-known arithmetic interpretation of the classical q-tangent numbers T2n+1(q)

is discussed. We provide an elementary proof of this interpretation that demonstrates fundamental
ideas used throughout the paper. A new q-analogue T des

2n+1(q) is also discussed in the same section.
In Section 3, we deduce combinatorial interpretations for new q-analogues of the secant numbers
appearing in [23,24] defined by

∞∑
n=0

g2n(q)x2n

(q;q)2n
=

( ∞∑
n=0

(−1)nqCn2+Dnx2n

(q;q)2n

)−1

.

(C, D) g2n Relevant relations Probability

(0,0) S2n σ
�>

2n
(0,1) qSdes

2n Sdes
2n (q) = qn−1 S2n(q) −

(1,0) qSo
2n, Se

2n σ<>
2n

(2,−1) Ŝ2n Ŝ2n(q) = qn(2n−1) S2n(q−1) σ
<�
2n

(2,−2) Ŝdes
2n Ŝ2n(q) = qn(2n−1)−1 Sdes

2n (q−1) −
(1,−1) Ŝo

2n Ŝo
2n(q) = q1−n So

2n(q) σ
��
2n

The values σ
αβ

2n denote the probability that a given word of length 2n, under the aforementioned
hypotheses, satisfies the inequality conditions αβ . It should be noted that the generating function
for the polynomials So

2n(q) appearing in Section 3 differs by a factor of q−1 from the corresponding
generating function for σ<>

2n in [23].
In Sections 4 and 5, we describe combinatorics of the new q-tangent numbers T o

2n+1(q) and
T e

2n+1(q). Our arithmetic interpretations explain the symmetry arising among the coefficients of these
polynomials.

In Section 6, we deduce arithmetic interpretations for second-order tangent numbers T (2)
2n+1(q),

T o (2)
2n+1(q), T e (2)

2n+1(q) obtained by squaring the generating functions discussed in the previous sections.
We include similar interpretations for second order q-secant numbers. In [17,18], it is shown that the
coefficients of (q;q)−1

2n+1ψ
−4(q) in y2n of (1.2) are scalar multiples of T o (2)

2n+1(q).
We indicate in Section 7 how closed formulas for the q-Euler numbers may be derived in terms

of the Bell polynomials. We also comment on an application of our results to a conjecture made by
Ismail and Zhang [20, Conjecture 4.3] concerning a more general class of polynomials appearing in
(1.2) within corresponding expansions of y j , j � 1.

Before proceeding, we introduce some necessary definitions and notation. A pair (πi,π j) is called
an inversion of the permutation π = π1π2 · · ·πn if i < j and πi > π j . We denote by inv(π) the
number of inversions of the permutation π . The descent set D(π) is defined by {i | πi > πi+1}, and
des(π) denotes the size of D(π). For a permutation π , we define

πo = π1π3π5 · · · and πe = π0π2π4 · · · ,
where π0 = ∞. Two kinds of half descents of π are defined by des(πo) and des(πe).
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Define the q-binomial coefficient by

[
n
k

]
:=

[
n
k

]
q
=

{
(q;q)n

(q;q)k(q;q)n−k
, if 0 � n � k,

0, otherwise.

The following lemma is one of several combinatorial interpretations for the q-binomial coefficient.
We will refer to this lemma often in the remainder of the paper. For a proof of the lemma, see
[28, p. 132].

Lemma 1.1.

∑
π

qinv(π) =
[

n
k

]
,

where the sum is over all permutations π with D(π) ⊂ {k}.

A more instructive view of Lemma 1.1 follows by defining P (k)
n , for a given n and k � n, to be the

set of all permutations π on [n] such that

π1 < π2 < π3 < · · · < πk−1 < πk, πk+1 < πk+2 < · · · < πn−1 < πn.

Then it follows from Lemma 1.1 that

∑
π∈P (k)

n

qinv(π) =
[

n
k

]
.

We denote by An the set of up-down alternating permutations π = π1π2 · · ·πn on the set [n] with
π1 < π2 > π3 < · · · , and we denote by Ān the set of down-up alternating permutations π on the
set [n] with π1 > π2 < π3 > · · · .

2. The classical q-Euler numbers

Jackson’s q-analogues of the sine and cosine functions [21] are

∞∑
n=0

(−1)nx2n+1

(q;q)2n+1/(1 − q)2n+1
and

∞∑
n=0

(−1)nx2n

(q;q)2n/(1 − q)2n
.

By considering quotients of these functions, we arrive at a q-analogue of the tangent numbers,
T2n+1(q), defined by

∞∑
n=0

T2n+1(q)x2n+1

(q;q)2n+1
=

∞∑
n=0

(−1)nx2n+1

(q;q)2n+1

/ ∞∑
n=0

(−1)nx2n

(q;q)2n
. (2.1)

If we replace x by x(1 − q) in (2.1) and let q → 1− , the corresponding identity reduces to the rela-
tion obtained by equating odd parts on each side of Eq. (1.1). Multiplying both sides of (2.1) by the
denominator on the right side and equating coefficients of x, we obtain

T2n+1(q) =
n∑

k=1

[
2n + 1

2k

]
(−1)k−1T2(n−k)+1(q) + (−1)n. (2.2)

The following combinatorial interpretation of the polynomials T2n+1(q) is well known [6,14,27,28].
We include a proof based upon the recursion (2.2) as an aid to the reader, since later results in the
paper have proofs that are similar in nature.
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Fig. 1. A(k)
2n+1.

Theorem 2.1. For a nonnegative integer n, we have

T2n+1(q) =
∑

π∈A2n+1

qinv(π).

Proof. Let

f2n+1(q) =
∑

π∈A2n+1

qinv(π).

For n = 0, it is clear that

f1(q) = 1 = T1(q).

For any positive integer n, we will prove that f2n+1(q) satisfies the recurrence (2.2). For a positive
integer k � n, let A(k)

2n+1 be the set of permutations π on [2n + 1] such that

π1 < π2 < · · · < π2k−1 < π2k,

π2k+1 < π2k+2 > π2k+3 < · · · < π2n > π2n+1.

Fig. 1 shows the conditions for π ∈ A(k)
2n+1.

From Lemma 1.1 and the definition of f2n+1(q), we see that

∑
π∈A(k)

2n+1

qinv(π) =
[

2n + 1
2k

]
f2(n−k)+1(q). (2.3)

For a positive integer k � n, we denote by B(k)
2n+1 the set of permutations π on [2n + 1] such that

π1 < π2 < π3 < · · · < π2k > π2k+1 < π2k+2 > π2k+3 < · · · < π2n > π2n+1.

Fig. 2 shows the conditions for π ∈ B(k)
2n+1.

We now compute the generating function for permutations π ∈ B(k)
2n+1∑

π∈B(k)
2n+1

qinv(π).

From the definitions of A(k)
2n+1 and B(k)

2n+1, we see that for any k,1 � k � n,

A(k)
2n+1 = B(k)

2n+1 ∪ B(k+1)
2n+1 ,

where B(n+1)
2n+1 = {π | π1 < π2 < · · · < π2n < π2n+1}. Thus∑

π∈B(k)
2n+1

qinv(π) =
∑

π∈A(k)
2n+1

qinv(π) −
∑

π∈B(k+1)
2n+1

qinv(π). (2.4)
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Fig. 2. B(k)
2n+1.

By iterating (2.4), we deduce

∑
π∈B(1)

2n+1

qinv(π) =
n∑

k=1

(−1)k−1
∑

π∈A(k)
2n+1

qinv(π) + (−1)n
∑

π∈B(n+1)
2n+1

qinv(π). (2.5)

Note that B(1)
2n+1 = A2n+1. Therefore, it follows from (2.3) that (2.5) is equivalent to

f2n+1(q) =
n∑

k=1

[
2n + 1

2k

]
(−1)k−1 f2(n−k)+1(q) + (−1)n,

which completes the proof. �
The following theorem gives the generating function for alternating permutations π in A2n+1 by

weight inv(π) + des(π).

Theorem 2.2. Define

∞∑
n=0

T des
2n+1(q)x2n+1

(q;q)2n+1
=

∑∞
n=0

(−1)nqnx2n+1

(q;q)2n+1∑∞
n=0

(−1)nqnx2n

(q;q)2n

.

Then

T des
2n+1(q) =

∑
π∈A2n+1

qinv(π)+des(π).

Proof. Recalling the definition of T2n+1(q) given by (2.1) and noting that des(π) = n for any π ∈
A2n+1, we have∑

π∈A2n+1

qinv(π)+des(π) = qn T2n+1(q).

By comparing the recurrence relations for T des
2n+1(q) and T2n+1(q), we see that T des

2n+1(q) =
qn T2n+1(q). �

The dual functions corresponding to T2n+1(q) and T des
2n+1(q) are discussed in the following theo-

rem.

Theorem 2.3. Define

∞∑
n=0

T̂2n+1(q)x2n+1

(q;q)2n+1
=

∑∞
n=0

(−1)nq2n2+nx2n+1

(q;q)2n+1∑∞
n=0

(−1)nq2n2−nx2n

(q;q)2n

,

and
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∞∑
n=0

T̂ des
2n+1(q)x2n+1

(q;q)2n+1
=

∑∞
n=0

(−1)nq2n2
x2n+1

(q;q)2n+1∑∞
n=0

(−1)nq2n2−2nx2n

(q;q)2n

.

Then we have

T̂2n+1(q) = T2n+1(q) and T̂ des
2n+1(q) = q−2n T des

2n+1(q).

Proof. We first note that the polynomials T̂2n+1(q) satisfy T̂1(q) = 1 and

T̂2n+1(q) =
n−1∑
k=0

[
2n + 1
2k + 1

]
(−1)n−k−1q2(n−k)2−(n−k) T̂2k+1(q) + (−1)nq2n2+n. (2.6)

For any alternating permutation π ∈ A2n+1, define π̄ by

π̄ = π2n+1π2nπ2n−1 · · ·π2π1.

Then π̄ is clearly an up-down alternating permutation. Furthermore

inv(π) + inv(π̄ ) = n(2n + 1).

Thus ∑
π∈A2n+1

qinv(π) =
∑

π∈A2n+1

qn(2n+1)−inv(π̄ )

= qn(2n+1)T2n+1
(
q−1).

Therefore, it suffices to show that

T̂2n+1(q) = qn(2n+1)T2n+1
(
q−1).

We now show that qn(2n+1)T2n+1(q−1) satisfies the same recursion as T̂2n+1(q). Substitute
qk(2k+1)T2k+1(q−1) for T̂2k+1 in (2.6). Then

n−1∑
k=0

[
2n + 1
2k + 1

]
q
(−1)n−k−1q2(n−k)2−(n−k)qk(2k+1)T2k+1

(
q−1) + (−1)nq2n2+n

=
n−1∑
k=0

[
2n + 1
2k + 1

]
q−1

(−1)n−k−1q2n2+n T2k+1
(
q−1) + (−1)nq2n2+n

= qn(2n+1)T2n+1
(
q−1),

where the last equality follows from the recursion formula (2.2) for T2n+1(q).
It follows from the recurrences for T̂2n+1 and T̂ des

2n+1 that T̂2n+1(q) = qn T̂ des
2n+1(q). This identity is

equivalent to T̂ des
2n+1(q) = q−2n T des

2n+1(q) since T̂2n+1(q) = T2n+1(q) = q−n T des(q). �
By equating coefficients of x2n+1 in the generating functions for T2n+1(q) and T̂2n+1(q), we obtain

a special case of a formula due to Gauss [3, p. 37].

Corollary 2.4. For any nonnegative integer n,

n∑
j=0

q2 j2+ j
[

2n + 1
2 j + 1

]
=

n∑
j=0

q2 j2− j
[

2n + 1
2 j

]
.
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The classical q-secant numbers enumerate alternating permutations on the set [2n] for n � 1 by
the number of inversions.

Theorem 2.5. Define

∞∑
n=0

S2n(q)x2n

(q;q)2n
=

( ∞∑
n=0

(−1)nx2n

(q;q)2n

)−1

. (2.7)

Then

S2n(q) =
∑

π∈A2n

qinv(π).

For a proof of Theorem 2.5, see [5,26–28]. The following theorem gives the generating function for
alternating permutations π in A2n by weight inv(π) + des(π).

Theorem 2.6. Define

∞∑
n=0

Sdes
2n (q)x2n

(q;q)2n
=

( ∞∑
n=0

(−1)nqn+1x2n

(q;q)2n

)−1

.

Then

Sdes
2n (q) =

∑
π∈A2n

qinv(π)+des(π).

Proof. Recalling the definition of S2n(q) given by (2.7) and noting that des(π) = n−1 for any π ∈ A2n ,
we have∑

π∈A2n

qinv(π)+des(π) = qn−1 S2n(q).

By comparing the recursions for Sdes
2n (q) and S2n(q), we see that Sdes

2n (q) = qn−1 S2n(q). �
The dual functions of S2n(q) and Sdes

2n (q) are discussed in the following theorem.

Theorem 2.7. Let

∞∑
n=0

Ŝ2n(q)x2n

(q;q)2n
=

( ∞∑
n=0

(−1)nqn(2n−1)x2n

(q;q)2n

)−1

and

∞∑
n=0

Ŝdes
2n (q)x2n

(q;q)2n
=

( ∞∑
n=0

(−1)nq2n(n−1)x2n

(q;q)2n

)−1

.

Then

Ŝ2n(q) =
∑

π∈ Ā2n

qinv(π) and Ŝdes
2n (q) =

∑
π∈ Ā2n

qinv(π)−des(π).
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Proof. We first note that the polynomials Ŝ2n(q) satisfy Ŝ0(q) = 1 and

Ŝ2n(q) =
n−1∑
k=0

[
2n
2k

]
(−1)n−k−1q(n−k)(2(n−k)−1) Ŝ2k(q), for n � 1. (2.8)

For any up-down alternating permutation π ∈ A2n , define π̄ by

π̄ = π2nπ2n−1π2n−2 · · ·π2π1.

Then π̄ is clearly a down-up alternating permutation. Furthermore

inv(π) + inv(π̄ ) = n(2n − 1).

Thus ∑
π∈ Ā2n

qinv(π) =
∑

π∈A2n

qn(2n−1)−inv(π)

= qn(2n−1)S2n
(
q−1).

The first statement in the theorem is equivalent to

Ŝ2n(q) = qn(2n−1)S2n
(
q−1). (2.9)

We now show that qn(2n−1) S2n(q−1) satisfies the same recursion as Ŝ2n(q). Substitute qk(2k−1) S2k(q−1)

for Ŝ2k in (2.8). Then

n−1∑
k=0

[
2n
2k

]
q
(−1)n−k−1q(n−k)(2(n−k)−1)qk(2k−1)S2k

(
q−1)

=
n−1∑
k=0

[
2n
2k

]
q−1

(−1)n−k−1q2n2−n S2k
(
q−1)

= qn(2n−1)S2n
(
q−1),

where the last equality follows from the recursion formula for S2n(q).
We now show that

Ŝdes
2n (q) =

∑
π∈ Ā2n

qinv(π)−des(π),

which is equivalent to

Ŝdes
2n (q) = q2n(n−1)S2n

(
q−1).

since des(π) = n for a permutation π ∈ Ā2n and Ŝ2n(q) = qn(2n−1) S2n(q−1) by (2.9). We now show
that q2n(n−1) S2n(q−1) satisfies the same recursion as Ŝdes

2n (q), namely

Ŝdes
2n (q) =

n−1∑
k=0

[
2n
2k

]
(−1)n−k−1q2(n−k)(n−k−1) Ŝdes

2k (q), for n � 1. (2.10)

Substitute q2k(k−1) S2k(q−1) for Ŝdes
2k in (2.10). Then
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n−1∑
k=0

[
2n
2k

]
q
(−1)n−k−1q2(n−k)(n−k−1)q2k(k−1)S2k

(
q−1)

=
n−1∑
k=0

[
2n
2k

]
q−1

(−1)n−k−1q2n(n−1)S2k
(
q−1)

= q2n(n−1)S2n
(
q−1),

where the last equality follows from the recursion formula for S2n(q). �
3. New q-secant numbers

The following theorem provides a combinatorial interpretation for a new class of secant numbers.
Recall the definition of half descent des(πo) for a permutation π .

Theorem 3.1. Define

∞∑
n=0

So
2n(q)x2n

(q;q)2n
=

( ∞∑
n=0

(−1)nqn2+1x2n

(q;q)2n

)−1

.

Then, for n � 1,

So
2n(q) =

∑
π∈A2n

qinv(π)+des(πo).

Proof. Let

g2n(q) =
∑

π∈A2n

qinv(π)+des(πo).

From the definitions of inv(π) and des(πo), it is clear that

g2(q) = 1 = So
2(q).

The polynomials So
2n(q) satisfy So

0(q) = q−1 and

So
2n(q) =

n−1∑
k=0

[
2n
2k

]
(−1)n−k−1q(n−k)2

So
2k(q), for n � 1. (3.1)

We define g0(q) = q−1. We will show that the polynomials g2n(q) satisfy (3.1) for n > 1.
For a positive integer k � n, let A(k)

2n be the set of permutations π on [2n] such that

π1 < π2 > π3 < · · · > π2k−1 < π2k,

π2k+2 > π2k+4 > · · · > π2n > π2n−1 > π2n−3 > · · · > π2k+1.

Fig. 3 shows the conditions for π ∈ A(k)
2n .

Note that there are (n−k)2 − (n−k) inversions in π2k+1π2k+2 · · ·π2n for the permutation π ∈ A(k)
2n .

Thus, from Lemma 1.1 and the definition of g2n , we see that

∑
π∈A(k)

2n

qinv(π)+des(π1π3···π2k−1)+(n−k) =
[

2n
2k

]
q(n−k)2

g2k(q). (3.2)

For a positive integer k < n, we decompose A(k)
2n into disjoint subsets as follows:
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Fig. 3. A(k)
2n .

A(k)
2n = {π | π2k > π2k+2} ∪ {π | π2k < π2k+2}

= {π | π2k > π2k+2 > π2k−1} ∪ {π | π2k > π2k−1 > π2k+2} ∪ {π | π2k+2 > π2k > π2k−1}
= {π | π2k > π2k+2 > π2k+1 > π2k−1} ∪ {π | π2k > π2k+2 > π2k−1 > π2k+1}

∪ {π | π2k > π2k−1 > π2k+2 > π2k+1} ∪ {π | π2k+2 > π2k > π2k−1 > π2k+1}
∪ {π | π2k+2 > π2k > π2k+1 > π2k−1} ∪ {π | π2k+2 > π2k+1 > π2k > π2k−1}

= {π | π2k > π2k+2 > π2k+1 > π2k−1} ∪ {π | π2k > π2k−1 > π2k+1}
∪ {π | π2k+2 > π2k > π2k+1 > π2k−1} ∪ {π | π2k+2 > π2k+1 > π2k > π2k−1}

=: B(k)
2n ∪ C(k)

2n ∪ D(k)
2n ∪ E (k)

2n . (3.3)

Note that B(k)
2n is the set of alternating permutations π on [2n] such that

π1 < π2 > π3 < · · · > π2k−1 < π2k,

π2k > π2k+2 > · · · > π2n > π2n−1 > π2n−3 > · · · > π2k+1 > π2k−1,

from which it is clear that B(k)
2n is a subset of A(k−1)

2n . Fig. 4 shows the conditions for π ∈ B(k)
2n .

We define B(n)
2n = A2n . For a permutation π ∈ B(k)

2n with 1 < k � n, if π2k−3 > π2k−1, then

π2k−2 > π2k−3 > π2k−1,

which shows that such π satisfy the conditions of C(k−1)
2n . Thus

B(k)
2n = {π | π2k−3 > π2k−1} ∪ {π | π2k−3 < π2k−1}

= C(k−1)
2n ∪ {π | π2k−3 < π2k−1}. (3.4)

We now compute the generating function for permutations π ∈ B(k)
2n∑

π∈B(k)
2n

qinv(π)+des(π1π3···π2k−1)+(n−k).

Let π ∈ B(k)
2n . If π2k−3 > π2k−1, then

inv(π) + des(π1π3 · · ·π2k−1) + (n − k) = inv(π) + des(π1π3 · · ·π2k−3) + (n − k + 1).

However, if π2k−3 < π2k−1, then

inv(π) + des(π1π3 · · ·π2k−1) + (n − k) = inv(π) + des(π1π3 · · ·π2k−3) + (n − k + 1) − 1.

In this case, we look for a permutation σ such that

inv(π) + des(π1π3 · · ·π2k−1) = inv(σ ) + des(σ1σ3 · · ·σ2k−3) + 1.
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Fig. 4. B(k)
2n .

Let m be defined by

π2k+m = max{π2k+ j | π2k+ j < π2k−2, j � −1}.
There exists such an m since π is an alternating permutation, so that π2k−1 < π2k−2. It follows that
π2k−1 � π2k+m < π2k−2. We switch π2k−2 and π2k+m , and denote the resulting partition by π̄ . Switch-
ing π2k−2 with π2k+m results in a decrease of the inversion number, namely

inv(π) = inv(π̄ ) + 1.

Moreover, since π̄2i+1 = π2i+1 for i < k − 1 and π2k−3 < π2k−1,

des(π1π3 · · ·π2k−1) = des(π̄1π̄3 · · · π̄2k−3).

Thus

inv(π) + des(π1π3 · · ·π2k−1) = inv(π̄ ) + des(π̄1π̄3 · · · π̄2k−3) + 1.

If π2k−2 were switched with π2k+m for m � 0, then π2k−1 < π2k+m and π2k � π2k+m . Hence, from the
definition of π̄ , we see that

π̄1 < π̄2 > π̄3 < · · · < π̄2k−2,

π̄2k > π̄2k+2 > · · · > π̄2n > π̄2n+1 > π̄2n−1 > · · · > π̄2k+1 > π̄2k−1,

π̄2k > π̄2k−2 > π̄2k−1 > π̄2k−3,

which shows π̄ ∈ D(k−1)
2n+1 . If π2k−2 and π2k−1 were switched, namely m = −1, then π2k−2 < πi for

i � 2k. Hence, from the definition of π̄ , we see that

π̄1 < π̄2 > π̄3 < · · · < π̄2k−2,

π̄2k > π̄2k+2 > · · · > π̄2n > π̄2n+1 > π̄2n−1 > · · · > π̄2k+1 > π̄2k−1,

π̄2k > π̄2k−1 > π̄2k−2 > π̄2k−3,

which shows π̄ ∈ E (k−1)
2n+1 . Thus, by (3.3) and (3.4), for any k,1 < k � n,

{
π

∣∣ π ∈ B(k)
2n ,π2k−3 > π2k−1

} ∪ {
π̄

∣∣ π ∈ B(k)
2n ,π2k−3 < π2k−1

}
= C(k−1)

2n ∪ D(k−1)
2n ∪ E (k−1)

2n

= A(k−1)
2n \ B(k−1)

2n .

Therefore,
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∑
π∈B(k)

2n

qinv(π)+des(π1π3···π2k−1)+(n−k)

=
∑

π∈B(k)
2n

π2k−3>π2k−1

qinv(π)+des(π1π3···π2k−3)+(n−k+1) +
∑

π∈B(k)
2n

π2k−3<π2k−1

qinv(π)+des(π1π3···π2k−3)+(n−k)

=
∑

π∈B(k)
2n

π2k−3>π2k−1

qinv(π)+des(π1π3···π2k−3)+(n−k+1) +
∑

π∈B(k)
2n

π2k−3<π2k−1

qinv(π̄)+des(π̄1π̄3···π̄2k−3)+(n−k+1)

=
∑

π∈A(k−1)
2n

qinv(π)+des(π1π3···π2k−3)+(n−k+1) −
∑

π∈B(k−1)
2n

qinv(π)+des(π1π3···π2k−3)+(n−k+1). (3.5)

By iterating (3.5), for any n > 1, we deduce

∑
π∈B(n)

2n

qinv(π)+des(πo) =
n−1∑
k=1

(−1)n−k−1
( ∑

π∈A(k)
2n

qinv(π)+des(π1π3···π2k−1)+(n−k)

)

+ (−1)n−1
∑

π∈B(1)
2n

qinv(π)+n−1,

which is equivalent to

g2n(q) =
n−1∑
k=1

[
2n
2k

]
(−1)n−k−1q(n−k)2

g2k(q) + (−1)n−1qn2−1

=
n−1∑
k=0

[
2n
2k

]
(−1)n−k−1q(n−k)2

g2k(q),

where the second equality holds since g0(q) = q−1. �
Theorem 3.2. Define

∞∑
n=0

Ŝo
2n(q)x2n

(q;q)2n
=

( ∞∑
n=0

(−1)nqn(n−1)x2n

(q;q)2n

)−1

.

Then, for n � 1,

Ŝo
2n(q) = q1−n So

2n(q).

Proof. Using the recurrences satisfied by So
2n(q) and Ŝo

2n(q), we can easily prove that Ŝo
2n(q) =

q1−n So
2n(q) for n � 1. We omit the details. �

The other half descent des(πe) is discussed in the following theorem.

Theorem 3.3. Define

Se
2n(q) =

∑
π∈A2n

qinv(π)+des(πe). (3.6)

Then we have

Se
2n(q) = qSo

2n(q).
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Proof. For a permutation π ∈ A2n , define the map σ by σ(π) = (2n + 1 − π2n)(2n + 1 − π2n−1) · · ·
(2n + 1 − π2)(2n + 1 − π1). Then σ(π) is an alternating permutation in A2n with

inv(π) = inv
(
σ(π)

)
and des(πo) + 1 = des

(
σ(π)e

)
,

since σ(π)e = (∞)(2n +1−π2n−1)(2n +1−π2n−3) · · · (2n +1−π3)(2n +1−π1). Therefore, it follows
that Se

2n(q) = qSo
2n(q). �

It follows from Theorems 3.1 and 3.3 that

∞∑
n=0

Se
2n(q)x2n

(q;q)2n
=

( ∞∑
n=0

(−1)nqn2
x2n

(q;q)2n

)−1

.

4. New q-tangent numbers associated with odd indices

Define T o
2n+1(q) by

∞∑
n=0

T o
2n+1(q)x2n+1

(q;q)2n+1
=

∑∞
n=0

(−1)nqn2+nx2n+1

(q;q)2n+1∑∞
n=0

(−1)nqn2 x2n

(q;q)2n

.

Then, by the definition of So
2n(q) in Theorem 3.1,

∞∑
n=0

T o
2n+1(q)x2n+1

(q;q)2n+1
=

∞∑
n=0

(−1)nqn2+nx2n+1

(q;q)2n+1

∞∑
n=0

qSo
2n(q)x2n

(q;q)2n
.

Thus

T o
2n+1(q) =

n∑
k=0

[
2n + 1

2k

]
(−1)n−kq(n−k)2+(n−k)+1 So

2k(q). (4.1)

In [18], Huber proves that the coefficients (q;q)−1
2n+1ψ

−2(q) in y2n+1 in (1.2) are T o
2n+1(q), whose

combinatorial interpretation is given in the following theorem.

Theorem 4.1. For each nonnegative integer n, we have

T o
2n+1(q) =

∑
π∈A2n+1

qinv(π)+des(πo).

Proof. Let

f2n+1(q) =
∑

π∈A2n+1

qinv(π)+des(πo).

For n = 0, it is clear that

f1(q) = 1 = T o
1(q).

For any positive integer n, we will show that f2n+1(q) satisfies Eq. (4.1).
For a positive integer k � n, let A(k)

2n+1 be the set of permutations π on [2n + 1] such that

π1 < π2 > π3 < · · · > π2k−1 < π2k,

π2k+2 > π2k+4 > · · · > π2n > π2n+1 > π2n−1 > · · · > π2k+1. (4.2)
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Fig. 5. A(k)
2n+1.

Fig. 5 shows the conditions for π ∈ A(k)
2n+1.

From Lemma 1.1 and Theorem 3.1, we see that for k � n,

∑
π∈A(k)

2n+1

qinv(π)+des(π1π3···π2k−1) =
[

2n + 1
2k

]
q(n−k)2

So
2k(q). (4.3)

We decompose A(n)
2n+1 into disjoint subsets as follows:

A(n)
2n+1 = {π | π2n > π2n+1} ∪ {π | π2n < π2n+1}

= {π | π2n > π2n+1 > π2n−1} ∪ {π | π2n > π2n−1 > π2n+1} ∪ {π | π2n < π2n+1}
=: B(n)

2n+1 ∪ D(n)
2n+1 ∪ E (n)

2n+1. (4.4)

Note that A2n+1 = B(n)
2n+1 ∪ D(n)

2n+1. For k < n, we decompose A(k)
2n+1 into disjoint subsets as follows:

A(k)
2n+1 = {π | π2k > π2k+1} ∪ {π | π2k < π2k+1}

= {π | π2k > π2k+1 > π2k−1} ∪ {π | π2k > π2k−1 > π2k+1} ∪ {π | π2k < π2k+1}
= {π | π2k > π2k+2 > π2k+1 > π2k−1} ∪ {π | π2k+2 > π2k > π2k+1 > π2k−1}

∪ {π | π2k > π2k−1 > π2k+1} ∪ {π | π2k < π2k+1}
=: B(k)

2n+1 ∪ C(k)
2n+1 ∪ D(k)

2n+1 ∪ E (k)
2n+1. (4.5)

Note that, since the permutations in B(k)
2n+1 satisfy the conditions of (4.2), B(k)

2n+1 is the set of alternat-
ing permutations π on [2n + 1] such that

π1 < π2 > π3 < · · · < π2k,

π2k > π2k+2 > · · · > π2n > π2n+1 > π2n−1 > · · · > π2k−1.

Fig. 6 shows the conditions for π ∈ B(k)
2n+1.

Furthermore, for any positive k, 1 < k � n + 1,

B(k)
2n+1 = {π | π2k−3 > π2k−1} ∪ {π | π2k−3 < π2k−1} = D(k−1)

2n+1 ∪ {π | π2k−3 < π2k−1},
where B(n+1) = A2n+1. For k > 1, we now compute the generating function for permutations π ∈
B(k)

2n+1 ∑
π∈B(k)

2n+1

qinv(π)+des(π1π3···π2k−1).

Let π ∈ B(k)
2n+1. If π2k−3 > π2k−1, namely π ∈ D(k−1)

2n+1 , then

inv(π) + des(π1π3 · · ·π2k−1) = inv(π) + des(π1π3 · · ·π2k−3) + 1.
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Fig. 6. B(k)
2n+1.

However, if π2k−3 < π2k−1, then

inv(π) + des(π1π3 · · ·π2k−1) = inv(π) + des(π1π3 · · ·π2k−3).

In this case, we look for a permutation σ such that

inv(π) + des(π1π3 · · ·π2k−1) = inv(σ ) + des(σ1σ3 · · ·σ2k−3) + 1.

Let the positive integer m be defined by

π2k+m = max{π2k+ j | π2k+ j < π2k−2, j � −1}.
Since π2k−1 < π2k−2, there exists such an m. We switch π2k+m with π2k−2 and denote the resulting
partition by π̄ . Switching π2k−2 with π2k+m results in a decrease of the inversion number, namely

inv(π) = inv(π̄ ) + 1.

Moreover, if π2k−2 was switched with π2k+m for m > −1, it is trivial that

des(π1π3 · · ·π2k−1) = des(π̄1π̄3 · · · π̄2k−3),

since π̄2i+1 = π2i+1 for i < k and π2k−3 < π2k−1. If π2k−2 was switched with π2k−1, since π2k−3 <

π2k−1 < π2k−2,

des(π1π3 · · ·π2k−1) = des(π̄1π̄3 · · · π̄2k−3).

Thus, in either case,

inv(π) + des(π1π3 · · ·π2k−1) = inv(π̄ ) + des(π̄1π̄3 · · · π̄2k−3) + 1.

From the definition of π̄ , if π2k−2 was switched with π2k−1, then

π̄1 < π̄2 > π̄3 < · · · < π̄2k−4 > π̄2k−3 < π̄2k−2,

π̄2k > π̄2k+2 > · · · > π̄2n > π̄2n+1 > π̄2n−1 > · · · > π̄2k−1,

π̄2k−2 < π̄2k−1,

which shows that π̄ ∈ E (k−1)
2n+1 . If π2k−2 was switched with π2k+m for m > −1, then it follows from the

maximality of π2k+m that

π̄1 < π̄2 > π̄3 < · · · < π̄2k−4 > π̄2k−3 < π̄2k−2,

π̄2k > π̄2k+2 > · · · > π̄2n > π̄2n+1 > π̄2n−1 > · · · > π̄2k−1,

π̄2k > π̄2k−2 > π̄2k−1 > π̄2k−3,

which shows π̄ ∈ C(k−1)
2n+1 . Thus, for any k,1 < k � n + 1,
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{
π

∣∣ π ∈ B(k)
2n+1,π2k−3 > π2k−1

} ∪ {
π̄

∣∣ π ∈ B(k)
2n+1,π2k−3 < π2k−1

}
= C(k−1)

2n+1 ∪ D(k−1)
2n+1 ∪ E (k−1)

2n+1

= A(k−1)
2n+1 \ B(k−1)

2n+1 , (4.6)

where the last equality of (4.6) follows from (4.5). Therefore,∑
π∈B(k)

2n+1

qinv(π)+des(π1π3···π2k−1)

=
∑

π∈B(k)
2n+1

π2k−3>π2k−1

qinv(π)+des(π1π3···π2k−3)+1 +
∑

π∈B(k)
2n+1

π2k−3<π2k−1

qinv(π)+des(π1π3···π2k−3)

=
∑

π∈B(k)
2n+1

π2k−3>π2k−1

qinv(π)+des(π1π3···π2k−3)+1 +
∑

π∈B(k)
2n+1

π2k−3<π2k−1

qinv(π̄)+des(π̄1π̄3···π̄2k−3)+1

= q

( ∑
π∈A(k−1)

2n+1

qinv(π)+des(π1π3···π2k−3) −
∑

π∈B(k−1)
2n+1

qinv(π)+des(π1π3···π2k−3)

)
. (4.7)

By iterating (4.7), we deduce∑
π∈B(n+1)

2n+1

qinv(π)+des(πo)

=
n∑

k=1

(−1)n−k
( ∑

π∈A(k)
2n+1

qinv(π)+des(π1π3···π2k−1)+(n−k)+1
)

+ (−1)n
∑

π∈B(1)
2n+1

qinv(π)+n,

which is equivalent to

f2n+1(q) =
n∑

k=0

[
2n + 1

2k

]
(−1)n−kq(n−k)2+(n−k)+1 So

2k(q)

by (4.3) and the definitions of B(n+1)
2n+1 , B(1)

2n+1, and So
0(q) = q−1. �

Define T̂ o
2n+1(q) by

∞∑
n=0

T̂ o
2n+1(q)x2n+1

(q;q)2n+1
=

∑∞
n=0

(−1)nqn2
x2n+1

(q;q)2n+1∑∞
n=0

(−1)nqn2−nx2n

(q;q)2n

.

Theorem 4.2. For a nonnegative integer n, we have

T̂ o
2n+1(q) = q−n T o

2n+1(q).

Proof. The theorem follows from the recursions satisfied by T o
2n+1(q) and T̂ o

2n+1(q). �
5. New q-tangent numbers associated with even indices

Let T e
2n+1(q) be the polynomial satisfying
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Fig. 7. A(k)
2n+1.

∞∑
n=0

T e
2n+1(q)x2n+1

(q;q)2n+1
=

∑∞
n=0

(−1)nqn2
x2n+1

(q;q)2n+1∑∞
n=0

(−1)nqn2 x2n

(q;q)2n

.

From the generating function for T e
2n+1(q), it follows that

T e
2n+1(q) = (−1)nqn2 +

n−1∑
k=0

[
2n + 1
2k + 1

]
(−1)n−k−1q(n−k)2

T e
2k+1(q). (5.1)

Theorem 5.1. For a nonnegative integer n,

T e
2n+1(q) =

∑
π∈A2n+1

qinv(π)+des(πe).

Proof. Let

f2n+1(q) =
∑

π∈A2n+1

qinv(π)+des(πe).

For n = 0, it is clear that

f1(q) = 1 = T e
1(q).

For any positive integer n, we will show that f2n+1(q) satisfies the recurrence (5.1).
For a nonnegative integer k � n, let A(k)

2n+1 be the set of permutations π on [2n + 1] such that

π1 < π2 > π3 < · · · < π2k > π2k+1,

π2k+2 > π2k+4 > · · · > π2n > π2n+1 > π2n−1 > · · · > π2k+3.

Fig. 7 shows the conditions for π ∈ A(k)
2n+1.

From Lemma 1.1 and the definition of f2n+1, we see that

∑
π∈A(k)

2n+1

qinv(π)+des(π0π2π4···π2k) =
[

2n + 1
2k + 1

]
q(n−k)2

f2k+1(q). (5.2)

For k < n, we decompose A(k)
2n+1 into disjoint subsets as follows:

A(k)
2n+1 = {π | π2k+1 < π2k+2} ∪ {π | π2k+1 > π2k+2}

= {π | π2k+1 < π2k+2 < π2k} ∪ {π | π2k+1 < π2k < π2k+2} ∪ {π | π2k+1 > π2k+2}
= {π | π2k+1 < π2k+3 < π2k+2 < π2k} ∪ {π | π2k+3 < π2k+1 < π2k+2 < π2k}

∪ {π | π2k+1 < π2k < π2k+2} ∪ {π | π2k+1 > π2k+2}
=: B(k)

2n+1 ∪ C(k)
2n+1 ∪ D(k)

2n+1 ∪ E (k)
2n+1. (5.3)
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Fig. 8. B(k)
2n+1.

Note that B(k)
2n+1 is the set of alternating permutations π on [2n + 1] such that

π1 < π2 > π3 < · · · < π2k > π2k+1,

π2k > π2k+2 > · · · > π2n > π2n+1 > π2n−1 > · · · > π2k+3 > π2k+1.

Fig. 8 shows the conditions for π ∈ B(k)
2n+1.

We define B(n)
2n+1 = A2n+1. For a permutation π ∈ B(k)

2n+1 with 1 � k � n, if π2k−2 < π2k , then

π2k−1 < π2k−2 < π2k,

which shows that such π satisfies the conditions of D(k−1)
2n+1 . Thus

B(k)
2n+1 = {π | π2k−2 < π2k} ∪ {π | π2k−2 > π2k}

= D(k−1)
2n+1 ∪ {π | π2k−2 > π2k}.

We now compute the generating function for permutations π ∈ B(k)
2n+1∑

π∈B(k)
2n+1

qinv(π)+des(π0π2π4···π2k).

Let π ∈ B(k)
2n+1. If π2k−2 < π2k , then

inv(π) + des(π0π2π4 · · ·π2k) = inv(π) + des(π0π2π4 · · ·π2k−2).

However, if π2k−2 > π2k , then

inv(π) + des(π0π2π4 · · ·π2k) = inv(π) + des(π0π2π4 · · ·π2k−2) + 1.

In this case, we look for a permutation σ such that

inv(π) + des(π0π2π4 · · ·π2k) = inv(σ ) + des(σ0σ2σ4 · · ·σ2k−2).

Let m be defined by

π2k+m = min{π2k+ j | π2k+ j > π2k−1, 0 � j � 2n − 2k + 1}.
There exists such an m since π is an alternating permutation, namely π2k−1 < π2k . So, π2k+m � π2k <

π2k−2. We switch π2k+m with π2k−1 and denote the resulting partition by π̄ . Switching π2k−1 with
π2k+m results in increasing of an inversion, namely

inv(π) + 1 = inv(π̄ ).

Moreover, since π2i = π̄2i for i < k,

des(π0π2π4 · · ·π2k−2) = des(π̄0π̄2π̄4 · · · π̄2k−2).
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Thus

inv(π) + des(π2π4 · · ·π2k) = inv(π) + des(π0π2π4 · · ·π2k−2) + 1

= inv(π̄ ) + des(π̄0π̄2π̄4 · · · π̄2k−2).

If π2k−1 was switched with π2k+m for m > 0, then π2k+ j < π2k . Hence, from the definition of π̄ , we
see that

π̄1 < π̄2 > π̄3 < · · · < π̄2k−2 > π̄2k−1,

π̄2k > π̄2k+2 > · · · > π̄2n > π̄2n+1 > π̄2n−1 > · · · > π̄2k+1,

π̄2k−2 > π̄2k > π̄2k−1 > π̄2k+1,

which shows, from (5.3), that π̄ ∈ C(k−1)
2n+1 . If π2k−1 and π2k were switched, namely m = 0, then

π2k−1 > πi for i > 2k. Hence, from the definition of π̄ , we see that

π̄1 < π̄2 > π̄3 < · · · < π̄2k−2 > π̄2k−1,

π̄2k > π̄2k+2 > · · · > π̄2n > π̄2n+1 > π̄2n−1 > · · · > π̄2k+1,

π̄2k−2 > π̄2k−1 > π̄2k > π̄2k+1. (5.4)

Note that, since E (k−1)
2n+1 ⊆ A(k−1)

2n+1 , we see that

E (k−1)
2n+1 = {π | π2k−2 > π2k−1 > π2k > π2k+1}.

Therefore, (5.4) implies π̄ ∈ E (k−1)
2n+1 . Hence, by (5.3), for any k,1 � k � n{

π
∣∣ π ∈ B(k)

2n+1,π2k−2 < π2k
} ∪ {

π̄
∣∣ π ∈ B(k)

2n+1,π2k−2 > π2k
}

= C(k−1)
2n+1 ∪ D(k−1)

2n+1 ∪ E (k−1)
2n+1

= A(k−1)
2n+1 \ B(k−1)

2n+1 .

Therefore,∑
π∈B(k)

2n+1

qinv(π)+des(π0π2π4···π2k)

=
∑

π∈B(k)
2n+1

π2k−2<π2k

qinv(π)+des(π0π2π4···π2k−2) +
∑

π∈B(k)
2n+1

π2k−2>π2k

qinv(π)+des(π0π2π4···π2k−2)+1

=
∑

π∈B(k)
2n+1

π2k−2<π2k

qinv(π)+des(π0π2π4···π2k−2) +
∑

π∈B(k)
2n+1

π2k−2>π2k

qinv(π̄ )+des(π̄0π̄2π̄4···π̄2k−2)

=
∑

π∈A(k−1)
2n+1

qinv(π)+des(π0π2π4···π2k−2) −
∑

π∈B(k−1)
2n+1

qinv(π)+des(π0π2π4···π2k−2). (5.5)

By iterating (5.5), we deduce∑
π∈B(n)

2n+1

qinv(π)+des(πe)

=
n−1∑
k=0

(−1)n−k−1
( ∑

π∈A(k)

qinv(π)+des(π0π2π4···π2k)

)
+ (−1)n

∑
π∈B(0)

qinv(π),
2n+1 2n+1
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which is equivalent to

f2n+1(q) =
n−1∑
k=0

[
2n + 1
2k + 1

]
(−1)n−k−1q(n−k)2

f2k+1(q) + (−1)nqn2
. �

Theorem 5.2. Define

∞∑
n=0

T̂ e
2n+1(q)x2n+1

(q;q)2n+1
=

∑∞
n=0

(−1)nqn2+nx2n+1

(q;q)2n+1∑∞
n=0

(−1)nqn2−nx2n

(q;q)2n

.

Then, for n � 1,

T̂ e
2n+1(q) = q−n−1T e

2n+1(q).

Proof. Note that

T̂ e
2n+1(q) = (−1)nqn2+n +

n−1∑
k=0

[
2n + 1
2k + 1

]
(−1)n−k−1q(n−k)2−(n−k) T̂ e

2k+1(q). (5.6)

To prove Theorem 5.2, multiply both sides of (5.6) by qn+1 to obtain, for n � 1,

qn+1 T̂ e
2n+1(q) = (−1)nq(n+1)2 +

[
2n + 1

1

]
(−1)n−1qn2+1

+
n−1∑
k=1

[
2n + 1
2k + 1

]
(−1)n−k−1q(n−k)2+k+1 T̂ e

2k+1(q). (5.7)

Note that

(−1)nq(n+1)2 +
[

2n + 1
1

]
(−1)n−1qn2+1 = (−1)n−1qn2+1(1 + q + · · · + q2n−1)

= (−1)nqn2 +
[

2n + 1
1

]
(−1)n−1qn2

. (5.8)

Inserting (5.8) into (5.7), we see that the recursion (5.1) for T e
2n+1(q) is identical to the recursion for

qn+1 T̂ e
2n+1(q) in (5.7). �

6. Symmetries of the q-Euler numbers

In [20], Ismail and Zhang conjectured that the polynomials T o
2n+1(q) are symmetric about the

middle coefficient(s). We prove their conjecture in the following theorem.

Theorem 6.1. The polynomials T2n+1(q), T o
2n+1(q), and T e

2n+1(q) are symmetric about the middle coeffi-
cient(s).

Proof. For each alternating permutation π = π1π2 · · ·π2n+1, the permutation π = π2n+1π2n · · ·π1 is
also an alternating permutation. Recall that des(πe) = π0π2 · · ·π2n and des(π e) = π0π2n · · ·π2. From
the definition of π , it follows that

n(2n + 1) = inv(π) + inv(π),

2n(n + 1) = inv(π) + des(πo) + inv(π) + des(πo),

2n(n + 1) + 1 = inv(π) + des(πe) + inv(π) + des(π e).
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Therefore, the inversion map π → π is a bijection between{
π

∣∣ inv(π) = k
}

and
{
π

∣∣ inv(π) = n(2n + 1) − k
}
,{

π
∣∣ inv(π) + des(πo) = k

}
and

{
π

∣∣ inv(π) + des(πo) = 2n(n + 1) − k
}
,{

π
∣∣ inv(π) + des(πe) = k

}
and

{
π

∣∣ inv(π) + des(πe) = 2n(n + 1) + 1 − k
}
.

If k = n(2n + 1)/2, then {π | inv(π) = k} = {π | inv(π) = n(2n + 1) − k}. Otherwise, the two sets are
disjoint. It follows that, if n is even, the coefficients of T2n+1 are symmetric about the term∣∣{π ∣∣ inv(π) = n(2n + 1)/2

}∣∣ · qn(2n+1)/2.

If n is odd, the coefficients are symmetric about the terms corresponding to q�n(2n+1)/2	 and
q�n(2n+1)/2	+1. The coefficients of T o

2n+1(q) and T e
2n+1(q) can similarly be seen to be symmetric about

the middle term(s). �
The q-secant numbers discussed in Section 3 are symmetric about the middle coefficient.

Theorem 6.2. The polynomials So
2n(q) and Ŝo

2n(q) are symmetric about the middle coefficient.

Proof. It suffices to show that So
2n(q) is symmetric. First note that the alternating permutation with

the least weight is

π = 1 3 2 5 4 7 · · · (2n − 1) (2n − 2)2n,

with inv(π) = n − 1 and des(πo) = 0; while the alternating permutation with the largest weight is

π = (2n − 1)2n (2n − 3) (2n − 2) · · · 1 2,

with inv(π) = 2n2 − 2n and des(πo) = n − 1. Thus

So
2n(q) = qn−1 + · · · + q2n2−n−1.

It is clear that So
2(q) = 1 is symmetric. Suppose So

2k(q) is symmetric about qk2−1 for k < n. Since the

q-binomial coefficient
[ x

y

]
is symmetric,[

2n
2k

]
q(n−k)2

So
2k(q)

is symmetric. The exponent of the middle term is

(n − k)2 + (
2nk − 2k2) + k2 − 1 = n2 − 1.

Therefore, So
2n(q) is symmetric about qn2−1. �

Note. It would be interesting to find a combinatorial proof of Theorem 6.2 analogous to that of The-
orem 6.1. We note in passing that the polynomials S2n(q), Sdes

2n (q) and their dual polynomials Ŝ2n(q),

Ŝdes
2n (q) appearing in Theorems 2.5, 2.6, and 2.7 are the only polynomials considered in this paper that

are not symmetric about the middle coefficient(s).

Definition. A polynomial p : C → C of degree n is said to be reciprocal if

p(z) = ±zn p

(
1

z

)
. (6.1)

The following corollary follows from Theorems 2.3, 3.2 4.2, 5.2, and 6.1.
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Corollary 6.3. The polynomials T̂ des
2n+1(q), T̂ o

2n+1(q), T̂ e
2n+1(q), and Ŝo

2n(q) are reciprocal. More precisely, if

f (q) ∈ {T̂ des
2n+1(q), T̂ o

2n+1(q), T̂ e
2n+1(q), Ŝo

2n(q) | n � 0}, and f has degree n, then

f (1/q) = f (q)/qn.

7. Higher order q-Euler numbers

The tangent numbers of order k are defined by the Taylor series coefficients in the expansion
of tank z about z = 0. Since

d

dz
tan2 z = d2

dz2
tan z,

we see that for n � 1, the numbers

d2n

dz2n
tan2 z

∣∣∣∣
z=0

= d2n+1

dz2n+1
tan z

∣∣∣∣
z=0

(7.1)

each enumerate the alternating permutations on [2n + 1]. Equivalently, the first and second order
tangent numbers are identical. The q-extensions of second order q-tangent numbers, in contrast, gen-
erate polynomials distinct from those of first order. In the following theorem, we offer a combinatorial
interpretation for the second order q-tangent numbers arising in the previous sections.

Before we state the theorem, we define the permutation statistics α,β, and γ on A2n+1 by

α(π) = inv(π) + max(π) − 2n − 1,

β(π) = inv(π) + des(πo) + max(π) − 2n − 3 + sign(πmax(π)−1 − πmax(π)+1)

2
,

γ (π) = inv(π) + des(πe) + max(π) − 2n − 2,

where max(π) denotes the index of 2n+1 in π . Throughout the section, we denote π
j

i = πiπi+1 · · ·π j
for a given permutation π .

Theorem 7.1. Let T2n+1(q), T o
2n+1(q), T e

2n+1(q) denote the q-analogues of the tangent numbers defined by

Theorems 2.1, 4.1, and 5.1, respectively. Define T (2)
2n (q), T o (2)

2n (q), T e(2)
2n (q) by

∞∑
n=0

T (2)
2n (q)z2n

(q;q)2n
=

( ∑
n=0

T2n+1(q)z2n+1

(q;q)2n+1

)2

,

∞∑
n=0

T o (2)
2n (q)z2n

(q;q)2n
=

( ∑
n=0

T o
2n+1(q)z2n+1

(q;q)2n+1

)2

,

∞∑
n=0

T e(2)
2n (q)z2n

(q;q)2n
=

( ∑
n=0

T e
2n(q)z2n+1

(q;q)2n+1

)2

.

Then

T (2)
2n (q) =

∑
π∈A2n+1

qα(π), T o (2)
2n (q) =

∑
π∈A2n+1

qβ(π), T e(2)
2n (q) =

∑
π∈A2n+1

qγ (π).

Proof. For a permutation π in A2n+1, let π2k = 2n + 1 for some k, 1 � k � n. Then

inv(π) = ∣∣{(i, j)
∣∣ i < 2k < j and πi > π j

}∣∣ + ∣∣{(i, j)
∣∣ i < j < 2k and πi > π j

}∣∣
+ ∣∣{(i, j)

∣∣ 2k < i < j and πi > π j
}∣∣ + ∣∣{(2k, j)

∣∣ 2k < j
}∣∣

= ∣∣{(i, j)
∣∣ i < 2k < j and πi > π j

}∣∣ + inv
(
π2k−1

1

) + inv
(
π2n+1) + 2(n − k) + 1.
2k+1
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Thus,

α(π) = ∣∣{(i, j)
∣∣ i < 2k < j and πi > π j

}∣∣ + inv
(
π2k−1

1

) + inv
(
π2n+1

2k+1

)
.

We now show that T (2)
2n (q) is the generating function for permutations in A2n+1 with weight α. The

polynomials T (2)
2n (q) satisfy

T (2)
2n (q) =

n∑
k=1

[
2n

2k − 1

]
T2k−1(q)T2(n−k)+1(q). (7.2)

By Lemma 1.1, the q-binomial coefficient
[ 2n

2k−1

]
in the summand on the right-hand side of (7.2)

counts the inversions between the two sub-permutations π2k−1
1 and π2n+1

2k+1 , namely∣∣{(i, j)
∣∣ i < 2k < j and πi > π j

}∣∣;
T2k−1(q) and T2(n−k)+1(q) count the inversions of π2k−1

1 and π2n+1
2k+1 , respectively. Therefore, T (2)

2n (q) is
the generating function for permutations π in A2n+1 with weight α(π). The arithmetic interpretations
for the polynomials T o (2)

2n (q) and T e(2)
2n (q) are similarly derived. We omit the details. �

In the next theorem, we present a corresponding interpretation for the second order q-secant
numbers studied in Sections 2 and 3. The proof for each interpretation is similar to that of Theo-
rem 7.1.

Theorem 7.2. Let S2n(q) and So
2n(q) denote the q-analogues of the secant numbers defined by Theorems 2.5

and 3.1, respectively. Define S(2)
2n (q) and So(2)

2n (q) by

∞∑
n=0

S(2)
2n (q)z2n

(q;q)2n
=

( ∑
n=0

S2n(q)z2n

(q;q)2n

)2

,

∞∑
n=0

So(2)
2n (q)z2n

(q;q)2n
=

( ∑
n=0

So
2n(q)z2n

(q;q)2n

)2

.

Then

S(2)
2n (q) =

∑
π∈A2n+1

qδ(π),

So (2)
2n (q) =

∑
π∈A2n+1

qυ(π) =
∑

π∈A2n+1

qω(π),

where

δ(π) = inv(π) − 2 · inv
(
π2n+1

min(π)+1

) +
(

2n + 1 − min(π)

2

)
− min(π) + 1,

υ(π) = δ(π) + des(πo) − 2 · des
((

π2n+1
min(π)+1

)
o

) + n − min(π) + 3

2
,

ω(π) = δ(π) + des(πe) − 2 · des
((

π2n+1
min(π)+1

)
e

)
+ n − min(π) + 2 + sign(πmax(π)−1 − πmax(π)+1)

2
+ sign(π2n+1 − 1) + sign(π1 − 1) − 2.
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Proof. For a permutation π in A2n+1, let π2k+1 = 1 for some k, 0 � k � n. Then

inv(π) = ∣∣{(i, j)
∣∣ i < 2k + 1 < j and πi > π j

}∣∣ + ∣∣{(i, j)
∣∣ i < j < 2k + 1 and πi > π j

}∣∣
+ ∣∣{(i, j)

∣∣ 2k + 1 < i < j and πi > π j
}∣∣ + ∣∣{(i,2k + 1)

∣∣ i < 2k + 1
}∣∣

= ∣∣{(i, j)
∣∣ i < 2k + 1 < j and πi > π j

}∣∣ + inv
(
π2k

1

) + inv
(
π2n+1

2k+2

) + 2k.

Thus,

δ(π) = ∣∣{(i, j)
∣∣ i < 2k + 1 < j and πi > π j

}∣∣ + inv
(
π2k

1

) − inv
(
π2n+1

2k+2

) +
(

2(n − k)

2

)

= ∣∣{(i, j)
∣∣ i < 2k + 1 < j and πi > π j

}∣∣ + inv
(
π2k

1

) + inv
(
π2n+1

2k+2

)
, (7.3)

where π2n+1
2k+2 = π2n+1π2n · · ·π2k+3π2k+2.

We now show that S(2)
2n (q) is the generating function of permutations in A2n+1 with weight δ. The

polynomials S(2)
2n (q) satisfy

S(2)
2n (q) =

n∑
k=0

[
2n
2k

]
S2k(q)S2(n−k)(q). (7.4)

By Lemma 1.1, the q-binomial coefficient
[ 2n

2k

]
in the summand on the right-hand side of (7.4) counts

the inversions between the two sub-permutations π2k
1 and π2n+1

2k+2 , namely

∣∣{(i, j)
∣∣ i < 2k + 1 < j and πi > π j

}∣∣;
S2k(q) and S2(n−k)(q) count the inversions of π2k

1 and π2n+1
2k+1 , respectively, since π2k

1 ∈ A2k and

π2n+1
2k+1 ∈ A2(n−k) . Therefore, S(2)

2n (q) is the generating function for permutations π in A2n+1 with
weight δ(π).

To obtain the claimed arithmetic interpretation for the polynomials So(2)
2n (q), note that, with the

convention that des(∅) = 0, where ∅ denotes the empty permutation,

des(π2n+1π2n−1 . . . πmin(π)+2) + sign(π2n+1 − 1) − 1

= 2n − min(π) − 1

2
− des(πmin(π)+2πmin(π)+4 · · ·π2n+1).

Hence, by (7.3), we find that

υ(π) = δ(π) + des(πo) − 2 · des
((

π2n+1
min(π)+2

)
o

) + n − min(π) + 3

2
= δ(π) + des(π1π3 · · ·πmin(π)−2) − des(πmin(π)+2πmin(π)+3 · · ·π2n+1)

+ 2n − min(π) − 1

2
= δ(π) + des(π1π3 · · ·πmin(π)−2) + des(π2n+1π2n−1 · · ·πmin(π)+2)

+ sign(π2n+1 − 1) − 1

= ∣∣{(i, j)
∣∣ i < min(π) < j and πi > π j

}∣∣ + inv
(
π

min(π)−1
1

) + des
((

π
min(π)−1
1

)
o

)
+ inv

(
π2n+1

min(π)+1

) + des
((

π2n+1
min(π)+1

)
o

) + sign(π2n+1 − 1) − 1,
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where π2n+1
min(π)+1 = π2n+1π2n · · ·π2k+3πmin(π)+1. Therefore, since So

0(q) = q−1, by Lemma 1.1, Theo-

rem 3.1, and the definition of So(2)
2n (q), we see that

So(2)
2n (q) =

∑
π∈A2n+1

qυ(π).

By squaring the generating function for Se
2n(q) defined by (3.6) and using the fact that Se

2n(q) =
So

2n(q), we readily observe that the weight ω(π) corresponds to the same enumeration for A2n+1
as υ(π). We omit the details. �
8. Concluding remarks

Define the Bell polynomials Bn,k(x1, x2, . . . , xn−k+1) via the generating function [12]

exp

(
u

∞∑
m=1

xmzm

m!

)
= 1 +

∞∑
n=1

n∑
k=1

Bn,k(x1, x2, xn−k+1)
ukzn

n! .

Then, by Faá Di Bruno’s formula [12, p. 137] and Theorem 2.5,

S2n(q) = (q;q)2n

(2n)!

(
1 +

2n∑
v=1

(−1)v v!B2n,v(α1, . . . ,α2n−v+1)

)
, (8.1)

where

αk =
{

(−1)k/2k!/(q;q)k, if k is even,

0, if k is odd.

From (2.1) and (2.7), we obtain

T2n+1(q) =
n∑

j=0

[
2n + 1

2 j

]
(−1)n− j S2 j(q). (8.2)

Closed formulas and relations for the other q-Euler numbers can be similarly derived.
As mentioned in the Introduction, the generalized tangent numbers T o

2n+1(q) are the polynomi-
als arising in the coefficient of ψ−2(q) in (q;q)2n+1 y2n+1 of (1.2). Constant multiples of the second
order extensions T o(2)

2n+1(q) appear in (1.2) as the coefficient of ψ−4(q) in the corresponding ex-
pansion of (q;q)2n y2n for n � 2 [18, Theorem 3.4]. Ismail and Zhang [20, Theorem 4.1] prove that
each y j can be expressed as a polynomial in certain elliptic parameters over the field of rational
functions in q. The authors of [20] suggest that polynomials appearing in the numerators of these
expansions, denoted by Dr,s,t(q), have interesting combinatorial properties. Our study of T o

2n+1(q) ex-
plicitly addresses the combinatorics of the polynomials Dr,0,1(q) and Dr,0,2(q). Recursion formulas for
y j appearing in [17,18] show that, in general, the polynomials Dr,s,t(q) arise as linear combinations
of finite products

∏
j(T o

2n j+1(q))m j . The results of the present paper explain the symmetry of the

polynomials appearing in expansions for y j observed by the authors of [20].

9. Addendum

A point of clarification is necessary to reconcile the polynomials appearing in [20] with those of
the present paper. The polynomials Dr,s,t(q) arise as coefficients in the series expansions for the zeros
of

R(x,q) :=
∞∑ qn2

xn

(q;q)n
. (9.1)
n=0
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Due to minor misprints, the polynomials Dr,0,t appearing in [20, p. 374] are not in accordance with
the polynomials T o

2n+1(q) studied here. For completeness, we include a corrected version of the rele-
vant results in [20, Sections 3 and 4]. A more detailed discussion appears in [18, §4].

Theorem 9.1. Let

0 < i1(q) < i2(q) < · · · < in(q) < · · · (9.2)

be the zeros of R(−x,q), and define ξn(q), X, u such that

in(q) := q−2n+1ξn(q), X = qn, u = X/
√

ξn(q). (9.3)

Let ψ(q) be defined by (1.4) and ϕ(q) = ∑∞
n=−∞ qn2

. Denote

h(x) := x

(1 − q)ψ2(q)

1φ1(0;q3;q2,q2x2)

1φ1(0;q;q2,qx2)
(9.4)

and

g(x) :=
∞∑

m=0

ϕ4m(q)
(−1)mx2m+1

2m + 1
2 F 1

(
−m,1/2

1

∣∣∣∣ϕ4(q) − 16qψ4(q2)

ϕ4(q)

)
. (9.5)

Then, provided the aforementioned series converge,

X = u exp(−g ◦ h ◦ u). (9.6)

Moreover, if we denote by u(X) the inverse function X �→ u determined by (9.6), then

ξn(q) = exp
(−2g ◦ h ◦ u(X)

)
. (9.7)
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