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The object of this paper is to present simpler proofs of the various generalizations 
of some interesting results on bilateral generating functions which were derived 
recently by group-theoretic methods. It is also shown how one of our main 
theorems on generating functions would apply not only to the Bessel function J,(x), 
but indeed also to the Konhauser biorthogonal polynomials Yz(x; s) whose special 
case when s=2 was encountered in certain analytical calculations involving the 
penetration of gamma rays through matter. a-, 1990 Academic Press, Inc. 

1. INTRODUCTION AND PRELIMINARIES 

An interesting generalization of the classical Hermite polynomials is due 
to Gould and Hopper [3] who introduced the polynomials 

HY,(x, a, 8) = (- 1)” x-’ exp(/?x’) 0:(xX exp( -fix’)}, (1.1) 

where D, = dJdx, and the parameters CI, j?, and y are unrestricted, in 
general. In fact, in terms of the classical Hermite polynomials, it is easily 
seen that 

fc(x, 0, 1) = ff,b) (n = 0, 1, 2, . ..). (1.2) 
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Making use of group-theoretic methods (see, e.g., [6, Chaps. 2 and 3; 15, 
Chap. 6]), Shrivastava and Kaur [9] established two theorems on 
bilateral generating functions involving the (GoulddHopper) generalized 
Hermite polynomials (l.l), the Laguerre polynomials L:‘(x), and the 
Gegenbauer (or ultraspherical) polynomials C:(x) (cf. [S, 181). In our 
attempt to give relatively simpler proofs of their results, without using 
group-theoretic methods, we noticed an error in one of their main 
assertions appearing throughout their paper [9]; more importantly, we 
were led in this manner to the various generalizations of each of their 
theorems, which we shall present in Sections 2 and 3. We shall also give 
several interesting applications of our main classes of bilateral generating 
functions. 

For the sake of ready reference, we choose to recall here the main results 
of Shrivastava and Kaur [9] in the following (modified, corrected, and 
substantially improved) forms: 

THEOREM A. In terms of the Gould-Hopper polynomials defined by ( 1.1 ), 
let 

F,(x, y, t) = f a,Hj;(x, a, /?) L:+“‘(y) t” 
II = 0 

(a, Z 01, (1.3) 

where a, /I, y, and ;1 are arbitrary (real or complex) parameters. Also let 

fm,&> w, xl = 

Then 

m;cofm.n( z, w, x) L$+“‘(y) tm 

=x -“(x-~)~exp(P(x~-(x-w)*)-t)F,(x-w,y+t,zt), (1.5) 

provided that each member exists. 

THEOREM B. Suppose that there exists a bilateral generating function in 
the form: 

GM,,(x, y, t) = c a,Czn(x) Lg’“)(y) t” (4 Z 01, (1.6) 
?I=0 
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where v and c1 are arbitrary (real or complex) parameters. Also let 

&n(z~ w, x)= 
min(m,n) 

c 
k=O 

k m-k (-1) z wrzpk 

k! (n-k)! 

(1.7) 

where, as usual, (A),, = r(l+ n)/T( A). 
Then 

f &i&, w, x) L(Nl+m) (Y) tm 
m,?l=O 

provided that each member exists. 

It may be of interest to remark in passing that the parameters M and N 
in the above theorems need not necessarily be constrained to take on non- 
negative integer values. Thus, in general, Theorems A and B hold true for 
the Laguerre and Gegenbauer (or ultraspherical) functions. 

In its special case when 

a,= 1 (n=O, 1,2, . ..). w = t; A=O; N = 0, 1, 2, . . . . (1.9) 

Theorem A corresponds essentially to Theorem I of Shrivastava and Kaur 
[9]. On the other hand, Theorem B with 

a, = 1 (n = 0, 1, 2, . ..). w = 2t; v=a=@ M,N=O, 1,2 ,..., 
(1.10) 

and with t in (1.8) replaced by w, would yield in the corrected version of 
Theorem II of Shrivastava and Kaur [9]. 

Our direct proof of Theorem A, without using group-theoretic methods 
employed by the earlier authors [9] in the special case when the conditions 
listed in (1.9) are satisfied, is based upon the known generating function 
[3, p. 57, Eq. (5.3)]: 

f ffK+,(X, 4 a,; 
II=0 

=(l -t/x)“exp(/?x’(l-(l-t/x)Y))H;(x-t,tl,p) (ItI < I-4)7 
(1.11) 
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and the well-known identity (cf. [ 1, p. 142, Eq. (18)]; see also [ 15, p. 172, 
Problem 22(ii)]): 

l-t)” e?L$)(x+t)= f Lg+“‘(x)-p 
II=0 

(1.12) 

which follows immediately from Taylor’s expansion, since 

D”,{e?Lly”)(x)} = (- 1)” e --xLt+n)(x). (1.13) 

Indeed, if we substitute for the polynomials fm,Jz, w, x) from (1.4) into the 
left-hand side of (1.5), and invert the order of the summations involved, we 
obtain 

Now apply (1.11) and (1.12) to sum the inner series, and then interpret the 
resulting series by means of (1.3). We are thus led easily to the right-hand 
side of the assertion (1.5) of Theorem A. 

Theorem B can be proven in a similar manner by appealing to the 
identity (1.12) and the elementary result: 

f onCv+,(X)t,t=(1_t)-v-Ni2Cu 
n! N NJ% ( > 

(IfI < 11, (1.14) 
n=O 

which is a rather straightforward consequence of the hypergeometric 
representation [2, p. 176, Eq. 3.15(8)]: 

C” (x) = fi (2~)~ N N! 
F 2 1 -;N, -;N+;; 1 -V-XX-~ 1 . (1.15) 

2. FURTHER GENERALIZATIONS OF THEOREM A 

A closer examination of our proof of Theorem A, using the Gould- 
Hopper result (l.ll), would suggest the existence of much more general 
classes of bilateral generating functions of the type ( 1.5). As an illustration, 
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consider a class of functions {S,(x) 1 n = 0, 1, 2, . ..} generated by [ 10, 
p. 755, Eq. (111 

where m is a nonnegative integer, the coefficients A,,, are constants (real 
or complex), and f, g, h are suitable functions of x and t. The sequence 
(S,,(x)>, generated by (2.1) can indeed be specialized to yield a fairly wide 
variety of special functions (and polynomials) including, for example, the 
Gould-Hopper polynomials ( 1.1) for which 

A m,n = l/n!, ,f(x, t)=(l -t/x)“exp(/IxYjl -(l -f/~)~}), 

g(x, 2) = 1, h(x, t)=x- t, and S,(x) = fqx, 4 PI, 

by virtue of (1.11). 
Making use of the generating function (2.1), instead of its special case 

( 1. 1 1 ), it is not difficult to prove a generalization of Theorem A contained 
in 

THEOREM 1. Corresponding to the functions S,(x), generated by (2.1), let 

@,Cx, Y, tl = f a,SJx) L$+“‘(y) t” (a, + 01, (2.2) 
II=0 

where L is an arbitrary (real or complex) parameter. Suppose also that 

A m-k 
W 

n-k 
m-k mpk,npkZ s m+np2kcXh (2.3) 

Then 

cc 
c Om,JZ, w, x) L$+“‘(y) tm 

Wl.fl=O 

= exp( - Wlx, 4 @,0(x, 4, Y + t, zt/g(x, 41, (2.4) 

provided that each member exists. 

It should be pointed out that, by setting 

a, = 6, Tn(zl, . . . . zs) (b,#O;n=O, 1,2 ,... ), (2.5) 

where T,,(z,, . . . . z,) is a nonvanishing function of s variables zl, . . . . z,~ 
(s 3 1 ), Theorem 1 (and each of its consequences considered below) can be 
applied to derive various classes of mixed multilateral generating functions 
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analogous to those considered in the literature (cf. [ 12; 15, Sections 8.4 
and 8.51). Furthermore, as already observed by one of us elsewhere 
[ 12, p. 2221, the definition (2.1) can easily be transformed to include cases 
when m is an arbitrary complex parameter. Thus, for example, Theorem 1 
applies also to the familiar Bessel function generated by [ 18, p. 141, 
Eq. 5.22(5)] 

: JP+Jx)$=(l -2t/x)~“‘Y&/~), (2.6) 
n=O 

where p is an arbitrary complex number. Setting p= v + m in (2.6), where 
m is a nonnegative integer, and comparing the resulting equation with the 
generating function (2.1), we find that 

A m,n = l/n!, f(x, t) = (1 - 2f/X))“‘2, g(x, t) = jci& 

h(x, t) = jzG, and %7(x)=J,+.(x). 

Consequently, Theorem 1 yields 

COROLLARY 1. Zf 

@NC% Y, tl = f (InJv++(X) L;+“‘(y) 1” (%ZO) (2.7) 
PI=0 

and 

%&, M’, xl = 

min(m,n) ( _ 1 )k fn ~ k Wn ~ k 

c 
k! (n -k)! 

am-kJv+m+n-2k(X), (2.8) 
k=O 

where v and 2 are arbitrary complex parameters, then 

2 (Pm&, w, x) L$+““(Y) trn 
m.n=O 

=exp(-t)(l-2w/x)~“@,[J~,y+t,zt(l-2w/x)~’12], (2.9) 

provided that each member exists. 

Numerous further applications of Theorem 1 would involve the familiar 
classes of polynomials considered in the earlier works stemming from the 
detinition (2.1) (see, e.g., [lo; 14; 12; 15, Sect. 8.2 et seq.]). For instance, 
the polynomials Gf)(x, y, /3, [) defined by [16, p. 75, Eq. (1.3)] 

G’“‘(x y p i) =x 
-a-in 

n I?$ n! 
exp(pxY)(xi”D,)” (x” exp(-ox?)) (2.10) 
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were introduced by Srivastava and Singhal [16] in an attempt to present 
a unified theory of the various known generalizations of the classical 
Hermite and Laguerre polynomials, including (for example) the Gould- 
Hopper polynomials (1.1). These polynomials are known to possess the 
generating functions (cf. [ 16; 12, p. 2391): 

:o(“:“) G!Z1,,(x, Y, B, i) t” 

and 

=(1-[t))“P”/iexp(/3xY{l-(1-[t))Y/i}) 

G:)(xU - Ct)-I”, Y, 8, 0, (i:#O;m=O, 1,2 ,...) (2.11) 

=(I +[t)-‘+ali exp(/W( 1 - (1 + it)Y’i}) 

. G%(l + U)“‘, Y, B, 0, (i#O;m=O, 1,2 ,... ). (2.12) 

Making use of (2.11) and (2.12) in conjunction with Theorem 1, we obtain 
the following results on bilateral generating functions for the Srivastava- 
Singhal polynomials defined by (2.10). 

COROLLARY 2. Zf 

‘y,C& .?J, tl = f a,Gf’ (x, y, /I, (‘) ,5$+“‘(y) t” (a, # 0) (2.13) 
n=O 

and 

.z m-k 
W n-k@) 

,,I + n - 2kcX, 7, b? i)? (2.14) 

then 

=(l-~w)-“~rexp(~xY{l-(l-~w)-Y’i}-t) 

~Y~[X(l-~w)-l’~,y+t,Zt/(l-~~)l (i #Oh (2.15) 

provided that each member exists. 

409/152!2-4 
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COROLLARY 3. If 

ZN[x,y, t] = f ~~G(ln-~~)(x, y, /I, [) L$+“) (y 
n=O 

and 

1 t” (a, # 0) (2.16 1 

G’” - (m+ n -2k) i’(x, y, 8, [), 
n, + II ~ 2k (2.17) 

then 

f 5m,n(z, w, x) L$+“‘(Y) t” 
PZ,ll=O 

= (1 +jw)-l+alc exp(pxY{ 1 - (1 + [w)~‘~} - t) 

.E,JX(l +jw)“i,y+ t, zt/(l +iw)l (i z 01, 

provided that each member exists. 

(2.18) 

Now we recall the relationship [ 14, p. 315, Eq. (83)] : 

Y;(x;s)=s-“Gc+“(x, 1, 1,s) (OL> -l,s=l,2, 3 ,... ), (2.19) 

where Yz(x; s) denotes the Konhauser biorthogonal polynomials 
(cf. [4, 5, 7, 131). In particular, 

YI(x; 1) = L?‘(x) (a> -l,n=O, 1,2 )... ), (2.20) 

and the polynomials Yz(x; 2) were encountered earlier by Spencer and 
Fano [ 111 in certain analytical calculations involving the penetration of 
gamma rays through matter. 

In view of the relationship (2.19), Corollaries 2 and 3 can readily be 
applied to derive the corresponding bilateral generating functions for these 
biorthogonal polynomials. Furthermore, since [16, p. 76, Eq. (1.6)] 

G~‘(x,yJ, -l)=G~~“+‘)(x,yJ, l)=~H;(x,arJ?) (2.21) 

in terms of the Gould-Hopper polynomials (1.1 ), Theorem A is an obvious 
further special case of Corollary 2. 

Numerous other special cases of Corollaries 2 and 3 can be derived by 
appealing to the various known relationships (cf. [ 16, p. 761). 
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3. FURTHER GENERALIZATIONS OF THEOREM B 

In terms of a suitably bounded sequence (Qn}~==o of complex numbers, 
let us define 

a3 QkxN-2k 
w;;tx) = tv)N c 

k=c,(l-V--N)k’ 
(3.1) 

where the parameters v and N are unrestricted, in general. Then it is easily 
verified that 

Setting 

the generating function (3.2) assumes the hypergeometric form: 

a1 3 ...> q7; 

=(l-t)-“,F,+i 4--t) 3 1 (3.3) 
14B,,...,&; 

which can indeed be proven directly. 
Each of the formulas (3.2) and (3.3) provides a generalization of the 

generating function (1.14) involving the Gegenbauer polynomial (or func- 
tion). In fact, by suitably choosing the coefficients 52, in (3.1) or the 
various parameters occurring in (3.3), the generating function (3.2) can be 
applied to numerous other hypergeometric polynomials (including, for 
example, the Jacobi polynomials [8, Chap. 163). 

Applying the generating function (1.12), in conjunction with (3.2) instead 
of (1.14), we can prove a further generalization of Theorem B given by 

THEOREM 2. Suppose that there exists a bilateral generating function in 
the form: 

H,,,(x,y, t)= f a,uz+n(x) Lg+“‘(y) t” (a, Z 01, (3.4) 
n=O 
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where v and GI are arbitrary (real or complex) parameters. Also let 

h,,,(z, w, xl = 
min(m,n) (-l)kZm-k Wn-k 

c 
k=O k! (n-k)! 

‘am-k (V +m-k),p, W;m+nP2k(x). (3.5) 

Then 

f h,,,(z, w, xl J$+“‘(Y) f” 
m,ll=O 

provided that each member exists. 

Theorem 2 can be shown to contain several classes of bilateral 
generating functions analogous to those given by Theorem B. Indeed the 
choice of the coeffkients a,, given by (2.5) continues to remain valid for 
Theorem 2 and for each of its consequences including Theorem B. 
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