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It is shown that various well-known generalizations of Stirling numbers of the
first and second kinds can be unified by starting with transformations between
generalized factorials involving three arbitrary parameters. Previous extensions of
Stirling numbers due to Riordan, Carlitz, Howard, Charalambides-Koutras,
Gould-Hopper, Tsylova, and others are included as particular cases of our unified
treatment. We have also investigated some basic properties related to our general
pattern. Q 1998 Academic Press

1. INTRODUCTION

As may be observed, a natural approach to generalizing Stirling numbers
is to define Stirling number pairs as connection coefficients of linear
transformations between generalized factorials. Of course, any useful
generalization should directly imply some interesting special cases that
have certain applications. The whole approach adopted in this paper is

w xentirely different from that of Hsu and Yu 13 , starting with generating
functions, and various new results are provided by a unified treatment.

w xA recent paper 24 of Theoret investigated some generating functions´ ˆ
for the solutions of a type of linear partial difference equation with
first-degree polynomial coefficients. Theoretically, it also provides a way of
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unifying various generalized Stirling numbers, since the difference equa-
tion considered could be suitably specialized to those recurrence relations
satisfied by Stirling-type numbers.

What we will present here is a kind of general pattern that implies a
more transparent unification of various well-known Stirling-type numbers
and their basic properties investigated by previous authors.

1.1. Basic Definition

Ž . Ž . Ž .Let us denote z N a s z z y a ??? z y na q a for n s 1, 2, . . . ,n
Ž . Ž .and z N a s 1, where z N a is called the generalized factorial of z0 n

Ž . Ž . Ž .with increment a , and in particular we write z N 1 s z with z s 1.n n 0
Generalizing the idea involved in the previous investigations due to

w x w x w xCarlitz 3 , Howard 11 , Tsylova 26 , and several others, we may define a
� 1 24 � 1Ž . 2Ž .4 � Ž .Stirling-type pair S , S s S n, k , S n, k ' S n, k; a , b , r ,

Ž .4S n, k; b , a , yr by the inverse relations

n
1t N a s S n , k t y r N b 1Ž . Ž . Ž . Ž .Ýn k

ks0

n
2t N b s S n , k t q r N a 2Ž . Ž . Ž . Ž .Ýn k

ks0

Ž .where n g N set of nonnegative integers , and the parameters a , b , and
Ž . Ž .r are given real or complex numbers, with a , b , r / 0, 0, 0 .

� 1 24 ² : ² :We may call S , S an a , b , r -pair or a b , a , yr -pairs as well, in
which S1 and S2 may be called the first member and the second member
of the pair, respectively.

� Ž . Ž .4Evidently, the classical Stirling number pair s n, k , S n, k is the
² :1, 0, 0 pair. Indeed, the two kinds of Stirling numbers may be written in
the form

s n , k s S n , k ; 1, 0, 0 , S n , k s S n , k ; 0, 1, 0 .Ž . Ž . Ž . Ž .

In particular, it is obvious that the binomial coefficients are given by

nS n , k ; 0, 0, 1 s .Ž . ž /k

Ž .Note that the number s n, k discussed and extended by Doubilet et al.
w x w x Ž .8 and by Wagner 27 may be written as k!S n, k; 0, 1, 0 .
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1.2. Special Cases

Here several other interesting special cases may be briefly mentioned:

Ž .i Lah numbers

n! n y 1ž /k y 1k!

and

n!nyk n y 1y1Ž . ž /k y 1k!

² : < Ž . <form the y 1, 1, 0 pair. The signless Stirling number s n, k and
Ž .nyk Ž . ² :y1 S n, k form the y 1, 0, 0 pair. See a combinatorial set-

w x Ž w x.theoretic approach given by Joni et al. 14 cf. also 22 .
Ž . Žii Carlitz’s two kinds of weighted Stirling numbers or Kontras’

. ² :noncentral Stirling numbers just form the 1, 0, yl pair, where l / 0
Ž w x.cf. 3 .

Ž .iii Carlitz’s two kinds of degenerate Stirling numbers form the
² : Ž w x.1, u , 0 pair, with u / 0 cf. 2 .

Ž .iv Howard’s weighted degenerate Stirling numbers form the
² : Ž w x.1, u , yl pair cf. 11 .

Ž .v Gould-Hopper’s noncentral Lah numbers are basically given by
² : Ž w x.the first member of the 0, 1, ya q b pair cf. 9 .

Ž . ² :vi Riordan’s noncentral Stirling numbers form the 1, 0, b y a
Ž w x.pair cf. 20 .
Ž .vii The noncentral C numbers extensively studied by Charalam-

²bides and Koutras practically belong to the first member of the 1rs, 1,
: Ž w x w x.ya q b pair cf. 4 ; see also 5 .

Ž . Ž . ² : Žviii Tsylova’s numbers A r, m belong to the a , b , 0 pair cf.ab

w x.26 .
Ž . Ž .ix Todorov’s numbers a x actually belong to the first membernk
² : Ž w x.of the 1, x, 0 pair cf. 25 .
Ž . Ž .x Ahuja-Enneking’s associated Lah numbers B n, r, k just cor-

² : Ž w x.respond to the first member of the y 1rr, 1, 0 pair cf. 19 .
Ž .xi The r-Stirling numbers of the first kind fully developed by

w x ² :Broder 1 actually belong to the y 1, 0, r pair, with n and k replaced
by n y r and k y r, respectively.



GENERALIZED STIRLING NUMBERS 369

Of course, the above list may not be complete. Some of the above cases
will be expounded in more detail as examples in Section 2.

² :It is worth noticing that the standard notation a , b , r with three free
parameters may help us to recognize some logical implicative relations
among Stirling-type numbers. For instance, one may observe at once that

Ž . Ž .the numbers a x mentioned in case ix are essentially the first kind ofnk
Carlitz degenerate Stirling numbers. Furthermore, it is clear that all of the

Ž . Ž . Ž . Ž .numbers discussed in cases iii , ix , and x are included in case viii .
Ž . Ž .Moreover, a comparison of cases vii and iv will reveal that the statisti-

cally useful noncentral C numbers are just the second kind of Howard’s
weighted degenerate Stirling numbers.

1.3. Orthogonality Relations

�Ž . 4 �Ž . 4It is clear that t N a and t y r N b form two different sets ofn n
Ž . Ž .bases for the linear space of polynomials, so that by substituting 1 into 2

Ž Ž . Ž ..or 2 into 1 , one may easily get the orthogonality relations

m m
1 2 2 1S m , k S k , n s S m , k S k , n s d , 3Ž . Ž . Ž . Ž . Ž .Ý Ý m n

ksn ksn

Ž . Žd being the Kronecker symbol, viz., d s 1 for m s n , s 0 other-m n m n
. Ž .wise . Consequently, from 3 one easily obtains the inverse relations for

n g N:
n n

1 2f s S n , k g m g s S n , k f . 4Ž . Ž . Ž .Ý Ýn k n k
ks0 ks0

1Ž .Although we have defined two kinds of Stirling-type numbers S n, k
2Ž .and S n, k , generally it suffices to consider one of them, since the

parameters a , b , and r are entirely arbitrary.
In this paper we will investigate recurrence relations, generating func-

tions, convolution formulas, and congruence properties, as well as asymp-
Ž .totic expansions for the numbers S n, k; a , b , r . Moreover, Section 4 will

be devoted to establishing a kind of extended Dobinski formulae for the
generalized exponential polynomials

n
kS x s S n , k ; a , b , r x , 5Ž . Ž . Ž .Ýn

ks0

as well as for the generalized Bell numbers,

n

W s S 1 s S n , k ; a , b , r . 6Ž . Ž . Ž .Ýn n
ks0



HSU AND SHIUE370

2. GENERATING FUNCTIONS

Ž . Ž .For brevity we will always use S n, k to denote S n, k; a , b , r , unless
there is a need to indicate a , b , and r explicitly.

Ž .In the first place notice that relation 1 implies the following:

S 0, 0 s 1, S n , n s 1, S 1, 0 s r .Ž . Ž . Ž .

Ž .Furthermore, as a convention we assume S n, k s 0 for k ) n.

Ž . Ž .THEOREM 1. For the numbers S n, k defined by 1 , we ha¨e the
recurrence relations

S n q 1, k s S n , k y 1 q kb y na q r S n , k 7Ž . Ž . Ž . Ž . Ž .

where n G k G 1. In particular, we ha¨e

S n , 0 s r N a . 8Ž . Ž . Ž .n

Ž .Proof. In accordance with 1 , we may write

nq1

S n q 1, k t y r N bŽ . Ž .Ý k
ks0

s t N a t y naŽ . Ž .n

n

s S n , k t y r N b t y r y kb q kb y na q rŽ . Ž . Ž . Ž .Ý k
ks0

n n

s S n , k ty r N b q S n , k kbynaq r ty r N bŽ . Ž . Ž . Ž . Ž .Ý Ýkq1 k
ks0 ks0

nq1 n

s S n , ky1 ty r N b q S n , k kbyna q r ty r N b .Ž . Ž . Ž . Ž . Ž .Ý Ýk k
ks1 ks0

Ž . Ž .Thus, identifying the coefficients of t y r N b k G 1 of the first and lastk
Ž .expressions, we obtain 7 . Furthermore, for the terms corresponding to

k s 0, we find

S n q 1, 0 s S n , 0 r y na , n s 0, 1, 2, . . . .Ž . Ž . Ž .

Consequently, we get

S n , 0 s S 0, 0 r r y a ??? r y na q a s r N a .Ž . Ž . Ž . Ž . Ž . n
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Ž . � Ž .4To find a vertical generating function GF for the sequence S n, k ,
we need the following:

� Ž .4LEMMA. The ¨ertical GF of S n, k

t n

y t s S n , k 9Ž . Ž . Ž .Ýk n!nG0

satisfies the difference-differential equation

d
1 q a t y t y kb q r y t s y t , 10Ž . Ž . Ž . Ž . Ž . Ž .k k ky1dt

Ž .where k s 1, 2, 3, . . . , and y 0 s 0 for k G 1, andk

rray t s 1 q a t . 11Ž . Ž . Ž .0

Ž . Ž . Ž .Proof. The property y 0 s 0 k G 1 is obvious from 9 . Now makingk
use of Theorem 1, we have

t n t n

S n q 1, k s kb y na q r S n , kŽ . Ž . Ž .Ý Ýn! n!nG0 nG0

t n

q S n , k y 1 .Ž .Ý n!nG0

This may be rewritten in the form

t ny1 t n

S n , k q a S n , k y kb q r y tŽ . Ž . Ž . Ž .Ý Ý kn y 1 ! n y 1 !Ž . Ž .nG1 nG1

s y t ,Ž .ky1

which is identical to the following:

t ny1

1 q a t S n , k y kb q r y t s y t .Ž . Ž . Ž . Ž . Ž .Ý k ky1n y 1 !Ž .nG1

Ž .This is precisely equivalent to Eq. 10 .
Moreover, we have

t n t n

y t s S n , 0 s r N aŽ . Ž . Ž .Ý Ý n0 n! n!nG0 nG0

n rrarras a t s 1 q a t .Ž . Ž .Ý ž /n
nG0

Hence the lemma is proved.
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Ž . Ž .THEOREM 2. The generalized Stirling numbers S n, k ' S n, k; a , b , r ,
with ab / 0, ha¨e the ¨ertical GF,

kbra n1 q a t y 1 tŽ .rra1 q a t s k! S n , k . 12Ž . Ž . Ž .Ýž /b n!nG0

Ž . Ž . Ž .Proof. Let the LHS of 12 be denoted by k!f t . Notice that 10 hask
Ž . Ž . Ž . Ž .the unique solution y t under the conditions y 0 s 0 k G 1 and 11 .k k

Ž . Ž .Thus it suffices to show that f t is the unique solution of 10 , so thatk
Ž . Ž .f t s y t .k k

Ž . Ž . Ž . rra Ž .Evidently, f 0 s 0 for k G 1 and f t s 1 q a t s y t . More-k 0 0
over, using elementary differentiation and algebraic computations, one can
verify that

d
1 q a t f t y kb q r f t s f t , k G 1 .Ž . Ž . Ž . Ž . Ž . Ž .k k ky1dt

Ž . Ž . Ž . ŽHence we conclude that f t s y t , and 12 is proved. Here thek k
.almost routine procedure of computation is omitted.

Ž .Note that the form of LHS of 12 has been also determined via two
Ž Ž . w x.lemmas by Theoret cf. 15 of 24 .´ ˆ

Remark 1. Similarly, there is also a GF for the second member,
Ž . Ž .S n, k; b , a , yr . It is called a conjugate form of 12 , which may be

Ž . Ž .obtained simply by changing a , b , r into b , a , yr , namely,

karb n1 q b t y 1 tŽ .yrrb1 q b t s k! S n , k ; a , b , yr .Ž . Ž .Ýž /a n!nG0

Remark 2. The condition ab / 0 is seen necessary for the LHS of
Ž .12 . However, one can still let a ª 0 q or b ª 0 q to get suitable limits.

Ž .In fact, taking r s 0, a s 1 and letting b ª 0 q , we easily find that 12
leads to the following:

t n
k 1ln 1 q t s k! S n , k . 12.1Ž . Ž . Ž .Ž . Ý n!nG0

This is precisely the GF for the classical Stirling numbers of the first kind.
Ž .Similarly, taking r s 0, b s 1, and a ª 0 q , we see that 12 gives the

GF for the classical Stirling numbers of the second kind:

t n
kt 2e y 1 s k! S n , k . 12.2Ž . Ž . Ž .Ý n!nG0
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Ž .Thus, with a view to the GF of S n, k; a , b , r numbers, one can also write
the classical pair of Stirling numbers in the form

s n , k s S n , k ; 1, 0 q , 0 , S n , k s S n , k ; 0 q , 1, 0 .Ž . Ž . Ž . Ž .

² :Briefly, it is the 1, 0 q , 0 pair.

� 1 24EXAMPLE 1. Carlitz’s pair of weighted Stirling numbers S , S '
�Ž .nqk Ž . Ž .4 ² :y1 R n, k, l , R n, k, l is the 1, 0 q , l pair. More precisely,1 2

Ž w x.their GF are given by cf. 3

t n
kyl nqk1 q t ln 1 q t s k! y1 R n , k , l 12.3Ž . Ž . Ž . Ž . Ž .Ž . Ý 1 n!nGk

t n
kl t te e y 1 s k! R n , k , l 12.4Ž . Ž . Ž .Ý 2 n!nGk

Ž . Ž . Ž .As is easily seen, 12.3 and 12.4 follow from 12 by letting r s yl,
a s 1, b ª 0 q ; and letting r s l, b s 1, a ª 0 q , respectively. In

Ž . Ž . Ž .other words, 12.3 and 12.4 are implied by 12 and its conjugate form,
respectively.

�Ž .nqkEXAMPLE 2. Carlitz’s pair of degenerate Stirling numbers y1 =
Ž . Ž . 4 ² :S n, k N u , S n, k N u is the 1, u , 0 pair. Their GFs1

ku n1 q t y 1 tŽ . nqks k! y1 S n , k N u 12.5Ž . Ž . Ž .Ý 1ž /u n!nGk

t n
km

1 q u t y 1 s k! S n , k N u 12.6Ž . Ž . Ž .Ž . Ý n!nGk

Ž . Ž w x.with um s 1 are also implied by 12 and its conjugate form cf. 2 .

EXAMPLE 3. Howard’s pair of weighted degenerate Stirling numbers
� 1 24 �Ž .nqk Ž Ž . . Ž .4S , S ' y1 S n, k, l q u N u , S n, k, l N u is precisely the1
² :1, u , yl pair. In fact, their GF

ku n1 q t y 1 tŽ .yl nqk1 q t s k! y1 S n , k , l q u N uŽ . Ž . Ž .Ý 1ž /u n!nGk

12.7Ž .

t n
kmml1 q u t 1 q u t y 1 s k! S n , k , l N u 12.8Ž . Ž . Ž . Ž .Ž . Ý n!nGk
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Ž .with um s 1 may also be deduced from 12 and its conjugate form, with
Ž w x.a s 1, b s u and r s yl, cf. 11 .

Ž .Remark 3. According to 3 it is seen that each pair of number
sequences given in the above examples are orthogonal to each other. They

Ž .also yield inverse series relations of the form 4 .

ŽEXAMPLE 4. The noncentral C numbers also called Gould]Hopper
. Ž . Ž w x.numbers C n, k, s, r are defined by the relation cf. 6

n

st y sa s C n , k , s, r t y b , r s b y a .Ž . Ž . Ž . Ž .Ýn k
ks0

Notice that
1

nst y sa s s t y a ,Ž . n ž /s n

so that the above relation is precisely equivalent to the following:
n1

nt s C n , k , s, r t q a y b rs .Ž . Ž .Ý kž /s n ks0

Ž . n ² :This shows that the numbers C n, k, s, r rs belong to the 1rs, 1, b y a
pair. Actually, they belong to the second kind of Howard’s weighted
degenerate Stirling numbers.

Consequently, by Theorem 2 we get the GF
n

trsŽ .ksŽ .bya s1 q trs 1 q trs y 1 s k! C n , k , s, r .Ž . Ž . Ž .Ž . Ý n!nG0

This may be simplified to the form

t n
kr s s

1 q t 1 q t y 1 s k! C n , k , s, r . 12.9Ž . Ž . Ž . Ž .Ž . Ý n!nG0

U Ž .Correspondingly, there are associated numbers C n, k, s, r belonging to
the first kind of Howard’s weighted degenerate Stirling numbers, which

Ž .may be generated by the conjugate form of 12.9
ntkyr 1rs U1 q t s 1 q t y s s k! C n , k , s, r . 12.10Ž . Ž . Ž . Ž .Ý n!nG0

Certainly, the two kinds of numbers C and CU are orthogonal, and they
yield the inverse series relations

n n
Uf s C n , k , s, r g m g s C n , k , s, r f .Ž . Ž .Ý Ýn k n k

ks0 ks0
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3. CONSEQUENCES OF THEOREM 2

As in the classical case, we easily get the double GF for the numbers
Ž . Ž . Ž .S n, k ' S n, k; a , b , r from 12 , namely,

n kx t xrra bra1 q a t exp 1 q a t y 1 s S n , k . 13Ž . Ž . Ž . Ž .Ž . Ý
b n!n , kG0

Ž . Ž .Notice that the RHS of 13 contains the exponential polynomial S x sn
n Ž . k Ž .Ý S n, k x in the summand. We may restate 13 as a corollary ofks0

Theorem 2.

� Ž .4COROLLARY 1. The sequence S x has the following GF:n

nx trra bra1 q a t exp 1 q a t y 1 s S x 14Ž . Ž . Ž . Ž .Ž . Ý nb n!nG0

Ž .In particular, 14 gï es the GF for the generalized Bell numbers,

ntrra bra1 q a t exp 1 q a t y 1 rb s W , 15Ž . Ž . Ž .Ž . Ý n n!nG0

Ž .where W s S 1 .n n

3.1. Con¨olution Formulas

Denote for brevity

S n , k s S n , k ; a , b , r , i s 1, 2 .Ž . Ž . Ž .i i i

Then, performing the product of the following two GFs:

k ibra ni1 q a t y 1 tŽ .r rai1 q a t s k ! S n , k , i s 1, 2 ,Ž . Ž . Ž .Ýi i ib n !in G0i

and identifying the coefficients of t m on the both sides, we are easily led to
the following:

COROLLARY 2. There holds the con¨olution formula

m
m S n , k ; a , b , r S m y n , k , a , b , rŽ . Ž .Ý 1 1 2 2ž /n

ns0

k q k1 2s S m , k q k ; a , b , r q r 16Ž . Ž .1 2 1 2ž /k1
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where k and k are nonnegatï e integers, and a , b , r , and r may be any1 2 1 2
real or complex numbers.

Ž .As a simple example, one may take k s k s 0. In this case 16 implies1 2
Ž Ž ..Vandermonde’s formula recalling 8 ,

m
m r N a r N a s r q r N a . 17Ž . Ž . Ž . Ž .Ý 1 2 1 2n myn mž /n

ns0

3.2. Congruence Properties

Ž .The convolution formula 16 may be used to investigate the congruence
Ž .properties of S p, k , where p is a prime number. More precisely, we can

establish the following:

THEOREM 3. Let a , b , and r be integers. Then for any gï en odd prime
number p, we ha¨e the congruence relations

S p , k ; a , b , r ' 0 mod p , 18Ž . Ž . Ž .

where 1 - k - p.

Ž . Ž .Proof. From Theorem 1, together with the relations S 0, 0 s 1, S n, n
Ž . Ž .s 1, S 1, 0 s r, we see that S n, k; a , b , r are integers whenever a , b ,

Ž .and r are integers. Now let us make use of 16 , taking m s p and writing
Ž .r q r s r, k s k q k with k G 1 and k G 1. Then from 16 we may1 2 1 2 1 2

infer that

py1k pS p , k ; a , b , r s S n , k ; a , b , r S p y n , k ; a , b , rŽ . Ž . Ž .Ý 1 1 2 2ž /kž / n1 ns1

' 0 mod p .Ž .

kSince 1 - k - p, the coefficient is not divisible by p, and we mayž /k1

Ž .conclude that S p, k; a , b , r should be a multiple of p.

Certainly, Theorem 3 could be specialized to the cases of various
Žwell-known generalized Stirling numbers involving integer parameters cf.

w x w x.7 , 10 .

4. GENERAL DOBINSKI-TYPE FORMULAS

Ž .For the classical Stirling numbers of the second kind, S n, k s2
Ž .S n, k; 0, 1, 0 , the attractive Bell numbers B and the exponential polyno-n
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Ž .mials w x are defined, respectively, by the following:n

n

B s S n , k 19Ž . Ž .Ýn 2
ks0

n
kw x s S n , k x . 20Ž . Ž . Ž .Ýn 2

ks0

It is known that the delta-operator techniques fully developed in the
w xBinomial Enumeration Theory by Mullin and Rota 18 could be used to

Ž .treat B , w x , and the like very easily. For instance, the remarkablen n
Dobinski-type formula

x kk n
yxw x s e . 21Ž . Ž .Ýn k!kG0

can be obtained almost immediately by using Mullin]Rota’s operator
Ž w x .method cf. also Roman and Rota 21 , pp. 133]134 .

The object of this section is to prove a general Dobinski-type formula
Ž . Ž .for the generalized exponential polynomial S x defined by 5 . Althoughn

the general formula may also be obtainable by using Mullin-Rota’s opera-
tor method, we will give it a computational proof by making use of
Corollary 1 of Theorem 2.

Ž . n Ž . kTHEOREM 4. For the polynomial S x s Ý S , n, k; a , b , r x , wen ks0
ha¨e the Dobinski-type formula

kxrb1 xrbŽ .
S x s kb q r N a . 22Ž . Ž . Ž .Ý nn ž /e k!kG0

Ž .Proof. Starting with 14 , we have

xrbnt 1 rra braS x s 1 q a t exp 1 q a t xrbŽ . Ž . Ž . Ž .� 4Ý n ž /n! enG0

kxrb1 xrbŽ .rra k bras 1 q a t 1 q a tŽ . Ž .Ýž /e k!kG0

kxrb1 xrbŽ . rra kbra jq ls a t .Ž .Ý Ýž / ž /ž /j le k!kG0 j , lG0
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By identifying the coefficient of t nrn! within the first and last expressions,
and using Vandermonde’s formula, we find

kxrb1 xrbŽ . rra q kbra nS x s a n!Ž . Ýn ž /ž / ne k!kG0

kxrb1 xrbŽ .
s kb q r N a .Ž .Ý nž /e k!kG0

Ž .COROLLARY. For the generalized Bell number W s S 1 , we ha¨en n

k1rbn 1 1rbŽ .
W s S n , k s kb q r N a . 23Ž . Ž . Ž .Ý Ý nn ž /e k!ks0 kG0

Ž .E¨idently, Dobinski formulas 21 and

1 k n

B s 24Ž .Ýn e k!kG0

Ž . Ž . Ž . Ž .are particular cases of 22 and 23 , with a , b , r s 0, 1, 0 , respectï ely.

Ž .As may be observed, the formula 22 can also be used to give a closed
sum formula for the following type of infinite series:

x k
kt q sc x , t , s s , 25Ž . Ž .Ýn ž /nk!kG0

where x, t, s are any real or complex numbers, and n is an integer G 0.
Actually such a type of series cannot be summed by using the hypergeo-
metric series method.

Ž .Using 22 and making the substitutions b ¬ a t, r ª a s, and x ¬ a xt,
we get the following identity:

x k e x
kt q s s S a xt . 26Ž . Ž .Ý nnž /nk! n!akG0

Ž .Notice that the LHS of 26 is independent of a ; we may certainly choose
a s 1 to get the sum

x k e x
kt q s s S xt , 27Ž . Ž .Ý nž /nk! n!kG0
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Ž .where S xt is given byn

n
kS xt s S n , k ; 1, t , s xt . 28Ž . Ž . Ž . Ž .Ýn

ks0

Ž .This shows that the series c x, t, s could be summed in closed form byn
using generalized Stirling numbers, namely, the first kind of Howard’s

Ž .weighted degenerate Stirling numbers cf. Example 3 of Section 2 .

5. A KIND OF ASYMPTOTIC EXPANSION

Here we will develop a kind of asymptotic expansion for the generalized
Ž . Ž . Ž .Stirling numbers S l q n, l ' S l q n, l; a , b , r and S l q n, l, lr

Ž .' S l q n, l; a , b , lr for large l and n, with the condition n s
Ž 1r2 .Ž . w xo l l ª ` . An asymptotic formula of Tsylova 26 , involving a gener-

w xalization of a result by Moser and Wyman 16 , is included as a special
case.

5.1. Preliminaries

A principal tool to be employed in this section is a known result, namely
an asymptotic expansion formula for the coefficients of power-type gener-

Ž w x.ating functions involving large parameters cf. Hsu 12 . Such an expan-
sion formula consists of inverse falling factorials of large numbers of the

Ž . k Ž .form 1r l q k , rather than those of inverse powers 1rl , k s 1, 2, . . . .k
This may be seen to be quite natural for expressing combinatorial func-
tions like Stirling numbers.

Ž .Denote by N the set of positive integers. Let s n be the set ofq
Ž . k1 k 2 k npartitions of n n g N , usually represented by 1 2 ??? n with 1k qq 1

Ž .2k q ??? qnk s n, k G 0 i s 1, 2, . . . , n , and with k s k q k2 n i 1 2
q ??? qk expressing the number of parts of the partition.n

Ž . Ž . Ž .For given k 1 F k F n , we use s n, k to denote the subset of s n ,
which consists of partitions of n having k parts.

Ž . n nLet f t s Ý a t be a formal power series over the complex field C,0 n
Ž . Ž .with a s f 0 s 1. For every j 0 F j - n define0

ak1 ak 2 ??? ak n
1 2 n

W n , j s , 29Ž . Ž .Ý k !k ! ??? k !1 2 nŽ .s n , nyj
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where the summation is taken over all such partitions 1k1 2 k 2 ??? nk n of n
Ž .that have n y j parts. What we shall need is the following known result

Ž w x.cf. 11 :
w n xŽ Ž ..l nLet t f t denote the coefficient of t in the power series expansion of

Ž Ž ..lf t . Then for a fixed s g N and for large l and n such that n sq
Ž 1r2 .Ž .o l l ª ` , we ha¨e the asymptotic expansion formula

s1 W n , j W n , sŽ . Ž .lnw xt f t s q o , 30Ž . Ž .Ž . Ý ž /l l y n q j l y n q sŽ . Ž . Ž .jn sjs0

Ž . Ž .where the quantities W n, j are gï en by 29 . In particular, when n is fixed,
Ž ysy1.the remainder estimate is gï en by 0 l .

Ž . Ž .5.2. Asymptotics of S l q n, l; a , b , g and S l q n, l; a , b , lg

Ž . ² :To apply 30 to the a , b , r pair with ab / 0, let us take

bra1 q a t y 1 S n q 1, 1Ž . Ž .rra nf t s 1 q a t s t , 31Ž . Ž . Ž .Ýž /b t n q 1 !Ž .nG0

Ž . Ž . Ž .so that f 0 s 1, where S n q 1, 1 ' S n q 1, 1; a , b , r . Consequently,
we have

lbra1 q a t y 1Ž .l l rra
f t s 1 q a tŽ . Ž .Ž . ž /b t

S l q n , l; a , b , lrŽ .
ns l! t . 32Ž .Ý

l q n !Ž .nG0

Ž .Thus, making use of 30 , we obtain

sS l q n , l; a , b , lr W n , j W n , sŽ . Ž . Ž .
s q o , 33Ž .Ý ž /l l q n l y n q j l y n q sŽ . Ž . Ž . Ž .jn n sjs0

Ž 1r2 .Ž . Ž .Ž . Ž .where n s o l l ª ` and W n, j j s 0, 1, 2, . . . are given by 29 ,
Ž .with a being determined by 31 , viz.,j

w j xa s t f t s S j q 1, 1 r j q 1 ! 34Ž . Ž . Ž . Ž .j
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More precisely, we easily compute a by using Vandermonde’s formulaj
as follows:

brarra kjw xa s t 1 q a t a t r b tŽ . Ž . Ž .Ýj ž /kkG1

a rra bra iqky1jw xs t a tŽ .Ý Ýž / ž / ž /i kb iG0 kG1

a rra q bra rrajs a y½ 5ž / ž / ž /j q 1 j q 1b

1
s b q r N a y r N a , j s 1, 2, . . . , n.Ž . Ž .Ž .jq1 jq1

b ? j q 1 !Ž .

Hence we may state the following:

Ž .THEOREM 5. There holds the asymptotic expansion formula 33 for
Ž 1r2 . Ž . Ž .l ª ` with n s o l , where W n, j is defined by 29 , with a being gï enj

by

a s b q r N a y r N a r j q 1 !b . 35Ž . Ž . Ž . Ž .Ž .Ž .jq1 jq1j

Ž . Ž .Remark 1. Notice that the formula 33 with W n, j and a beingj
Ž . Ž .defined by 29 and 35 , respectively, is essentially an algebraic]analytic

Ž .identity. Thus it is also applicable to the function S l q n, l; a , b , r ,
Ž .provided that the quantity r contained in 33 is replaced by rrl, i.e., the

Ž .expression 35 for a is replaced byj

r r
a s b q a y a j q 1 !b .Ž .Ž .j ž / ž /l ljq1 jq1

In particular, if l is very large and if only a few principal terms of the
Ž .asymptotic expansion for S l q n, l are required, one can even use the

following approximate values for a instead:j

a s b N a r j q 1 !b .Ž . Ž .Ž .jq1j

Remark 2. Starting with the generating function

kbra m`1 1 y 1 y a x xŽ .
s A m , k ,Ž .Ý a , bk! b m!msk
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w xand applying the Cauchy residue theorem, E. G. Tsylova 26 has proved
Ž .the asymptotic formula a generalization of Moser]Wyman’s result : if

Ž 1r2 .a / b and if m and k tend to infinity such that 0 - m y k s o m ,
then

my km 1A m , k s a y b k 1 q o 1 .Ž . Ž . Ž .Ž .Ž .a , b 2ž /k
Ž .Actually, this can be deduced from our general formula 33 by taking

r s 0, s s 1, l s k, and n s m y k.
Finally, let us give a simple example to illustrate the use of the formula

Ž . Ž . Ž .33 . Assume r s 0 and take s s 2. Notice that W n, 0 , W n, 1 , and
Ž .W n, 2 are given by

1 1
n ny2W n , 0 s a , W n , 1 s a a ,Ž . Ž .1 1 2n! n y 2 !Ž .
1 1

ny3 ny4 2W n , 2 s a a q a a .Ž . 1 3 1 2n y 3 ! 2! n y 4 !Ž . Ž .
Ž .Clearly 33 implies the asymptotic relation

S l q n , l; a , b , 0Ž .
l q nŽ . n

; l W n , 0 q l W n , 1 q l W n , 2 , 36Ž . Ž . Ž . Ž . Ž . Ž . Ž .n ny1 ny2

Ž 1r2 .Ž .where n s o l l ª ` . This may be used to derive simple asymptotic
expressions for Carlitz’s degenerate Stirling numbers involving large pa-

Ž .rameters cf. Example 2 of Section 2 .
Ž .In particular, 36 may be applied to the two kinds of classical Stirling

Ž . Ž . Ž . Žnumbers s l q n, l ' S l q n, l; 1, 0 q , 0 and S l q n, l ' S l q
. Ž . jq1 Ž .n, l; 0 q , 1, 0 . For these numbers one easily finds a s y1 r j q 1j
Ž . Ž .and a s 1r j q 1 !, respectively. Thus 36 givesj

ny1 ny2s l q n , l 1r2 1r2 1r3Ž . Ž . Ž . Ž .
; l q lŽ . Ž .n ny1

l q n n y 3 ! n y 2 !Ž . Ž . Ž .n

ny1 ny3 21r2 1r2 1r3Ž . Ž . Ž .
q l q ,Ž . ny2 ½ 5n y 3 ! n y 4 !Ž . Ž .

n ny1S l q n , l 1r2 1r2 1r3Ž . Ž . Ž . Ž .
; l q lŽ . Ž .n ny1

l q n n! n y 2 !Ž . Ž .n

n ny1 21r2 1r3 1r2 1r3Ž . Ž . Ž . Ž .
q l q .Ž . ny2 ½ 5n y 3 ! n y 4 !Ž . Ž .
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Actually these special asymptotic expressions are included in the more
w xelaborated works by Moser and Wyman 16, 17 and several others. What

we have shown above is a unified way of attaining them. For more
complete asymptotics of classical Stirling numbers, see Temme’s recent

w xpaper 23 .
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