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Abstract 

Hsu, F. and L.C. Hsu, A unified treatment of a class of combinatorial sums, Discrete 

Mathematics 90 (1991) 191-197. 

Here introduced is a class of combinatorial sums that can be treated by means of an embedding 

and inversion technique. Some classic identities and novel ones are demonstrated to be 

members of the class defined. Solution of Liskovets’ problems is reconsidered, and an 

additional class of identities is formulated. 

1. Introduction 

The object of this paper is to develop a unified method for dealing with a wide 
class of combinatorial sums involving the binomial coefficient (z) as a factor in 
their summands. The basic tool to be employed is the inverse series relations 
proved earlier by Gould and Hsu [5], namely the following proposition. 

Proposition. Let {a,} and {bi} be any two sequences of numbers such that 

@(x, n) = fi (ai + xb,) # 0 
i=l 
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(1.0) 
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for integers x, n 3 0 with @(x, 0) = 1. Then we have the pair of reciprocal 
formulas: 

fn = $O(-l)*(;)@(k, n)g,, (l-1) 

ak+l + kbk+d@(n, k + I)-‘fk. (1.2) 

This proposition suggests a fruitful concept concerning a class of identities 
involving binomial coefficients. 

Definition. Any finite summation formula is said to belong to the class Z if it can 
be expressed in either of the forms (1.1) or (1.2) in which ai and bi are suitable 
assigned numbers, and fk and gk may involve some independent parameters. 

A good many identities appearing in Riordan’s book [ll] are members of the 
class _Z. Moreover, a rough but extensive investigation of Gould’s formulary [4] 
reveals that almost 30% of the total 500 known identities contain (;) as a factor in 
their summands. Furthermore, the majority of these identities are capable of 
being embedded in either of the forms (1 .l) or (1.2). 

2. Some remarkable examples 

Here we will show that some classic identities are members of the class 2: so 
that they may be readily proved anew by the embedding (and inversion) 
technique associated with the reciprocal relations (1.1) e (1.2). 

Example 1 (Abel’s identity). The well-known formula 

(x + y)” = z. (:)x(x - kz)k-‘(y + kz)“-k (2-l) 

is generally considered as a deep generalization of the binomial theorm (see, e.g., 
[l, 81). Clearly, (2.1) may be rewritten as 

fn: = (& Y)” = k$o (;)WkYk n)gk> 

with 

and 

g,: = (-l)kX(X - kz)k-‘(y + kz)-k 

@(k, n): = (y + kz)“, ai =Y, bi = Z. 

This shows that (2.1) can be readily embedded in (1.1). 

(2.2) 
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Proof of (2.1). Inversion of (2.2) via (1.2) gives 

(_l)“x (x -w-l 
(Y+nz)” =~owk(~)(yy+~~;+l(~+Y)*- 

This is equivalent to the following: 

-x(nz - x)“_l = $” (Wk( ;)c y + kz)(y + nZ)n-k-l(X + y)” 

= $” (-I)*[ (;)y + (; I ;)nz](Y + nZ)n-k-1(X +y)", 

the validity of which may be verified at once by use of the binomial theorem, 
noting that (z 1:) = 0 for k = 0. 

Example 2 (Hagen-Rothe-Gould type identities). The convolution identity 

i x (’ lkZ) y + (n’- k)= (’ +,‘“,““) k=O~ + kz 

x+Y ( n+y+nz 
= 

x+y+ni! n ) 
(2.3) 

has been investigated by various authors and also extended to higher dimensions 
by Mohanty and Handa [lo]. As may be observed, (2.3) is implied by the 
following (with p = 1, q = 0 and y being replaced by y + nz): 

z. (” :“)triy”,‘) (x + iz;(F- kz) 

=p(x+y-nz)+nxq 

x(x+y)(y -nz) * 

(2.4) 

Using the notation ((u)~ = (cu - 1) . . * ((u - k + 1) with ((w), = 1, (2.4) may be 
rewritten as 

z. ( ;)[Y + 4 - z)ln [ (x + kz)k P+qk 
y + k(1 - z)]k . (x + kz)(y - kz) 

p(x+y-nz)+qnx 

= (x+y)x(y-nz) (x+y)n. 

(2.5) 

By comparing it with (1.1) we see that (2.5) can be embedded in (1.1) by defining 

W, n) = [Y + 41 - Z)ln, aj=y-i+1, bi=l-z, 

(x + kz)k p+qk 
gk = (-l)k [y + k(1 - ,?)]k . (X + kz)(y - kz) ’ 
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fk= 
p(x+y-kz)+qkx 

(x+y)x(y-kz) (X+Y)k* 
Consequently both (2.3) and (2.4) belong to the class 2. 

Proof of (2.4). Making use of (1.2), one may invert (2.5) to get 

(x + nz)n 
(-l)” [y + n(1 - Z)]” * (x + $(4yn nz> 

= z. (-l)“( “k) ,y + ;(;:;jj,+, “t ;;)x:yzyk;; tx + yh* 

After simplifying we get 

(x + n.2 - l)n-l(P + P) 

= $+ (;)(nz - Y)n-kpcx +&;;+ qkx (x + Y)k. 

As p and q are independent parameters contained on both sides of the equation, 

it is clear that the equality is equivalent to the following pair of relations: 

These two relations follow easily from the ordinary Vandermonde convolution 

formula. Indeed, the right-hand side of the first relation gives 

This completes the proof of (2.4). 0 

Example 3 (Liskovets’ problem). In solving enumeration problems for graphs 

with labelled vertices it was conjectured by Liskovets [9] that there exist 

polynomials #n(x) of degree a with integer coefficients such that 

g1 c 1 :jn “-k@a(k)(k + (u)! = (2a)! nnta (2.6) 

where (Y 2 0 and at 2 1 are integers. Only particular values of (Y, namely 

0J = 0, 1, 2, 3, 4, were verified in [9]. The problem of determining #n(x) for any 

integer value of a was solved by Egorychev using the integral representation 

method and residue calculus (see [2.3]). The solution is expressed in terms of 

higher differences of zero, namely 
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(2a)! 
&(k) = AkOk+” (k + (y)! (k 3 1, CY 2 0). 

195 

(2.7) 

Obviously (2.6) may be rewritten in the form 

” n 

c() k=O k 
n-(k+‘)k&Jk)(k + a)! = (24! ns (2.8) 

Thus it can be embedded in (1.2) by defining @(n, k + 1) = nk+’ (with ai = 0, 
bi = 1 so that &+r + kb,,, = k) and taking 

fk: = &(k)(k + cu)! (-l)k, g,: = (2&)! km. (2.9) 

Hence (2.6) is also a member of the class Z: 

3. Confirmation of Liskovets’ conjecture 

The solution (2.7) can be obtained quickly by inverting (2.8) via (1.1). Indeed, 
with fk and gk being defined by (2.9) we have 

fn: = ‘#‘&)(n + a)! (-1)” = $o(-1)k(;)@(k, n)gk 

= 2 (-l)‘(;)k”(2n)! kff, (n * 1). 
k=l 

Thus it follows that 

(2a)! 
“+) = (n + (Y)! k=l 

i (_I)"-k( ;),yz+” = (1:$ A”O”+“. 

This procedure for obtaining the solution (2.7) is shorter and easier than that 
used by Egorychev (cf. [2, pp. 91-921.) 

To confirm that $&) is a polynomial in n of degree (Y with integer coefficients, 
let us express Ga(n) in terms of Stirling’s number $.(n + LX, n) of the second kind, 
viz. 

Notice that S,(n + a, n) may be written as a polynomial in (n + CX) of degree 2a, 
namely 

where Cm,j(j =O, 1, . . . , CY - 1) are integers satisfying the recurrence relations 
(cf. Jordan [7, OSS]) 

Cl+l,s = (m - s + I)&,-, + (2m -s + I)‘%,,, Cm+1,2m+2 = k, 
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with c 1,0 = 1, cl,S = 0 (S 5 1). Accordingly 9&n) may be rewritten as 

Thus the conjecture is verified. 

4. An additional class of identities 

The following reciprocal relations 

fn = kzn (-1)x( ,“) @h k)g,, (4.1) 

g, = i (-Qk k 0 n( a,+, +nb,+,)@(k n + 1)-l& 
k=n 

(4.2) 

are known as the rotated form of (1.1) and (1.2), where @(. , .) is the same as 
that defined by (l.O), and the sequences {fk} and {gk} are assumed to vanish 
ultimately (cf. [5]). A ccordingly we may introduce an additional class _X* as in the 
following definition. 

Definition. Identity is said to belong to the class _X* if it can be expressed in 
either of the form (4.1) or (4.2) with ai and bi being suitably assigned. 

The pair of Moriarty identities and the corresponding inverses, namely Marcia 
Ascher’s identity and its companion-piece (cf. [4, formulas (3.120)-(3.121) 
(3.177)-(3.180)]), are members of Z* since they can be mutually inverted by 
(4.1)-(4.2) with @(x, n) = 1 (i.e. ai = 1, bi = 0). 

We now exhibit two other members of Z*. 

Example 4. From Vandermonde’s theorem 

z0 (t)(, “k) = (” I: “1’ 

we can derive 

The latter may be rewritten as 

i (-1)*(~)2nO(k, n + 1))’ 
k=n 

(;) =y (,“2yJ”“,- I)-‘, 

(4.3) 

where @(k, n + 1) = k(k + 1) * * - (k + n), and m 2 1 is a fixed integer parameter. 
Thus it may be embedded in (4.2) with ui = i - 1, bi = 1. Consequently it can be 
inverted by (4.1) to get the classical identity due to Van Ebbenhorst Tengbergen 
(cf. [4, 6.50)]) 
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2 ck+rl k=n )(m2yk)(E) = (‘“,- l)(z)’ 
(4.4) 

Of course (4.4) is a member of 2*. The technique illustrated in this paper may 

be employed to search for various combinatorial identities belonging to the union 

of classes 2 U Z*. 
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