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We give an easy proof of a recently published recurrence for the Bernoulli num-
bers and we present some applications of the recurrence. One of the applications is
a simple proof of the well-known Staudt-Clausen Theorem. Proofs are also given
for theorems of Carlitz. Frobenius, and Ramanujan. An analogous recurrence for
Genocchi numbers is proved and applications are given. In particular, theorems
of Lehmer, Ramanujan, and Kummer are proved and. in some cases, extended.
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1. INTRODUCTION

The Bernoulli numbers B,, may be defined by means of the generating
function

)

X

. _ Z Bm
—1 m=0

5 LT (]x] <27). (1)
e m!

It is well-known that By=1, B,= -1, B,=} and B, ., =0 for k>0.
Deeba and Rodriguez [4] and Gessell [6] have recently proved the
following recurrence

1 m—1 n--1
B711=—————— Z nk (’:) Bk Z j”"k’ (2)

n
n(l—n") =, Pt

which is true for any positive integer m and any positive integer n> 1. We
prove at the end of this section that Eq. (2) is not new; it is a special case
of the “multiplication theorem” for Bernoulli polynomials. We give another
proof of (2) in Section 3, and then we prove that the following theorems
are easy consequences of (2):
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158 F. T. HOWARD

THEOREM | (The Staudt—Clausen Theorem [1], [12, p.257]). For
mz=1,

Blm = AZm_ Z l’

tp— HIZINP

where A,,, is an integer and the summation is over all primes p such that
{(p—D)|2m.

THeoreM 2 (Carlitz [2, 37). Let m> 1. If p is any prime number and if
(p— 1) p™i2m, then p" divides the numerator of B.,,+(1/p)—1. That is,
pBZmEP'_l (mOd pll+l)'

THEOREM 3 (Frobenius [5, p.821]). If m>2, then 16 divides the
numerator of B, — %+ 6m. That is, 2B,,,=1— 12m (mod 32).

In Section 6 we are able to extend Frobenius’ theorem and obtain
congruences (mod 64) and (mod 128).

THEOREM 4 [ 14, pp. 258-260]. Let B,,,= P,,,/Q>,, with ged( P,,,., 0,,.) = 1.
Then for all positive integers m and n,

[ llm + 22m o+ (I‘l —1 )Em] sz = "sz (mod n?_)_

THEOREM S (Ramanujan [12, p.7; 13; 15)). If 4 divides n, then 20
divides the numerator of B, + . That is, 30B,, = —1 (mod 200). Also, 5
divides the numerator of By, . ,/(4m +2)—1/12. That is, By, . ,/(4m +2)=3
{mod 3).

In Section 9 we prove a formula analogous to (2) for the Genocchi num-
bers G,,=2(1 —2™) B,,, and some applications are given. In particular the
formula produces an easy proof that (2" *'(1 —22")/2m) B,,, is an integer.
It also furnishes proofs, and extensions, of congruences of Lehmer [10],
Ramanujan {13], and Kummer [9].

Formula (2) provides an extremely simple, unified approach to some of
the classical theorems and congruences for the Bernoulli numbers. For
example, the writer respectfully submits that the proof of the Staudt-
Clausen Theorem given in Section 4 is as simple as any proof that has been
published. In some ways this paper is similar to [8], in which Wells
Johnson gave a unified approach, using p-adic proofs, to many theorems
for the Bernoulli numbers. The present paper, which essentially uses only
formula (2) and the analogous formula for Genocchi numbers
{Theorem 6), is more elementary and consequently less comprehensive
than [8]. Many of the theorems of the present paper can be proved by
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means of the Euler—Maclaurin summation formula, as in [8]. Our pur-
pose, however, is to present applications of (2) and Theorem 6, so the
Euler-Maclaurin formula is not used.

It should be pointed out that (2) is a special case of the multiplication
theorem for the Bernoulli polynomials B, (x)=37_(%) B,x" ~*. The mul-
tiplication theorem can be stated this way [11, p. 21] If n and m are
positive integers, with »> 1, then

n—1 ;
n]*mBm(nx)= Z Bm <,Y+;’"> (3)

j=0

If we put x=0 in (3), and multiply both sides by n™”, we have

s 5 R )
Er (s

which is the same as Eq. (2). Even though (2) is not really new, the writer
believes that all the proofs in the present paper are new.

2. PRELIMINARIES

In this paper the letter p always signifies a prime number, and the nota-
tion p” || t means p” divides r, but p”*! does not divide ¢. For convenience,
we use the notation

Syn)y=1%4+254+ ... +n* (4
The generating function for S, (n) is

.k e
i I (5)

x i

N
3
|

-

The following lemma is well-known and easily proved [ 14, p. 232]:

LEMMA 1. If p is a prime number and k is a non-negative integer, then

( —1)={_1 (mod p)  if p—1 divides k;
1 0 (mod p) if p— 1 does not divide k.

641 82 1-11
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The next lemma 1is also easily proved:

Lemma 2. If p is a prime number such that p" || m, and if k > 2, then

P (7:)20 (mod p"*?2).

If p is odd, the congruence also holds for k=2 If p=5 and k=24, then the
modulus can be raised to p"**.

Proof. It is clear the congruence holds for k=2 if p 1s odd. Assume
k>2, and suppose p" || k. Since p*(¥)=m-p*/k-(""1), we see that
p" % divides p*(7), and we will show that (k —w)>2. If w> 2, then
(k—w)z(p”"—w)z22. If w=0 or w=1, then (since k>2) we have
(k —w) =2, and the proof for modulus p"*?is complete. If p>= 5 and &k = 4,
we have (k—w)2(p"—w)=4 if w>0, and we have Kk —0>=4 if w=0.
This completes the proof.

[t is convenient to use the following definition of congruence for rational
numbers (14, p.263]. Let a, b, ¢, d, m be integers, with m>1. If
ged(b, my=1, we say a/b is integral (mod ). If a/b and ¢/d are integral
(mod m), we define

(mod m)

SR
x[UIA

if and only if m divides (ad — bc); that is, if and only if ad =bc (mod m)
with the usual definition of congruence. It is easily seen that the familiar
properties of congruence continue to hold. We have stated Theorems 1A,
2, 3 and 5 in terms of this kind of rational congruence.

3. PrROOF oOF (2)

Since Sy(n—1)=n—1, recurrence (2) can be written

(n_nm)

B - kB, S, _n—1
m <n k ,,,,;‘(n )) (6’

m - =k (m—k)

The generating function for the left side of (6) is

= B nx nx nx e —e*
Y (n—nmy=mame MY € T (7)
m=0 *
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The expression on the extreme right of (7) is the generating function

Lon*B & Siin—1) o (& ABy S, 1)
L YL "“Z<Z Kt (m—k)z>“

it
k=0 J=0 J: m=0 k=0

(8)

Equating coefficients of x™ in the extreme left side of (7) and the right side
of (8) gives us (6), and the proof is complete.

4. PROOF OF THEOREM 1
We shall prove the following, which is equivalent to Theorem 1:

THEOREM 1A. If p is a prime number and if r >0, then

B _{ 0 {(mod p) if p—1does not divide 2r,
PPr=0 1 (mod p) if p— 1 divides 2r.
Proof. The proof is by induction on r. Since B, = ¢, the theorem is true

for r=1; assume it is true for r=1, ., m—1. If we let n=p in (2), we have

p‘l _—pzm) BZIn:SZm(p_1)—"’"[)52;"*]([)—' l)

m—~1 ! 2"1
+ Z sz <2k>sz52mzk(P“1)- (9
k=1

By the induction hypothesis, we see that the right side of (9) is integral
{mod p). In fact, by the induction hypothesis we have

p* By =0 (mod p) (1<k<sm—1)
Thus pB8,,, is integral (mod p), and from (9) and Lemma | we have

, 0 (mod p) if (p—1)does not divide 2m,
B.rmE S” _ ] = ] o
P P = 1) { —1 (mod p) if (p~—1)divides 2m.

This completes the proof.

Theorem 1A tells us that if m>1, then the denominator of B,, (in
lowest terms) is exactly the product of those primes p for which p—1
divides 2m.

It is easy to see that Theorem 1A is equivalent to Theorem 1. It is clear
that Theorem | implies Theorem 1A. Conversely, if Theorem 1A is true, we
have for m>1

N= —p, .. pr (mod p,),
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where p,, ... p, are those primes p for which (p — 1) divides 2m. Thus

1 N,

B?_m:—_+ s ngﬁp.?"' Pk (mOdpl)ﬂ
Py P2 Pe
since p, B,,,= —1 (mod p,). Thus we have
1 1 N,

N,= —p4.. pp (mod pi).

B'.’m: -

P P2 Py Pr

Continuing in this manner, we eventually have

where N, is an integer. Letting N, = 4,,,, we obtain Theorem 1.

5. PROOF OF THEOREM 2

Suppose p” || 2m, and note that #>0 if p=2. From (9) we have

pB.'Zm = Szm(p— 1)—n'lpS;>_,,,71(P‘ 1)

-1 . 2,1
+ Z PJ‘( '>BZI<S2m¥2k(p—l) (mod p" ),
k=1 2k

and by Lemma 2 we have, for p > 2,

sz@’:)szEO (mod p"*")  (I<k<m—1). a0

Thus if p >2 and m =1, we have

Il+1)

pBZmES?_m(p_l) (mOdp

If p =2, Lemma 2 tells us that (10) holds for 2 <k <m — 1. Thus if 2* {{ 2m,
we have

282,"532",(1)"2}?152",,}( l)
+(Ham2m—1)S,, (1) (mod2"*1) (m>1).

Since S,(1)=1 for all k, we have, after simplifying,

2B,,=1+(}H)2m2m—4)=1 (mod2"*") (m>1).
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Thus for all primes p we have the following useful result: If p” || 2m, then
2B, =8, (p~1) (modp"+") (m>1). (11)

Now we note that 0(p"*')= p"(p—1), where # is Euler’s phi function. By
Euler’s generalization of Fermat’s Little Theorem [ 14, p. 146], we know
that if ged(a, py=1 and if p*(p —1) divides 2m, then a®" =1 (mod p"*1).
Thus

Szn».([’—l)zlz"'+22”’+ +(p__1)2m

=1+1+4---+1=p—1 (modp"*'). (12)
By (11) and (12) we have for all primes p: If (p— 1) p” divides 2m, then
pBy,=p—1 (modp"*')  (m>1) (13)

Formula (13) is equivalent to Theorem 2, and the proof is complete.

We note here that if p > 5 the modulus in (10) can be raised to p”*?, by
Lemma 2. This fact and Lemma | imply the modulus in (11) can be raised
to p"*? if p=5. We can go further: If p>5 and p—1 does not divide
2m — 2, then

pB2mES2m(p_l) (mOd Pll+3)' (14)
As Johnson [8] points out, congruence (14) is useful in proving some

congruences of Lehmer. We shall state (14) as Theorem 12 and prove it in
Section 10.

6. PrROOF OF THEOREM 3

More generally, it follows immediately from (2) and Theorem 1 that

i 2 ‘
(1-2")2B,,=1-2m+ ¥ 22"<2':>sz (mod 2¥* ). (15)
k=1

Thus if j= 2, we have, for m> 2,

2 . [2m
282’" = 1 —- 2'71 + Z 2J\ < ) B:’.k
k=1 2k

2/2m 8 /2m
:1—2m+§<2>—]—§<4> (mod 32).
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After simplifying, we have
2B, =16m*+dm+1=1—~12m (mod 32),

which is equivalent to Theorem 3. This completes the proof.

Note that {15} allows us to extend Frobenius’ congruence to the modulus
2%+ for arbitrary j. It follows from (15), for example, that if m > 3 then

2B,, =1 —12m+16m{1 +m') (mod 64),
2B,, =1 —12m+16m() +m*) —32m*(1 +m) (mod 128).

7. ProOF oF THEOREM 4

From (2) we have, with m replaced by 2m:

, 2m -1 2
n(l —n®) Bypy= 3 nk<;<"> B, Sy, n—1). (16)
k=0

By the Staudt-Clausen Theorem we know that #nB, is integral (mod n), and
we know that 6 divides (,,,, if m>0. Thus from {16) we have

nPiZm = Slm(” —1 ) QZm - ’"nSZmﬂ l(n -1 ) QZm (mOd }?2). (17)

Now we examine S,,, _,(n~1). From (2) we have (with m replaced by
2m—1)

o 2m—1
Sop aln=1)= — Z i B Sy, 1 wn—1),
k=1 k
SO
nSZm»I(”‘])QZmEO (mOdn2)~ (18)

Returning to (17), we use (18) to obtain
nPZm = SZ»r(n - 1) QZm (mOd nl),

and the proof of this “remarkable congruence” [ 14, p. 260] is complete.

8. PROOF OF THEOREM 5

To prove the first congruence of Theorem 5, we first note that by
Theorem 2 we have 28,,, =1 (mod 8) for m > 0. Thus

30B,,=15= -1 {(mod 8). (19)
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From (14) we have
S5B4p = San(4) (mod 25), (20)

where

Siml(4) =114 2%m 4 34 44 = | 4 16™ + 817 +256™
=14+16"+6"+6"=14+(14+15)"+(1+5)"+(1+5)"
=14+ (1 +15m)+ ({1 +5m)+(1+5m)=4 (mod 25).
Thus (20) gives us
30B,,=24=—1 (mod25). (21)

By (19) and (21) we can conclude that 30B,,, = —1 (mod 200}, ie., 20
divides the numerator of B,,, + 3;. The proof of this fact in [15] is not
quite correct; more than a simple application of Theorem 4 is required. In
[15] Theorem 4 is applied to give 30P,,, = —(Q,,, (mod §). Both sides are
divided by 30Q,,,. which does not give B,,+ % =0 (mod 4), as stated.
Since 2 || Q,,,. the modulus should be 2. Since 5 || Q,,,, the same mistake
occurs when proving B,,, + 3,=0 (mod 5).

To prove the second congruence of Theorem 5, we suppose that
5" (| (2m+1). By (11) and the remarks preceding (14), we have

5By 2= Sapm o) =1+ (5 =1 4 (10— 1)> 4 (15 + 1) !

{mod 5"*?). (22)
By Lemma 2 and (22), we have
5By, =1+ —1+0C2m+1)5]+[—-14+(2m+1)10]
+[1+(2m+1)15)]
=30(2m+1) (mod5"*3).
Thus we have

B4m+2 =3E—1—*

amio= =1 (meds),

and the proof is complete.

9. A FormuLA FOR GENOCCHI NUMBERS

The Genocchi numbers G,, may be defined by the generating function

2x e xm
= — b . 23
e +1 ,,,zz:o G"’m! (Ix <7) (23)
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It follows from (23) that
G,=2(1-2"}8,, (24)

and it follows from (24) and the Staudt-Clausen Theorem that the
Genocchi numbers are integers.

In this section we derive a formula analogous to (2) for the Genocchi
numbers. It is a special case of the multiplication theorem for the Euler
polynomials £,,(x}, which can be defined [ 11, pp. 23-29] by

Eux)= L <':> %:—1' Xk (25)
We define the alternating sum Z,(n) by
Z,(n)y=1m"=2"43"— ... (=1)"*'p" (26)
Then we have the generating function

Fe Kk x n+1 (n+1)ix
x "+ (1 e

§ Zk(n) =evx_e2x+e3x__ . ( __l)n+l o = ( 3

fan k! e*+1

(27)

THEOREM 6. If n and m are integers, with n>1, m> 1, and n odd, then

m—1

(nm —n) Gm = Z <’;:> nkaZm—k(n_ 1)

k=1

Proof. Since Gy=0 and Z,n—-1)=0 if n is odd, the formula in
Theorem 6 is

G moInkG, Z,, _(n—1)
m_p)—= S . 28
(" =m k=0< K (m—k)! > (28)
The generating function for the left side of (28) is
< G, . 2nx 2nx 2nx et —e™
Z (n —n)mx _en,\'+1—ex+1_enx+l'ex+1' (29)

n =0

The expression on the extreme right of (29) is the generating function

m k _
( Z n lezm—k(’z 1)> Xm. (30)
0 . 4
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Equating coefficients of x™ in the extreme left side of (29) and the right side
of (30) gives us Theorem 6, and the proof is complete.

The multiplication theorem for E,(x), for n odd, is [11, p. 24]:
n-~1 ]
Y (=1)VE, <x+;>=n‘"’Em(n.\‘). {31)
j=0

Using (25), it is easily proved that letting x=0 in (31) will yield
Theorem 6. The multiplication theorem for » even is

n—1 ) ; l —nt
Y (—l)/B,,,H<x+£>= —(—m—+—7—)—{1————E,,,(n.\‘). (32)
j=0 <
Letting x =0 in (32) gives us the formula
n = K m
Al —=2")B,= Y n ' B.Z, n-—1) (33)
k=0

We can now prove the following, which corresponds to Theorem 4.

THEOREM 7. Let m and n be positive integers, with m>1, n>1, and n
odd. Then
Gy, = —2mZ,, (n—1) (mod n?).

Proof. From Theorem 6 we have
G,,, = —2mZ,,, (n~1y—m(2m—1)nZ,, (n—1) (modn?). (34)

Now we show that (2m—1)nZ,, ,(n—1)=0 (mod#s?). If m is odd,
m> 1, then it follows from Theorem 6 that

mZ, _(n—1)= -G, =0 (modn). (35}
Returning to (34) and using (35) with m replaced by 2m — 1, we have
Gy = —2mZ,,, _(n—1) (mod n?),
and the proof is complete.
THEOREM 8. If m2 1, then (27+ (1 —2%")/2m) B,,, is an integer.
Proof. Let p be an odd prime and let p” || 2m. First we prove that

G,,=0 (mod p"). (36)
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By Lemma 2, we know that if & >2 then p*(¥") =0 (mod p"+?). f k=1,
we have p(¥")=0 (mod p”*'). Thus by Theorem 6, with n=p and m
replaced by 2m, we have pG,,, =0 (mod p"*'), which is equivalent to (36).
Thus 2"G,,,/2m is integral (mod p) for any odd prime p. We know 2B,,,
1s integral {mod 2) by the Staudt-Clausen Theorem, and we know if
2% || 2m then m>=w. Thus 2"G,,,/2m is integral (mod 2). Hence for all
primes p we have proved that 2" "Y1 -2} B, /2m=2"G,, 2m is
integral (mod p), and the proof is complete.

It is well known that the “tangent coefficients” 1,,,, defined by

o 2 — 1

tan x = 1y e, ————
anx= 3, (=1 “2m =1y

s=1

(Ix| <n/2),

are closely related to the Bernoulli numbers, ie., [ 11, p. 35]
toy,=22"(2%" ~ 1) B,,,/2m. (37)

We note that Theorem 8 provides an easy proof that the tangent coef-
ficients are integers.

Theorem 8 is not new. Ramanujan [12, p.5; 13] observed that
2"(2" —1) B, /n is an integer, and in fact it is known that if k is an arbitrary
integer and m > 1, then k™ () — k") B,,,/2m is an integer [7].

THEOREM 9. If p=5 and m> 1, then

2( 22’" - 1 ) B”m G"m 2
—_— = = 27 B -1 2y
2m 2nt 2m 1(17 ) (mOd P )

If p=5 and p — 1 does not divide (2m — 2), then

(22"] ~1 ) BZm —

3 Y, (p=2a)"" (mod p?). (38)

O<a< p'2

Proof. 1t follows from Theorem 6 and Lemma 2 that

pGan= —20pZs, (p—1D)+m2m—~1)p°Z, {p—1) (mod p" 4y,
{39)
Since p is odd, it follows from (35) that 2m—1)Z,, (p—1)=0
(mod p). Hence, returning to (39), we have

G?_m

. = —~Z,,_lp—1) (mod p°). (40)

If p—1 does not divide (Zm —2), we can prove by means of (2) (see
Eq. (42) below) that

Sy _lp=1)=0 (mod p?).
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In this case

Zo (p—11==S,, J(p—1+2 Y (p—2a)""'

O<a<pi2

=2 Y (p-2aP""' (modp?),

O <a<p/2
and congruence (38) follows from (40). This completes the proof.

Congruence (38) was evidently first proved by Lehmer [ 10]. Theorem 9
can be considered a slight extension of Lehmer’s result, since it furnishes a
congruence (mod p?) for (22" —1) B,,, /2m regardless of whether or not
p— 1 divides (2m —2).

THEOREM 10 (Ramanujan [ 12, p. 7; 13; 15]). If m is any nonnegative
integer, then

2(24m+2_1) _2(28»;+4_1)B
2)77 + 1 dm+ 2 2m + 1 Bm+4

are integers of the form 30k + 1.

Proof. 1t follows from Theorem 8 and the fact that 2B,,, . , is integral
(mod 2) that 2(2*"*2—1)B,, .,/(2m+1) is an odd integer. From
Theorem 9 we have

2( 24", - ! ) 4m + 1 4 + 1 4+ 1 S+ 1
—-W 4m+2§224m+](4)52‘1 —‘2 +3 —4 )
=2(1-243-4)=1 (mod5).
Also
2( 24»1+2 _ 1 ) N .
WBthrlEZZ4;))+I(2)—=—2(14 +l“_24 +l)

2(1—-2)=1 (mod 3).

Thus we have
2(24;71+2__ 1)

el By, .»=1 (mod 30),

and the first part of the theorem is proved. The proof for —2(2¥"*+% 1)
By, . 4/(2m + 1) is entirely similar. This completes the proof.

Ramanujan also asserted that (—2(2%"*%—1)/(2m+ 1)) B4, .5 Is an
integer of the form 30k + 1. This can be proved in much the same way that
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Theorem 10 is proved, though more argument is needed. The extra details
that are necessary are furnished by Wagstaff in [15].

THEOREM 11. Let t,,, be the tangent coefficient defined by (37), and let
p=3be prime. Then t,,,, , | =ts, (mod p) for all m= 1. If p=35, then for

all m>1 we have t,,,  ,, 1 =t,, (mod p?).

Proof. The proof of the first congruence is similar to the proof of
Theorem 9. It follows from Theorem 6, Lemma 2, and Fermat’s Little
Theorem that

Ly, = 221»7122"14 I(P - l)

— 2 (p—1i—1 —
:2"1+ r ’ Zlm+(p— l)—l(p—l):tlrv1+[;——l (mod[)),

and the first congruence is proved. By Theorem 9 and Euler’s generaliza-
tion of Fermat’s Little Theorem [ 14, p. 146] we have, if p = 5,

tlmgzzm i lZZm - l(p-— l)

— 22m+p(p -1

) lZlm«f—p(p - 1)— 1([) - l) = t2m+p(1xf 1) (mOd Pz)»
and the proof is complete.

The initial congruence of Theorem 11 was first proved by Kummer [9].

10. FINAL COMMENTS

A special case of (2) that is of interest is the following. If we replace m
by 2m +1 and let n=2 in (2), we have

i . <2m +1
2 %

j=0

)Bz_,=2rr1+l {m=0),

which was proved in another way by Ramanujan [12, p. [; 13].

A well known property of B,,, that does not follow directly from (2) is:
If p" divides 2m and (p—1) does not divide 2m, then p" divides the
numerator of B,,. This follows from (11) if we know that p"*! divides
S..{p—1) It also follows from Theorem 8 if we know that p does not
divide 1 —2°”. One consequence of the second congruence of Theorem 5 is
that if 5" divides 4m + 2, then 5" divides the numerator of By, , ,.

We conclude with a proof of congruence (14} that depends only on (2}
and Lemmas 1 and 2.
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THEOREM 12. Let p be prime, p 2 5. If p" || 2m and p — 1 does not divide
2m — 2, then

7B, =S, (p—1) (modp"*?)  (m>1)
Proof. From Eq. (9) and Lemma 2, we have

pB., =S, (p—1)—mpS,,, _(p—1)
+ éPZm(Zm —1}S8,, p—1) (mod P"+3).

Since p—1 does not divide 2m~2, we know that S,,, (p—1)=0
(mod p). Thus

pBZIHESZrn(p_1)~mpS2m~|(p—-l) (mOd le_3)- (41J

Now from (2) we have, with m replaced by 2m — | and # replaced by p:

mo2 2m—1
Slrr:—l(p—l):— Z p”‘( k )Bkslm——lfk(p_l)
A=1

1

5[’(2"1_1)52»172([7_1)50 (mOd[)z) (42)

Returning to (41) and using (42), we have
pBZm':‘S.7.m~l(p—~l) (mOdph+])*

and the proof is complete.
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