Applications of Modified Pell Numbers to Representations

A.F. Horadam
University of New England
Department of Mathematics
Armidale, Australia 2351

1 Background

Define the sequence $\left\{q_{n}\right\}$ for all integers n by the recurrence

$$
\begin{equation*}
q_{n+2}=2 q_{n+1}+q_{n} \quad\left(q_{0}=1, q_{1}=1\right) \tag{1.1}
\end{equation*}
$$

and the associated Pell sequence $\left\{P_{n}\right\}$ for all integers by the recurrence

$$
\begin{equation*}
P_{n+2}=2 P_{n+1}+P_{n} \quad\left(P_{0}=0, P_{1}=1\right) \tag{1.2}
\end{equation*}
$$

For a few basic relationships connecting P_{n} and q_{n}, see, for instance, [1] and [14].

Closely related to $\left\{q_{n}\right\}$ is the Pell-Lucas sequence $\left\{Q_{n}\right\}$ which has been extensively analyzed in a series of publications (e.g. [8], [11]), principally in relation to $\left\{P_{n}\right\}$, but also in its own right. In fact, $Q_{n}=2 q_{n}$. Consequently, the known properties of $\left\{Q_{n}\right\}$ are easily transferable to $\left\{q_{n}\right\}$.

Here, we are concerned only with $\left\{q_{n}\right\}$ and more especially, with the problem of representing any integer by sums of the numbers q_{n}.

For this purpose, we require the extension of the sequence $\left\{q_{n}\right\}$ to negative values of n. Inevitably, a study of $\left\{q_{n}\right\}$ involves familiarity with P_{n}. Using (1.1) and (1.2), we readily derive the following tabulation:

n	\cdots	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	\cdots
q_{n}	\cdots	99	-41	17	-7	3	-1	1	1	3	7	17	41	99	\cdots
P_{n}	\cdots	-70	29	-12	5	-2	1	0	1	2	5	12	29	70	\cdots

Fig. 1: Values of $q_{n}, P_{n} \quad(-6 \leq n \leq 6)$.
Clearly

$$
\begin{equation*}
q_{-n}=(-1)^{n} q_{n} \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{-n}=(-1)^{n+1} P_{n} \tag{1.4}
\end{equation*}
$$

Also,

$$
\begin{equation*}
q_{n}=P_{n}+P_{n-1}=P_{n+1}-P_{n}=\frac{P n+1+P_{n-1}}{2} \tag{1.5}
\end{equation*}
$$

while

$$
\begin{equation*}
2 P_{n}=q_{n}+q_{n-1}=q_{n+1}-q_{n}=\frac{q_{n+1}+q_{n-1}}{2} \tag{1.6}
\end{equation*}
$$

Explicit Binet forms for q_{n} and P_{n} are

$$
\begin{equation*}
q_{n}=\frac{\alpha^{n}+\beta^{n}}{2} \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}=\frac{\alpha^{n}+\beta^{n}}{\alpha-\beta} \tag{1.8}
\end{equation*}
$$

where α, β are the roots of the characteristic equation $x^{2}-2 x+1=0$ of the recurrence relations (1.1) and 1.2), i.e.,

$$
\left\{\begin{array}{l}
\alpha=1+\sqrt{2} \tag{1.9}\\
\beta=1-\sqrt{2}
\end{array} \quad \text { so } \alpha+\beta=2, \alpha-\beta=2 \sqrt{2}, \alpha \beta=-1\right. \text {. }
$$

With negative subscripts, (1.6) becomes

$$
\begin{equation*}
2 P_{-n}=q_{-n}+q_{-n-1}=q_{-n+1}-q_{-n}=\frac{q_{-n+1}+q_{-n-1}}{2} . \tag{1.10}
\end{equation*}
$$

The Name of the Sequence $\left\{q_{n}\right\} \quad$ References to the numbers q_{n} in Sloane [13] are associated with Thébault [14] in 1949, and earlier in 1916 with an unspecified writer in [12]. Both P_{n} and q_{n} were designated Eudoxus numbers by Budden [2] in 1969, though I have no independent information of this claim.

Lucas [10] makes no specific reference to q_{n} so far as I am aware, but he does use the numbers $2 q_{n}$ which he designates $V_{n}-a$ generic symbol of his, and couples them with P_{n} (his U_{n}) as Suites de Pell. Because of these historical origins, I have called $2 q_{n}$, which I label Q_{n}, the Pell-Lucas numbers. (Perhaps, then, p_{n} might be named the "quasi Pell-Lucas numbers"?)

All things considered, I accept the nomenclature of Bruckman [1], who refers to q_{n} as modified Pell numbers, as suitably apt, and to this I have adhered.

2 Properties of $\left\{q_{n}\right\}$

Some properties of $\left\{q_{n}\right\}$ per se which are relevant to our study include the Simson formula

$$
\begin{equation*}
q_{n+1} q_{n-1}-q_{n}^{2}=2(-1)^{n+1} \tag{2.1}
\end{equation*}
$$

and the summations

$$
\begin{gather*}
\sum_{i=1}^{n} q_{2 i}=\frac{q_{2 n+1}-1}{2} \tag{2.2}\\
\sum_{i=1}^{n} q_{2 i-1}=\frac{q_{2 n}-1}{2} \tag{2.3}\\
\sum_{i=1}^{n} q_{i}=\frac{q_{n+1}+q_{n}}{2}-1=P_{n+1}-1 \quad \text { by }(1.6) \tag{2.4}\\
\sum_{i=0}^{n-1}(-1)^{i} q_{-i}=\frac{(-1)^{n}\left(q_{-n}-q_{-n+1}\right)}{2}=(-1)^{n+1} P_{-n} \quad \text { by }(1.10) \tag{2.5}\\
q_{n}=2\left(q_{n-1}+q_{n-3}+\cdots+q_{4}+q_{2}\right)+1 \quad n \text { odd }\left(q_{0}=1\right) \\
=2\left(q_{n-1}+q_{n-3}+\cdots+q_{3}+q_{1}\right)+1 \quad n \text { even }(c . f .(2.2),(2.3)) \tag{2.6}\\
\sum_{i=1}^{n} P_{i}=\frac{-q_{n+1}-1}{2} \tag{2.7}
\end{gather*}
$$

Checking on the validity of these results is left to the vigilance of the reader. Moreover,

$$
\begin{align*}
& \sum_{i=0}^{n} q_{-2 i}=\frac{-q_{-2 n-1}+1}{2} \tag{2.8}\\
& \sum_{i=1}^{n} q_{-2 i+1}=\frac{-q_{-2 n}+1}{2} \tag{2.9}
\end{align*}
$$

Presence of 0 as the starting point in (2.8) is to be especially noted.

3 Representation of Positve Integers By $\left\{q_{n}\right\}, n \geq 0$

A. Minimal Representation

Theorem 3.1 The representation of a positive integer $N>0$ in the form

$$
\begin{equation*}
N=\sum_{i=1}^{\infty} \alpha_{i} q_{i} \quad\left(\alpha_{i}=0,1 \text { or } 2\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{i}=2 \Rightarrow \alpha_{i-1}=0 \tag{3.2}
\end{equation*}
$$

is unique and minimal.

Proof This is similar to that for $\left\{P_{n}\right\}$ in [7], with appropriate adjustments. E.g., use (2.6). Alternatively, consult the proof given in outline after Theorem 2.

By the phrase minimal representation we mean the representation with the least number of numbers q_{i} occurring in the sum (3.1), subject to the proviso (3.2). Such a representation may be called a Zeckendorf representation [7]. Figure 4 gives the minimal representations of N by $\left\{q_{n}\right\}: 1 \leq$ $N \leq 50$. Absence of q_{0} in (3.1) ought to be compared with the situation in (3.3) for Theorem 3.2.

A "Greedy" Algorithm. Remarks similar to those in [7] regarding a "greedy algorithm" for $\left\{P_{n}\right\}$ are also applicable in the case of $\left\{q_{n}\right\}$. As an illustration, from Figure 1 we have

$$
\begin{gathered}
350-q_{7}=111,111-q_{5}=70,70-q_{5}=29,29-q_{4}=12,12-q_{3}=5 \\
5-q_{2}=2,2-q_{1}=1,1-q_{1}=0, \text { so that } \\
350=q_{7}+2 q_{5}+q_{4}+q_{3}+q_{2}+2 q_{1}
\end{gathered}
$$

B. Maximal Representation. By a maximal representation, we mean the greatest number of q_{i} occurring in the sum (3.3) below, in the context of the criteria (3.4).

Introduction of q_{0}. For maximality, we must introduce $q_{0}=1$. Otherwise 2, for example, could not be expressed maximally $\left(2=1 . q_{0}+1 . q_{1}\right)$. Lucas numbers L_{n} similarly require the use of $L_{0}=2$ in the theory of maximal representations [15]. But, for uniqueness, we define $1=q_{i}$. Furthermore, in the ensuing MinMax theory (section 4) we require $q_{i}=1$ (not $q_{0}=1$) since q_{0} is absent in considerations of minimality.

Pertinent to our usage is the fact that in section $42 q_{0}(=2)$ is never used, only $1 q_{0}$.

Thus, the special purpose of q_{0} for maximality is to fill in the gap $(2=$ $3-1)$ between $q_{1}=1$ and $q_{2}=3$.

Theorem 3.2 Every positive integer $N>0$ has a unique representation in the form

$$
\begin{equation*}
N=\sum_{i=0}^{m} \beta_{i} q_{i} \quad\left(\beta_{i}=0,1, \text { or } 2\right) \tag{3.3}
\end{equation*}
$$

where

$$
\left\{\begin{array}{lll}
\beta_{i}=0 & \Rightarrow & \beta_{i-1}=2 \tag{3.4}\\
\beta_{m}=1 & \text { or } & 2 .
\end{array}\right.
$$

Proof of this Theorem has a number of lemma as a prologue:
First consider the sequence of coefficients of q_{i} in (3.3) of length $k \geq 1$, namely,

$$
\begin{equation*}
\left(\beta_{0}, \beta_{1}, \beta_{2}, \cdots, \beta_{k-1}\right) \tag{3.5}
\end{equation*}
$$

subject to the criteria (3.4).
Write $S_{k} \equiv$ the number of sequences (3.5) with (3.4) attached
$r_{k} \equiv$ the range of values of N for S_{k}
$N_{k}^{\min } \equiv$ the minimum number of r_{k} $N_{k}^{\text {max }} \equiv$ the maximum number of r_{k}
$I_{k} \equiv$ the number of integers in r_{k}.
Data relevant to these symbols for the number N in (3.3) are:

k	S_{k}	r_{k}	$N_{k}^{\min }$	$N_{k}^{\max }$	I_{k}
1	S_{1}	1			
2	S_{2}	2,3	$2 P_{1}$	$2 P_{2}-1$	$2 q_{1}$
3	S_{3}	$4, \cdots, 9$	$2 P_{2}$	$2 P_{3}-1$	$2 q_{2}$
4	S_{4}	$10, \cdots, 23$	$2 P_{3}$	$2 P_{4}-1$	$2 q_{3}$
5	S_{5}	$24, \cdots, 57$	$2 P_{4}$	$2 P_{5}-1$	$2 q_{4}$
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
k	S_{k}	$2 P_{k-1} \cdots, 2 P_{k}-1$	$2 P_{k-1}$	$2 P_{k}-1$	$2 q_{k-1}$

Fig. 2: Basic Data for Theorem 2

Let us elaborate a little on this information.

Lemma 3.1 $2 P_{k-1} \leq N \leq 2 P_{k}-1 \quad(k \geq 2)$.

Proof: For a sequence (3.5) of length $k \geq 2$, the maximum number $N_{k}^{\text {max }}$ which it can represent is given by

$$
\underbrace{(1,2,2,2, \cdots, 2)}_{k \text { digits }}
$$

corresponding to

$$
\begin{align*}
N_{k}^{\max } & =1 . q_{0}+2 \sum_{i=1}^{k-1} q_{i} & & \\
& =1+2\left[\frac{q_{k}+q_{k-1}}{2}-1\right] & & \text { by }(1.1),(2.4) \tag{3.6}\\
& =q_{k}+q_{k-1}-1 & & \\
& =2 P_{k}-1 & & \text { by }(1.6) .
\end{align*}
$$

The minimum number $N_{k}^{\min }$ for a sequence of length k is obtained by the following reasoning:

After the number in (3.6), the next number in order is $\left(2 P_{k}-1\right)+1=2 P_{k}$ which occurs as the first number in the (next) sequence of length $k+1$. Accordingly, the minimum number in the sequence of length k is derived from $2 P_{k}$ by replacing k by $k-1$, i.e., $N_{k}^{\min }=2 P_{k-1}$. Hence

$$
\underbrace{2 P_{k-1} \leq \text { Nleq } 2 P_{k}-1}_{r_{k}}(k \geq 2) .
$$

Corollary 3.1 When $k-1$, we are left merely with the number 1.

Lemma 3.2 $S_{k}=2 q_{k-1} \quad(k \geq 2)$.
Proof From Lemma 3.1, the number of numbers I_{k} included in the range r_{k}, which is the same as the number of sequences S_{k}, is

$$
\begin{aligned}
S_{k} & =\left(2 P_{k}-1\right)-\left\{\left(2 P p_{k-1}-1\right\}=I_{k}\right. \\
& =2\left(P_{k}-P_{k-1}\right) \\
& =2 q_{k-1}
\end{aligned}
$$

Lemma $3.3 k$ is uniquely determined by $N\left(\beta_{k} \neq 0\right)$.
This is obvious from Figure 2. As an example, consider

$$
\begin{aligned}
N & =1000 \\
& \Rightarrow 816 \leq 1000 \leq 1969 \quad(=1970-1) \\
& \Rightarrow 2 P_{8} \leq 1000 \leq 2 P_{9}-1 \\
& \Rightarrow k=9
\end{aligned}
$$

(with $\left.r_{9}=1969-815=(1970-1)-(816-1)=1154=2 q_{s}\right)$.
Lemma $3.4 \beta_{k}(\neq 0)$ is uniquely determined by N.
This is clearly so, since, from (3.3), $N-\beta_{k} q_{k}$ is a specific number.
For instance, $N=50 \Rightarrow\left\{\begin{array}{l}N-2 q_{4}=1+2+6+7=16 \quad\left(\beta_{4}=2\right) \\ N-q_{4}=1+2+6+7+17=33 \quad\left(\beta_{4}=1\right) .\end{array}\right.$
Proof of Theorem 3.1 Assembling all the evidence which has followed the enunciation of Theorem 3.1 (namely, Figure 2 and Lemmas 3.1-3.4), we are led to accept the validity of the Theorem.

Observation We remark that the numbers $N_{k}^{\max }$ are identical with the subsidiary MinMax numbers $N_{k-1}(k \geq 1)$ for Pell numbers [5]. The reason for this is that, by (3.6), $N_{k}^{\max }=2 P_{k}-1=N_{k-1}$ by [5].

Alternative Proof (Outline) of Theorem 3.1 This may be set out to parallel the treatment in Theorem 3.1 by using similar techniques. Firstly, consider the sequence of length k in (3.7)

$$
\left(\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right)
$$

The minimum number represented by this sequence is given by

$$
\underbrace{(0,0,0, \cdots, 1)}_{k \text { digits }}
$$

i.e., q_{k}.

The maximum number is given by

$$
(2,0,2,0, \cdots, 2,0) \text { or }(0,2,0,2, \cdots 0,2)
$$

depending on the parity of k, i.e., $q_{2 k+1}-1$ or $q_{2 k}-1$ from (2.2) and (2.3) respectively. Eventually, we may assert (replacing S_{k} in Lemma 3.2 by s_{k}):

Lemma 3.5 $q_{k} \leq N \leq q_{k+1}-1$

Lemma $3.6 s_{k}=2 P_{k}$.

Lemma $3.7 k$ is uniquely determined by $N\left(\alpha_{k} \neq 0\right)$.

Lemma $3.8 \alpha_{k}(\neq 0)$ is uniquely determined by N.

Gathering together these results, we establish the validity of Theorem 3.1.

Remarks

(i) The ranges in the above treatment for Theorem 3.1 are:

$$
1,2 ; 3, \cdots, 6 ; \quad 7, \cdots, 16 ; \quad 17, \cdots, 40 ; \cdots
$$

(ii) Figure 5 gives representations of N for $1 \leq N \leq 50$.
(iii) $\left\{\begin{array}{l}\text { In Figure 4, } 2 \text { is always preceded by } 0 \text { (except in the first column). } \\ \text { In Figure } 5,0 \text { is always preceded by } 2 \text { (except in the last column). }\end{array}\right.$

That is, there is a type of duality in the enunciations of Theorems 3.1 and 3.2 -cf. the criteria (3.2) and (3.4). In a similar context for Fibonacci numbers, Brown [9] refers to a "Dual Zeckendorf Theorem".

4 The MinMax Sequence $\left\{Q_{n}\right\}$.

Comparing the data in Figures 4 and 5 we discern that, for certain values of N, the minimal and maximal representations are identical. These may be designated as the MinMax numbers for $\left\{q_{n}\right\}$. But what are these numbers? Inspection of Figures 4 and 5, buttressed by an argument paralleling that used in [5] relating to $\left\{P_{n}\right\}$, establishes that the MinMax sequence $\left\{Q_{n}\right\}$ consists of those numbers whose representations (3.1) and (3.3) have coefficients α_{i} and β_{i} of q_{i} which are all unity, i.e. for which $\alpha_{i}=\beta_{i}=1$, where $i=1,2,3, \cdots$.

Write

$$
\begin{equation*}
Q_{n}=\sum_{i=1}^{n} q_{i} \tag{4.1}
\end{equation*}
$$

Take

$$
\begin{equation*}
Q_{0}=0 \tag{4.2}
\end{equation*}
$$

Then by (2.4) and (1.8),

$$
\begin{equation*}
Q_{n}=P_{n+1}-1 \tag{4.3}
\end{equation*}
$$

that is,

$$
\begin{equation*}
Q_{n}=\frac{\alpha^{n+1}-\beta^{n+1}}{\alpha-\beta}-1 \quad(\text { Binet form }) \tag{4.4}
\end{equation*}
$$

Assembling this information in order, we find that the first few members of the MinMax sequence $\left\{Q_{n}\right\}$ for $\left\{q_{n}\right\}$ are:

n	1	2	3	4	5	6	7	8	9	10	\cdots
Q_{n}	1	4	11	28	69	168	407	984	2377	5740	\cdots

Using (4.3) with (1.2), or (4.4), one discovers the recursion

$$
\begin{equation*}
Q_{n+2}=2 Q_{n}+Q_{n}+2 \tag{4.6}
\end{equation*}
$$

the Simson formula analogue for $\left\{Q_{n}\right\}$

$$
\begin{equation*}
Q_{n+1} Q_{n-1}-Q_{n}^{2}=(-1)^{n+1}-2 P_{n} \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n} Q_{i}=\frac{q_{n+2}-1}{2}-(n+1) \tag{4.8}
\end{equation*}
$$

Generating function for $\left\{Q_{n}\right\}$ is

$$
\begin{equation*}
(1+x)\left(1-3 x+x^{2}+x^{3}\right)^{-1}=\sum_{n=1}^{\infty} Q_{n} x^{n-1} \tag{4.9}
\end{equation*}
$$

Other relationships of interest include

$$
\begin{gather*}
Q_{n}-Q_{n-1}=q_{n} \tag{4.10}\\
Q_{n}+Q_{n+1}=q_{n+2}-2 \tag{4.11}\\
Q_{n}-Q_{n-2}=2 P_{n} \tag{4.12}\\
Q_{n}+Q_{n+2}=2 q_{n+2}-2 \tag{4.13}\\
Q_{n}^{2}-Q_{n-1}^{2}=q_{n}\left(q_{n+1}-2\right) \tag{4.14}\\
Q_{n}^{2}-Q_{n-2}^{2}=4 P_{n}\left(q_{n}-1\right) \tag{4.15}\\
Q_{n}^{2}+Q_{n+1}^{2}=P_{2 n+3}-2 q_{n+2}+2 \tag{4.16}
\end{gather*}
$$

Discoveries of further properties of $\left\{Q_{n}\right\}$, e.g. divisibility properties, may be unearthed ad infinitum, ad nauseam according to one's fortitude and motivation.

Worthy of recording is the following relationship, where $\left\{N_{n}\right\}$ is the subsidiary MinMax sequence of $\left\{M_{n}\right\}$ - see [5] -:

$$
\begin{array}{rlrl}
2 Q_{n} & =2 P_{n+1}-2 & & \text { from }(4.3) \\
& =\left(2 P_{n+1}-1\right)-1 & \\
& =N_{n}-1 & & \text { from }[5]
\end{array}
$$

5 The Subsidiary MinMax Sequence $\left\{R_{n}\right\}$

Suppose we introduce the subsidiary MinMax sequence $\left\{R_{n}\right\}$ of $\left\{Q_{n}\right\}$ defined recursively by

$$
\begin{equation*}
R_{n}=Q_{n+1}+Q_{n-1} \quad\left(R_{0}=0, Q_{-1}=-1\right) \tag{5.1}
\end{equation*}
$$

Values of R_{n} are, from (4.5) thus:

n	$=$	1	2	3	4	5	6	7	8	\cdots
R_{n}	$=$	4	12	32	80	196	476	1152	2784	\cdots
	$=$	$4(1$	3	8	20	49	119	288	696	$\cdots)$
	$=$	$4 M_{n}$.								

where $\left\{M_{n}\right\}$ is the MinMax sequence for $\left\{P_{n}\right\}$ examined in [5].
No undue surprise should emanate from this fact, for, with the notation and results of [5],

$$
\begin{aligned}
R_{n} & =\left(M_{n+1}+M_{n}\right)+\left(M_{n-1}+M_{n-2}\right)=Q_{n+1}+Q_{n-1} \\
& =\left(2 M_{n}+M_{n-1}+1\right)+M_{n}+M_{n-1}+\left(M_{n}-2 M_{n-1}-1\right) \\
& =4 M_{n}
\end{aligned}
$$

Properties of $\{M\}$ enumerated in [5] may accordingly be transferred to $\left\{R_{n}\right\}$, provided the appropriate modifications are made. Thus, for instance, we have the recurrence relation

$$
\begin{equation*}
R_{n+2}=2 R_{n+1}+R_{n}+4 \quad\left(R_{0}=0\right) \tag{5.3}
\end{equation*}
$$

$$
\begin{gather*}
4\left(1-3 x+x^{2}+x^{3}\right)^{-1}=\sum_{n=1}^{\infty} R_{n} x^{n-1} \quad \text { (generating function) } \tag{5.4}\\
R_{n+1} R_{n-1}-R_{n}^{2}=8\left((-1)^{n}-q_{n}\right) \quad \text { (Simson's formula), } \tag{5.5}
\end{gather*}
$$

and

$$
\begin{equation*}
R_{n}=\alpha^{n+1}+\beta^{n+1}-2 \quad(\text { Binetform }) \tag{5.6}
\end{equation*}
$$

Divisibility attributes of $\left\{M_{n}\right\}$ mentioned in [5] automatically carry over to $\left\{R_{n}\right\}$. Of course, the quality of primeness is absent.

Neither the sequence $\left\{R_{n}\right\}$ nor the sequence $\left\{q_{n}\right\}$ is listed in [13].
References to many seminal contributions to representations involving Fibonacci and Lucas numbers (e.g. these by Zeckendorf and Lekkerkerker) are to be found in [5].

6 Negatively Subscripted Q_{n}.

Though it is not meaningful in the context of representations to extend $\left\{Q_{n}\right\}$ through negative values of n, let us nonetheless complete the mathematical theory by considering the numbers $Q_{-n}, n>0$. Imagine that the recursive statement (4.6) is applied to negative subscripts. Then the following table results:

$$
\begin{array}{llcccccccccccl}
n & \cdots & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & 1 & \cdots \\
Q_{-n} & \cdots & -409 & 170 & -71 & 28 & -13 & 4 & -3 & 0 & -1 & 0 & 1 & \cdots \tag{6.7}
\end{array}
$$

Inherent in (6.1) is the recursion

$$
\begin{equation*}
Q_{-n+2}=2 Q_{-n+1}+Q_{-n}+2 \tag{6.8}
\end{equation*}
$$

Many other characteristic features of $\left\{Q_{-n}\right\}$ are deducible, e.g. (cf. (4.3)),

$$
\begin{equation*}
Q_{-n}=P_{-n+1}-1 \tag{6.9}
\end{equation*}
$$

Replacing n by $-n$ in (4.4), (4.7), and (4.9) readily produces expressions for the Binet form, Simson's formula, and the generating function, respectively.

Similar avenues for development exist in the case of $R_{-n}, n>0$.
Each of Q_{-n} and R_{-n}, where $n>0$, opens up fertile new territory for exploration.

However, we must restrict over freedom of choice to our stated goal: the representations of the integers by q_{n}, where n may be positive or negative.

7 Representation of Any Integer by $\left\{q_{-n}\right\}, n>0$.
To demonstrate the truth of Theorem 3.1 below, two options are available to us, namely,
(i) to follow the techniques for Fibonacci numbers used in [3], and
(ii) to modify the proof in [3] to suit our purposes.

Initially, (i) was attempted but its procedures seemed too intricate to pursue. Possibly it is still amenable to mathematical discipline. However, the treatment defined in (ii) appeared quicker and generally more desirable (cf. [6], [4]).

Heavy reliance will be placed on (2.5) in what follows.
But first we need to note the following comments.
Representation of Zero (0) Evidently the integer 0 is not representable by $\left\{q_{n}\right\}$ since no q_{i}, where $i=0,1,2, \cdots$ is zero. To represent 0 , we need to introduce a negatively subscripted q_{n}, via q_{-1} :

$$
\begin{equation*}
0=1 \cdot q_{-1}+1 \cdot q_{0} \tag{7.1}
\end{equation*}
$$

Theorem 7.1 The representation of any integer N as

$$
\begin{equation*}
N=\sum_{i=0}^{\infty} a_{i} q_{-i} \quad\left(a_{i}=0,1, \text { or } 2\right) \tag{7.2}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{i}=2 \Rightarrow a_{i+1}=0 \tag{7.3}
\end{equation*}
$$

is unique and minimal.
Proof Suppose there are two different representations

$$
\begin{align*}
& N=\sum_{i=0}^{h} a_{i} q_{-i} \quad a_{k} \neq 0, a_{i}=2 \Rightarrow a_{i+1}=0 \tag{7.4}\\
& N=\sum_{i=0}^{m} b_{i} q_{-i} \quad b_{m} \neq 0, b_{i}=2 \Rightarrow b_{i+1}=0 \tag{7.5}
\end{align*}
$$

Case I Assume $h=m$. Conceivably, the numbers in (7.3) and (7.4) are the same but their coeffiecients a_{i}, b_{i} are generally different.

Write

$$
\begin{equation*}
c_{i}=a_{i}-b_{i} \quad\left(c_{i}=1, \pm 1, \pm 2 ; i=0,1,2, \cdots, m\right) \tag{7.6}
\end{equation*}
$$

Subtract (7.4) from (7.3). After simplification using (7.5), we derive

$$
\begin{equation*}
c_{m} q_{-m}+\sum_{i=0}^{m-1} c_{i} q_{-i}=0 \quad(m \geq 1) \tag{7.7}
\end{equation*}
$$

Employing (2.5), we see that for a maximum or a minimum sum (7.6) i.e., $c_{i}= \pm 2$ where $i=0,1,2, \cdots, m-1$, we must have

$$
\begin{equation*}
c_{m} q_{-m}+(-1)^{m}\left(q_{-m}-q-m+1\right)=0 \quad(m \geq 1) \tag{7.8}
\end{equation*}
$$

in which the notation of (1.10) may alternatively be used. Concentrate now on $c_{m} q_{-m}$ because this term reigns supreme over the sums (7.6) and (7.7).
m even $\left(q_{-m}>0\right) \quad$ Equation (7.7) now yields

$$
\begin{equation*}
\left(c_{m}+1\right) q_{-m}-q_{-m+1}=0 \quad(m \geq 2) \tag{7.9}
\end{equation*}
$$

So, with $m \geq 2$,

$$
\begin{aligned}
& c_{m}=0 \Rightarrow q_{-m}=q_{-m+1} \\
& c_{m}=1 \Rightarrow q_{-m-1}=0 \\
& c_{m}=2 \Rightarrow q_{-m}=q_{-m-1}
\end{aligned}
$$

For m odd ($q_{-m}<0$: Under these circumstances (7.7) becomes

$$
\begin{equation*}
\left(c_{m}-1\right) q_{-m}+q_{-m+1}=0 \quad(m \geq 1) \tag{7.10}
\end{equation*}
$$

Then, for $m \geq 1$,

$$
\begin{aligned}
& c_{m}=0 \Rightarrow q_{-m}=q_{-m+1} \text { as before } \\
& c_{m}=1 \Rightarrow q_{-m+1}=0 \\
& c_{m}=2 \Rightarrow q_{-m}=-q_{-m+1} .
\end{aligned}
$$

None of these can possibly be valid, as a little checking discloses. Similar reasoning can be applied for $c_{m}=-1,-2$. Consequently, the assumption in Case I is untrue.

Summary of Case I conclusions If $h=m$, then $a_{i}=b_{i}$ where $i=$ $0,1,2, \cdots, m$. That is, (7.3) and (7.4) are identical, so the representation (7.1) with (7.2) is unique.

Case II Assume $h>m$. Consider the set of coefficients of q_{-i} of length $k+1$ in (7.1), namely,

$$
\begin{equation*}
\left(a_{0}, a_{1}, a_{2}, \cdots, a_{k-1}, a_{k}\right) \tag{7.11}
\end{equation*}
$$

For a minimum sum, we must have the arrangement

$$
\begin{equation*}
(0,2,0,2,0,2, \cdots, 0,2) \tag{7.12}
\end{equation*}
$$

while for a maximum sum we have

$$
\begin{equation*}
(2,0,2,0,2,0, \cdots, 2,0) \tag{7.13}
\end{equation*}
$$

Now replace the symbolism used in Figure 2 by the corresponding asterisked symbolism, e.g., r_{k} is replaced by r_{k}^{*}. Then the appropriate data may be
tabulated in this manner (cf. Figure 2 and the discussion germane to it) with the aid of (2.8) and (2.9):

Basic Data for Theorem 7.1

Appealing to (2.8) and (2.9), we may check this information thus:

$$
\begin{aligned}
I_{k}^{*} & =N_{k}^{* m a x}-N_{k}^{* m i n}+1 \quad \text { for the zero representation } \\
& =\left(-q_{-2 m-1}+1\right)-\left(-q_{-2(m+1)}+1\right)+1 \\
& =q_{-2 m-2}-q_{-2 m-1}+1 \\
& =2 P_{2(m+1)}+1 \text { by }(1.4),(1.10)
\end{aligned}
$$

Evidently, each number N, as it occurs for the first time in Figure 3, is represented uniquely and minimally, E.g.,

$$
-10=\left(1 q_{0}+0 q_{-1}+1 q_{-2}+2 q_{-3}\right)+0 q_{-4}+0 q_{-5}+0 q_{-6}+\cdots
$$

has a unique minimal representation $1 q_{0}+1 q_{-2}+2 q_{-3}$, i.e., the sequence $(1,1,0,2)$. We conclude that h not greater than m and similarly that h not less than m. Consequently, $h=m$. Hence, Case I and the Summary, are true.

Collecting together all the arguments above, we agree that the validity of the Theorem has been established. (Consult Figure 6 and 7 for details of the numerical mechanism of Theorem 7.1)

There can be no maximal representation of a number by means of negatively subscripted q_{n}. Arguments for this salient feature are analogous to those used in [6] for negatively subscripted P_{n}. Having asserted this, we may now mentally review our attainments. These confirm that our stated objectives have indeed been achieved.

References

[1] P.S. Bruckman. Solution to Advanced Problem H-361. The Fibonacci Quarterly, 23(1):95-96, 1985.
[2] F.J. Budden. An Introduction to Number Scales and Computers. Longmans, 1965.
[3] M.W. Bunder. Zeckendorf Representations Using Negative Fibonacci Numbers. The Fibonacci Quarterly, 30(2):111-115, 1992.
[4] A.F. Horadam. An Alternative Proof of a Unique Representation Theorem. Submitted.
[5] A.F. Horadam. MinMax Sequences for Pell Numbers . Submitted.
[6] A.F. Horadam. Unique Minimal representation of Integers by Negatively Subscripted Pell Numbers. In Press.
[7] A.F. Horadam. Zeckendorf Representations of Positive and Negative Integers by Pell Numbers. In Press.
[8] A.F. Horadam and Br. J.M. Mahon. Pell and Pell-Lucas Polynomials. The Fibonacci Quarterly, 23(1):7-20, 1985.
[9] J.L. Brown Jr. A New Characterization of the Fibonacci Numbers. The Fibonacci Quarterly, 3(1):1-8, 1965.
[10] E. Lucas. Théorie des Nombres. Blanchard, 1961.
[11] Br. J.M. Mahon. M.A.(Hons.) Thesis. PhD thesis, The University of New England, Armidale, Australia, 1984.
[12] W.J. Miller. Mathematical questions and solutions. Educational Times, 1:9, 1916.
[13] N.J.A. Sloane. A Handbook of Integer Sequences. Academic Press, 1973.
[14] V. Thébault. Concerning two classes of remarkable perfect square pairs. American Mathematical Monthly, 56:443-448, 1949.
[15] V.E. Hoggatt, Jr. Fibonacci and Lucas Numbers. Houghton Mifflin, 1969.

This electronic publication and its contents are (C)copyright 1995 by Ulam Quarterly. Permission is hereby granted to give away the journal and it contents, but no one may "own" it. Any and all financial interest is hereby assigned to the acknowledged authors of the individual texts. This notification must accompany all distribution of Ulam Quarterly.

N^{+}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}	N^{+}	q_{1}	q_{2}	q_{3}	q_{4}	q_{5}
1	1					26	2		1	1	
2	2					27		1	1	1	
3		1				28	1	1	1	1	
4	1	1				29	2	1	1	1	
5	2	1				30		2	1	1	
6		2				31			2	1	
7			1			32	1		2	1	
8	1		1			33	2		2	1	
9	2		1			34				2	
10		1	1			35	1			2	
11	1	1	1			36	2			2	
12	2	1	1			37		1		2	
13		2	1			38	1	1		2	
14			2			39	2	1		2	
15	1		2			40		2		2	
16	2		2			41					1
17				1		42	1				1
18	1			1		43	2				1
19	2			1		44		1			1
20		1		1		45	1	1			1
21	1	1		1		46	2	1			1
22	2	1		1		47		2			1
23		2		1		48			1		1
24			1	1		49	1		1		1
25	1		1	1		50	2		1		1

Fig. 3: Minimal Representations of Positive Integers by Sums of the Numbers q_{i} where $i=1,2,3 \ldots$.

N^{+}	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}	N^{+}	q_{0}	q_{1}	q_{2}	q_{3}	q_{4}
1		1				26	1	2	2		1
2	1	1				27	1	2		1	1
3	1	2				28		1	1	1	1
4		1	1			29	1	1	1	1	1
5	1	1	1			30	1	2	1	1	1
6	1	2	1			31		1	2	1	1
7		1	2			32	1	1	2	1	1
8	1	1	2			33	1	2	2	1	1
9	1	2	2			34	1	2		2	1
10	1	2		1		35		1	1	2	1
11		1	1	1		36	1	1	1	2	1
12	1	1	1	1		37	1	2	1	2	1
13	1	2	1	1		38		1	2	2	1
14		1	2	1		39	1	1	2	2	1
15	1	1	2	1		40	1	2	2	2	1
16	1	2	2	1		41		1	2		2
17	1	2		2		42	1	1	2		2
18		1	1	2		43	1	2	2		2
19	1	1	1	2		44	1	2		1	2
20	1	2	1	2		45		1	1	1	2
21		1	2	2		46	1	1	1	1	2
22	1	1	2	2		47	1	2	1	1	2
23	1	2	2	2		48		1	2	1	2
24		1	2		1	49	1	1	2	1	2
25	1	1	2		1	50	1	2	2	1	2

Fig. 4: Maximal Representations of Positive Intergers by Sums of the Numbers q_{i}, where $i=0,-1,-2, \ldots$

Fig. 5: Minimal Representations of Positive Intergers by Sums of the Numbers q_{i}, where $i=0,-1,-2, \ldots$.

Fig. 6: Minimal Representations of Negative Integers by Sums of the Numbers q_{i}, where $i=0,-1,-2, \ldots$.

