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Abstract
The Fibonacci Zeta functions are defined by ζF (s) =

�∞
k=1 F

−s
k . Several aspects of

the function have been studied. In this article we generalize the results by Ohtsuka
and Nakamura, who treated the partial infinite sum

�∞
k=n F

−s
k for all positive

integers n.

1. Introduction

The so-called Fibonacci and Lucas Zeta functions, defined by

ζF (s) =
∞�

n=1

1
F s

n
and ζL(s) =

∞�

n=1

1
Ls

n
,

respectively, have been considered in several different ways. In [8] the analytic
continuation of these series is discussed. In [2] it is shown that the numbers
ζF (2), ζF (4), ζF (6) (respectively, ζL(2), ζL(4), ζL(6)) are algebraically independent,
and that each of ζF (2s) (respectively, ζL(2s)) (s = 4, 5, 6, . . . ) can be written as a
rational (respectively, algebraic) function of these three numbers over Q. Similar
results are obtained in [2] for the alternating sums

ζ
∗
F (2s) :=

∞�

n=1

(−1)n+1

F 2s
n

�
respectively, ζ∗L(2s) :=

∞�

n=1

(−1)n+1

L2s
n

�
(s = 1, 2, 3, . . . ) .

1Supported in part by the Grant-in-Aid for Scientific Research (C) (No. 18540006), the Japan
Society for the Promotion of Science.
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From the main theorem in [4] it follows that for any positive distinct integers
s1, s2, s3 the numbers ζF (2s1), ζF (2s2), and ζF (2s3) are algebraically independent
if and only if at least one of s1, s2, s3 is even. Other types of algebraic independence,
including the functions

∞�

n=1

1
F

s
2n−1

,

∞�

n=1

1
F

s
2n

,

∞�

n=1

1
L

s
2n−1

,

∞�

n=1

1
L

s
2n

,

are discussed in [6]. In [5] Fibonacci zeta functions and Lucas zeta functions in-
cluding

ζF (1), ζF (2), ζF (3), ζ∗F (1), ζL(1), ζL(2), ζ∗L(1)

are expanded as non-regular continued fractions whose components are Fibonacci
or Lucas numbers.

In [9] the partial infinite sums of reciprocal Fibonacci numbers were studied. In
this paper we shall generalize their results, given in Propositions 1 and 2 below.
Here, �·� denotes the floor function.

Proposition 1. We have


� ∞�

k=n

1
Fk

�−1
 =

�
Fn−2 if n is even and n ≥ 2;
Fn−2 − 1 if n is odd and n ≥ 1 .

Proposition 2. We have


� ∞�

k=n

1
F

2
k

�−1
 =

�
Fn−1Fn − 1 if n is even and n ≥ 2;
Fn−1Fn if n is odd and n ≥ 1 .

2. Main Results

Let a be a positive integer. Let {Gn} be a general Fibonacci sequence defined by
Gk+2 = aGk+1 + Gk (k ≥ 0) with G0 = 0 and G1 = 1.

Theorem 3. We have

� ∞�

k=n

1
Gk

�−1
 =

�
Gn −Gn−1 if n is even and n ≥ 2;
Gn −Gn−1 − 1 if n is odd and n ≥ 1 .

Theorem 4. We have

� ∞�

k=n

1
G

2
k

�−1
 =

�
aGn−1Gn − 1 if n is even and n ≥ 2;
aGn−1Gn if n is odd and n ≥ 1 .
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We need some identities in order to prove Theorems 1 and 2.

Lemma 5. For n ≥ 1, we have

(1) G
2
n −Gn−1Gn+1 = (−1)n−1

(2) Gn−1Gn+3 −GnGn+2 = (−1)n(a2 + 1)

(3) GnGn+2 + Gn−1Gn+1 = G2n+1

(4) Gn+1Gn+2 −Gn−1Gn = aG2n+1.

Proof. Every proof is done by induction and omitted.

Proof of Theorem 3. Using Lemma 5 (1), for n ≥ 1 we have

1
Gn −Gn−1

− 1
Gn

− 1
Gn+1

− 1
Gn+2 −Gn+1

=
Gn+2 −Gn+1 −Gn + Gn−1

(Gn −Gn−1)(Gn+2 −Gn+1)
− Gn+1 + Gn

GnGn+1

=
Gn+2(Gn−1Gn+1 −G

2
n) + Gn−1(GnGn+2 −G

2
n+1)

GnGn+1(Gn −Gn−1)(Gn+2 −Gn+1)

=
(−1)n(Gn+2 −Gn−1)

GnGn+1(Gn −Gn−1)(Gn+2 −Gn+1)
. (1)

If n is even with n ≥ 2, since the right-hand side of the identity (1) is positive, we
get

1
Gn −Gn−1

>
1

Gn
+

1
Gn+1

+
1

Gn+2 −Gn+1
. (2)

By applying inequality (2) repeatedly we have

1
Gn −Gn−1

>
1

Gn
+

1
Gn+1

+
1

Gn+2 −Gn+1

>
1

Gn
+

1
Gn+1

+
1

Gn+2
+

1
Gn+3

+
1

Gn+4 −Gn+3

>
1

Gn
+

1
Gn+1

+
1

Gn+2
+

1
Gn+3

+
1

Gn+4
+

1
Gn+5

+ · · · .

Thus, we obtain
∞�

k=n

1
Gk

<
1

Gn −Gn−1
. (3)
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In a similar way, if n is odd with n ≥ 1, then

∞�

k=n

1
Gk

>
1

Gn −Gn−1
. (4)

On the other hand, if n is even with n ≥ 2, then by Lemma 5, parts (1) and (4)

1
Gn −Gn−1 + 1

− 1
Gn

− 1
Gn+1

− 1
Gn+2 −Gn+1 + 1

= −2(−1)n−1 + (−1)n−1
Gn+2 + (−1)n

Gn−1 + aG2n+1 + Gn + Gn+1

GnGn+1(Gn −Gn−1 + 1)(Gn+2 −Gn+1 + 1)

= −(aG2n+1 −Gn+2) + (Gn−1 + Gn + Gn+1 − 2)
GnGn+1(Gn −Gn−1 + 1)(Gn+2 −Gn+1 + 1)

< 0 .

Hence, by applying the inequality

1
Gn −Gn−1 + 1

<
1

Gn
+

1
Gn+1

+
1

Gn+2 −Gn+1 + 1

repeatedly, we obtain

1
Gn −Gn−1 + 1

<
1

Gn
+

1
Gn+1

+
1

Gn+2 −Gn+1 + 1

<
1

Gn
+

1
Gn+1

+
1

Gn+2
+

1
Gn+3

+
1

Gn+4 −Gn+3 + 1

<
1

Gn
+

1
Gn+1

+
1

Gn+2
+

1
Gn+3

+
1

Gn+4
+

1
Gn+5

+ · · · .

Thus,
1

Gn −Gn−1 + 1
<

∞�

k=n

1
Gk

.

Together with (3) we have

1
Gn −Gn−1 + 1

<

∞�

k=n

1
Gk

<
1

Gn −Gn−1
,

so 
� ∞�

k=n

1
Gk

�−1
 = Gn −Gn−1 .
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In a similar manner, if n is odd with n ≥ 1, then

1
Gn −Gn−1 − 1

− 1
Gn

− 1
Gn+1

− 1
Gn+2 −Gn+1 − 1

=
2(−1)n−1 + (−1)n

Gn+2 + (−1)n−1
Gn−1 + aG2n+1 −Gn −Gn+1

GnGn+1(Gn −Gn−1 − 1)(Gn+2 −Gn+1 − 1)

=
aGn+1(Gn+1 − 1) + Gn(aGn − a− 2) + 2

GnGn+1(Gn −Gn−1 − 1)(Gn+2 −Gn+1 − 1)
≥ 0 ,

where the equality holds only for n = a = 1. Hence,

1
Gn −Gn−1 − 1

>

∞�

k=n

1
Gk

.

Together with (4) we have

1
Gn −Gn−1

<

∞�

k=n

1
Gk

<
1

Gn −Gn−1 − 1
,

so 
� ∞�

k=n

1
Gk

�−1
 = Gn −Gn−1 − 1 .

Proof of Theorem 4. By Lemma 5(1)

1
aGn−1Gn − 1

− 1
G2

n
− 1

aGnGn+1 − 1
=

a(GnGn+1 −Gn−1Gn)
(aGn−1Gn − 1)(aGnGn+1 − 1)

− 1
G2

n

=
a
2
G

4
n − (aGn−1Gn − 1)(aGnGn+1 − 1)

G2
n(aGn−1Gn − 1)(aGnGn+1 − 1)

=
a
2
G

2
n(−1)n−1 + aGn(Gn−1 + Gn+1)− 1

G2
n(aGn−1Gn − 1)(aGnGn+1 − 1)

≥ 2aGn−1Gn − 1
G2

n(aGn−1Gn − 1)(aGnGn+1 − 1)

> 0 .
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Therefore,

1
aGn−1Gn − 1

>
1

G2
n

+
1

aGnGn+1 − 1

>
1

G2
n

+
1

G
2
n+1

+
1

aGn+1Gn+2 − 1

>
...

>
1

G2
n

+
1

G
2
n+1

+
1

G
2
n+2

+
1

G
2
n+3

+ · · · .

Thus, we have
1

aGn−1Gn − 1
>

∞�

k=n

1
G

2
k

. (5)

In a similar way,

1
aGn−1Gn + 1

− 1
G2

n
− 1

aGnGn+1 + 1
≤ − 2aGn−1Gn + 1

G2
n(aGn−1Gn + 1)(aGnGn+1 + 1)

< 0 .

Thus, we have
1

aGn−1Gn + 1
<

∞�

k=n

1
G

2
k

. (6)

On the other hand, by Lemma 5(1) and (3),

1
aGn−1Gn

− 1
G2

n
− 1

G
2
n+1

− 1
aGn+1Gn+2

=
Gn−2

aGn−1G
2
n
− Gn+3

aG
2
n+1Gn+2

=
Gn−2G

2
n+1Gn+2 −Gn−1G

2
nGn+3

aGn−1G
2
nG

2
n+1Gn+2

=
a
2(G2

n −Gn−1Gn+1)(GnGn+2 + Gn−1Gn+1)
aGn−1G

2
nG

2
n+1Gn+2

=
a(−1)n−1

G2n+1

Gn−1G
2
nG

2
n+1Gn+2

.
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If n is even with n ≥ 2, then

1
aGn−1Gn

<
1

G2
n

+
1

G
2
n+1

+
1

aGn+1Gn+2

<
1

G2
n

+
1

G
2
n+1

+
1

G
2
n+2

+
1

G
2
n+3

+
1

aGn+3Gn+4

<
...

<
1

G2
n

+
1

G
2
n+1

+
1

G
2
n+2

+
1

G
2
n+3

+
1

G
2
n+4

+
1

G
2
n+5

+ · · · .

Hence, we have
∞�

k=n

1
G

2
k

>
1

aGn−1Gn
. (7)

Similarly, if n is odd with n ≥ 1, then
∞�

k=n

1
G

2
k

<
1

aGn−1Gn
. (8)

If n is even with n ≥ 2, then by equations (5) and (7) we obtain

aGn−1Gn − 1 <

� ∞�

k=n

1
G

2
k

�−1

< aGn−1Gn .

Thus, 
� ∞�

k=n

1
G

2
k

�−1
 = aGn−1Gn − 1 .

If n is odd with n ≥ 1, then by equations (6) and (8) we obtain

aGn−1Gn <

� ∞�

k=n

1
G

2
k

�−1

< aGn−1Gn + 1 .

Thus, 
� ∞�

k=n

1
G

2
k

�−1
 = aGn−1Gn .

The following results are proved in similar manners. Such reciprocal sums of
Fibonacci-type numbers have been studied by several authors (e.g. [1], [3], [6],
[11]).
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Theorem 6. We have

(1)


� ∞�

k=n

1
G2k

�−1
 = G2n −G2n−2 − 1 (n ≥ 1)

(2)


� ∞�

k=n

1
G2k−1

�−1
 = G2n−1 −G2n−3 (n ≥ 2)

(3)


� ∞�

k=n

1
G2k−1G2k+1

�−1
 = G4n−1 −G4n−3 (n ≥ 1)

(4)


� ∞�

k=n

1
G2kG2k+2

�−1
 = G4n+1 −G4n−1 − 1 (n ≥ 1)

(5)


� ∞�

k=n

1
G

2
2k

�−1
 = G4n−1 −G4n−3 − 1 (n ≥ 1)

(6)


� ∞�

k=n

1
G

2
2k−1

�−1
 = G4n−3 −G4n−5 (n ≥ 2)

(7)


� ∞�

k=n

1
G2k−1G2k

�−1
 = G4n−2 −G4n−4 (n ≥ 1).

3. Generalized Fibonacci Numbers

Let c be a non-negative integer. Let {Hn} be a generalized Fibonacci sequence
defined by Hk+2 = Hk+1 + Hk (k ≥ 0) with H0 = c and H1 = 1.

Note that Hn = Fn+1 if c = 1, and Hn = Ln (Lucas numbers) if c = 2 ([7,
Corollary 5.5 (5.14)]).

The sequence Hn can be defined also as the total number of matchings in the
connected planar graph on n vertices with n−2+c total edges, of which c−1 edges
are between one pair of vertices. The c = 1 and c = 2 cases are stated in [10, A45
and A204], and the proof for c > 2 is a inductive counting argument. An similar
result for the Fibonacci type sequence Gk+2 = aGk+1 + Gk, G0 = 0, G1 = 1 can
be generated by counting the total matchings in a path (as defined in [12] on k− 1
vertices with a loops at each vertex.
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Theorem 7. We have


� ∞�

k=n

1
Hk

�−1
 =

�
Hn−2 − 1 if n is even and n ≥ n0;
Hn−2 if n is odd and n ≥ n1 .

Remark. n0 and n1 are determined depending only on the value of c. For example,
if Hk = Lk (Lucas number) or c = 2, then n0 = 2 and n1 = 3.
Precisely speaking, n0 = 2 if c = 1, 2; n0 = 4 if c ≤ 4; n0 = 6 if c ≤ 10; n0 = 8
if c ≤ 26; n0 = 10 if c ≤ 68; n0 = 12 if c ≤ 178; n0 = 14 if c ≤ 466; n0 = 16 if
c ≤ 1220; n0 = 18 if c ≤ 3194; n0 = 20 if c ≤ 8362.
Similarly, n1 = 1 if c = 1; n1 = 3 if c = 2; n1 = 5 if c ≤ 6; n1 = 7 if c ≤ 16; n1 = 9
if c ≤ 42; n1 = 11 if c ≤ 110; n1 = 13 if c ≤ 288; n1 = 15 if c ≤ 754; n1 = 17 if
c ≤ 1974; n1 = 19 if c ≤ 5168.

Theorem 8. We have


� ∞�

k=n

1
H

2
k

�−1
 =

�
Hn−1Hn + g(c)− 1 if n is even and n ≥ n2;
Hn−1Hn − g(c) if n is odd and n ≥ n3 ,

where

g(c) =






c(c + 1)
3

if c ≡ 0, 2 (mod 3);
c(c + 1) + 1

3
if c ≡ 1 (mod 3) .

Remark. Note that g(c) is an integer. If Hk = Lk, then we take n2 = 2 and
n3 = 1. Precisely speaking, we can determine n2 and n3 as follows:

c 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
n2 2 2 4 4 4 6 4 6 6 6 6 6 6 6 8 6 8 8 6 8
n3 1 1 3 5 3 5 5 5 5 7 5 5 7 7 7 7 7 7 7 7

We need some lemmata in order to prove Theorems 7 and 8. Every proof of the
lemmata is done by induction and omitted.

Lemma 9. For n ≥ 1, Hn = cFn−1 + Fn.

Lemma 10. We have

(1) H
2
n −Hn−1Hn+1 = HnHn+1 −Hn−1Hn+2 = (−1)n(c2 + c− 1)

(2) Hn−1Hn+1 −Hn−2Hn+2 = (−1)n−12(c2 + c− 1)

(3) Hn+4Hn −Hn+2Hn−2 = Hn+1(Hn+3 −Hn−1)
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(4) Hn+1Hn+2 −Hn−1Hn = H
2
n + H

2
n+1 = cH2n + H2n+1.

Proof of Theorem 7. By Lemma 10 (2)

1
Hn−2

− 2
Hn

− 1
Hn+1

=
(Hn −Hn−2)Hn+1 −Hn−2(Hn + Hn+1)

Hn−2HnHn+1

=
Hn−1Hn+1 −Hn−2Hn+2

Hn−2HnHn+1

=
(−1)n−12(c2 + c− 1)

Hn−2HnHn+1
.

Hence, if c ≥ 1 and n is even, then by

1
Hn−2

<
1

Hn
+

1
Hn+1

+
1

Hn

<
1

Hn
+

1
Hn+1

+
1

Hn+2
+

1
Hn+3

+
1

Hn+2

<
1

Hn
+

1
Hn+1

+
1

Hn+2
+

1
Hn+3

+
1

Hn+4
+

1
Hn+5

+ · · · ,

we have
1

Hn−2
<

∞�

k=n

1
Hk

. (9)

In a similar manner, if c ≥ 1 and n is odd, then

1
Hn−2

>

∞�

k=n

1
Hk

. (10)

On the other hand, if n is even, then by Lemma 10 (2)

1
Hn−2 − 1

− 1
Hn

− 1
Hn+1

− 1
Hn − 1

(11)

=
(−1)n−12(c2 + c− 1)Hn + Hn+2(Hn−2 + Hn − 1)

HnHn+1(Hn−2 − 1)(Hn − 1)

=
−2(c2 + c− 1)Hn + Hn+2(Hn−2 + Hn − 1)

HnHn+1(Hn−2 − 1)(Hn − 1)
. (12)

The numerator is positive if n is large enough for a fixed c. For example, one can
take n so that Hn+2 > 2(c2 + c− 1) since Hn is monotone increasing for n. Exactly
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speaking, if c = 1, then the right-hand side of (12) is positive for n ≥ 2. If 2 ≤ c ≤ 4,
then n ≥ 4. If 5 ≤ c ≤ 9, then n ≥ 6. If 10 ≤ c ≤ 24, then n ≥ 8. If 25 ≤ c ≤ 62,
then n ≥ 10. If 63 ≤ c ≤ 161, then n ≥ 12. If 162 ≤ c ≤ 422, then n ≥ 14. If
423 ≤ c ≤ 1104, then n ≥ 16.

If n is odd, then

1
Hn−2 + 1

− 1
Hn

− 1
Hn+1

− 1
Hn + 1

(13)

=
(−1)n−12(c2 + c− 1)Hn −Hn+2(Hn−2 + Hn + 1)

HnHn+1(Hn−2 + 1)(Hn + 1)

=
2(c2 + c− 1)Hn − 1Hn+2(Hn−2 + Hn + 1)

HnHn+1(Hn−2 + 1)(Hn + 1)
. (14)

The numerator is negative if n is large enough for a fixed c. For example, if c = 1,
then the right-hand side of (14) is negative for n ≥ 1. If c = 2, then n ≥ 3. If
3 ≤ c ≤ 6, then n ≥ 5. If 7 ≤ c ≤ 15, then n ≥ 7. If 16 ≤ c ≤ 38, then n ≥ 9. If
39 ≤ c ≤ 100, then n ≥ 11. If 101 ≤ c ≤ 261, then n ≥ 13. If 262 ≤ c ≤ 682, then
n ≥ 15.

When n is even, repeating the inequality

1
Hn−2 − 1

− 1
Hn

− 1
Hn+1

− 1
Hn − 1

> 0 ,

we have
1

Hn−2 − 1
>

∞�

k=n

1
Hk

. (15)

Together with (9), we obtain

� ∞�

k=n

1
Hk

�−1
 = Hn−2 − 1 .

When n is odd, repeating the inequality

1
Hn−2 + 1

− 1
Hn

− 1
Hn+1

− 1
Hn + 1

< 0 ,

we have
1

Hn−2 + 1
<

∞�

k=n

1
Hk

. (16)

Together with (10), we obtain

� ∞�

k=n

1
Hk

�−1
 = Hn−2 .
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Proof of Theorem 8. By Lemma 10 (1)

1
Hn−1Hn + (−1)ng(c)− 1

− 1
H2

n
− 1

HnHn+1 + (−1)n+1g(c)− 1

=
H

2
n + (−1)n+12g(c)

(Hn−1Hn + (−1)ng(c)− 1)(HnHn+1 + (−1)n+1g(c)− 1)
− 1

H2
n

=
(−1)n(c2 + c− 1− 3g(c))H2

n +
�
g(c)

�2 + Hn(Hn+1 + Hn−1)− 1
H2

n(Hn−1Hn + (−1)ng(c)− 1)(HnHn+1 + (−1)n+1g(c)− 1)
.

Suppose that n is even with n ≥ 2. Then the numerator is

�
c
2 + c− 3g(c)− 1

�
H

2
n +

�
g(c)

�2 + Hn(Hn+1 + Hn−1 − 1)

≥ Hn(Hn−1 −Hn−2) +
�
g(c)

�2 − 1 ≥ 0

(the equalities hold only for n = 2 and c = 1). Suppose that n is odd with n ≥ 1 .
Then the numerator is

�
3g(c)− c

2 − c + 1
�
H

2
n +

�
g(c)

�2 + Hn(Hn+1 + Hn−1 − 1)

≥ H
2
n + Hn(Hn+1 + Hn−1) +

�
g(c)

�2 − 1 > 0 .

Therefore, for all n ≥ 1

1
Hn−1Hn + (−1)ng(c)− 1

>

∞�

k=n

1
H

2
k

. (17)

Similarly,

1
Hn−1Hn + (−1)ng(c) + 1

− 1
H2

n
− 1

HnHn+1 + (−1)n+1g(c) + 1

=
H

2
n + (−1)n+12g(c)

(Hn−1Hn + (−1)ng(c)− 1)(HnHn+1 + (−1)n+1g(c)− 1)
− 1

H2
n

=
(−1)n(c2 + c− 1− 3g(c))H2

n +
�
g(c)

�2 −Hn(Hn+1 + Hn−1)− 1
H2

n(Hn−1Hn + (−1)ng(c) + 1)(HnHn+1 + (−1)n+1g(c) + 1)
.

If n is even, then the numerator is less than or equal to

−Hn(Hn+1 + Hn + Hn−1) +
�
g(c)

�2 − 1 .

If n is odd, then the numerator is less than or equal to

−Hn(Hn−1 −Hn−2) +
�
g(c)

�2 − 1 .
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Thus, in any case, for n ≥ n5 (n5 is large) both values are negative. Therefore,

1
Hn−1Hn + (−1)ng(c) + 1

<

∞�

k=n

1
H

2
k

. (18)

By Lemma 10, parts (1) and (4)

1
Hn−1Hn + (−1)ng(c)

− 1
H2

n
− 1

H
2
n+1

− 1
Hn+1Hn+2 + (−1)ng(c)

=
Hn+1Hn+2 −Hn−1Hn�

Hn−1Hn + (−1)ng(c)
��

Hn+1Hn+2 + (−1)ng(c)
� −

H
2
n + H

2
n+1

H2
nH

2
n+1

=
(cH2n + H2n+1)

�
(−1)n(c2 + c− 1)HnHn+1�

Hn−1Hn + (−1)ng(c)
��

Hn+1Hn+2 + (−1)ng(c)
�
H2

nH
2
n+1

.

+
(−1)n+1

g(c)(Hn+1Hn+2 + Hn−1Hn)− (g(c))2
�

�
Hn−1Hn + (−1)ng(c)

��
Hn+1Hn+2 + (−1)ng(c)

�
H2

nH
2
n+1

.

Hence, if n is even with n ≥ n6 (large), then by

(c2 + c− 1)HnHn+1 − g(c)(Hn+1Hn+2 + Hn−1Hn)− (g(c))2 < 0

we have
1

Hn−1Hn + g(c)
<

∞�

k=n

1
H

2
k

. (19)

If n is odd with n ≥ n7 (large), then by

−(c2 + c− 1)HnHn+1 + g(c)(Hn+1Hn+2 + Hn−1Hn)− (g(c))2 > 0

we have
1

Hn−1Hn − g(c)
>

∞�

k=n

1
H

2
k

. (20)

In conclusion, if n is even, by (17) and (19) we obtain

1
Hn−1Hn + g(c)

<

∞�

k=n

1
H

2
k

<
1

Hn−1Hn + g(c)− 1
.

If n is odd, by (18) and (20) we obtain

1
Hn−1Hn − g(c) + 1

<

∞�

k=n

1
H

2
k

<
1

Hn−1Hn − g(c)
.
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4. The Sum of Reciprocal Jacobsthal Numbers

It would be interesting to find similar results for the sum
�∞

k=n U
−1
k , where the

sequence {Un}n is defined by Un = aUn−1 + bUn−2 (n ≥ 2) with U0 = c and U1 = d

for arbitrary fixed integers a, b, c and d.
Here, we mention the result for the sum of reciprocal Jacobsthal numbers, defined

by Jn = Jn−1 + 2Jn−2 (n ≥ 2) with J0 = 0 and J1 = 1 (Cf. [7, Ch.39]).

Theorem 11. We have


� ∞�

k=n

1
Jk

�−1
 =

�
Jn−1 − 1 if n is even and n ≥ 2;
Jn−1 if n is odd and n ≥ 1 .
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