

Article 11

INTEGERS 11A (2011)

Proceedings of Integers Conference 2009

ON THE SUM OF RECIPROCAL GENERALIZED FIBONACCI NUMBERS

Sarah H. Holliday

Dept. of Mathematics, Southern Polytechnic State University, Marietta, Georgia shollida@spsu.edu

Takao Komatsu¹

Graduate School of Science and Technology, Hirosaki University, Hirosaki, Japan komatsu@cc.hirosaki-u.ac.jp

Received: 8/22/09, Revised: 5/27/10, Accepted: 6/2/10, Published: 3/9/11

Abstract

The Fibonacci Zeta functions are defined by $\zeta_F(s) = \sum_{k=1}^{\infty} F_k^{-s}$. Several aspects of the function have been studied. In this article we generalize the results by Ohtsuka and Nakamura, who treated the partial infinite sum $\sum_{k=n}^{\infty} F_k^{-s}$ for all positive integers n.

1. Introduction

The so-called *Fibonacci and Lucas Zeta functions*, defined by

$$\zeta_F(s) = \sum_{n=1}^{\infty} \frac{1}{F_n^s}$$
 and $\zeta_L(s) = \sum_{n=1}^{\infty} \frac{1}{L_n^s}$,

respectively, have been considered in several different ways. In [8] the analytic continuation of these series is discussed. In [2] it is shown that the numbers $\zeta_F(2), \zeta_F(4), \zeta_F(6)$ (respectively, $\zeta_L(2), \zeta_L(4), \zeta_L(6)$) are algebraically independent, and that each of $\zeta_F(2s)$ (respectively, $\zeta_L(2s)$) (s = 4, 5, 6, ...) can be written as a rational (respectively, algebraic) function of these three numbers over \mathbb{Q} . Similar results are obtained in [2] for the alternating sums

$$\zeta_F^*(2s) := \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{F_n^{2s}} \quad \left(\text{respectively}, \zeta_L^*(2s) := \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{L_n^{2s}} \right) \quad (s = 1, 2, 3, \dots) \,.$$

 $^{^1}$ Supported in part by the Grant-in-Aid for Scientific Research (C) (No. 18540006), the Japan Society for the Promotion of Science.

From the main theorem in [4] it follows that for any positive distinct integers s_1, s_2, s_3 the numbers $\zeta_F(2s_1)$, $\zeta_F(2s_2)$, and $\zeta_F(2s_3)$ are algebraically independent if and only if at least one of s_1, s_2, s_3 is even. Other types of algebraic independence, including the functions

$$\sum_{n=1}^{\infty} \frac{1}{F_{2n-1}^s}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{2n}^s}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2n-1}^s}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2n}^s},$$

are discussed in [6]. In [5] Fibonacci zeta functions and Lucas zeta functions including

$$\zeta_F(1), \zeta_F(2), \zeta_F(3), \zeta_F^*(1), \zeta_L(1), \zeta_L(2), \zeta_L^*(1)$$

are expanded as non-regular continued fractions whose components are Fibonacci or Lucas numbers.

In [9] the partial infinite sums of reciprocal Fibonacci numbers were studied. In this paper we shall generalize their results, given in Propositions 1 and 2 below. Here, $\lfloor \cdot \rfloor$ denotes the floor function.

Proposition 1. We have

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k}\right)^{-1} \right\rfloor = \begin{cases} F_{n-2} & \text{if } n \text{ is even and } n \ge 2; \\ F_{n-2} - 1 & \text{if } n \text{ is odd and } n \ge 1. \end{cases}$$

Proposition 2. We have

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{F_k^2}\right)^{-1} \right\rfloor = \begin{cases} F_{n-1}F_n - 1 & \text{if } n \text{ is even and } n \ge 2; \\ F_{n-1}F_n & \text{if } n \text{ is odd and } n \ge 1. \end{cases}$$

2. Main Results

Let a be a positive integer. Let $\{G_n\}$ be a general Fibonacci sequence defined by $G_{k+2} = aG_{k+1} + G_k \ (k \ge 0)$ with $G_0 = 0$ and $G_1 = 1$.

Theorem 3. We have

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{G_k}\right)^{-1} \right\rfloor = \begin{cases} G_n - G_{n-1} & \text{if } n \text{ is even and } n \ge 2; \\ G_n - G_{n-1} - 1 & \text{if } n \text{ is odd and } n \ge 1. \end{cases}$$

Theorem 4. We have

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{G_k^2}\right)^{-1} \right\rfloor = \begin{cases} aG_{n-1}G_n - 1 & \text{if } n \text{ is even and } n \ge 2; \\ aG_{n-1}G_n & \text{if } n \text{ is odd and } n \ge 1. \end{cases}$$

We need some identities in order to prove Theorems 1 and 2.

Lemma 5. For $n \ge 1$, we have

- (1) $G_n^2 G_{n-1}G_{n+1} = (-1)^{n-1}$
- (2) $G_{n-1}G_{n+3} G_nG_{n+2} = (-1)^n(a^2 + 1)$
- (3) $G_n G_{n+2} + G_{n-1} G_{n+1} = G_{2n+1}$
- (4) $G_{n+1}G_{n+2} G_{n-1}G_n = aG_{2n+1}.$

Proof. Every proof is done by induction and omitted.

Proof of Theorem 3. Using Lemma 5 (1), for $n \ge 1$ we have

$$\frac{1}{G_n - G_{n-1}} - \frac{1}{G_n} - \frac{1}{G_{n+1}} - \frac{1}{G_{n+2} - G_{n+1}} = \frac{1}{G_{n+2} - G_{n+1}} = \frac{1}{G_{n+2} - G_{n+1} - G_n + G_{n-1}} - \frac{1}{G_{n+1} + G_n} = \frac{1}{G_{n+2} - G_{n-1} - G_{n+1} - G_n^2} + \frac{1}{G_n - G_{n+1}} = \frac{1}{G_{n+2} - G_{n+1} - G_n^2} + \frac{1}{G_n - G_{n-1} - G_{n-1} - G_{n-1}} = \frac{1}{G_n - G_n -$$

If n is even with $n \ge 2$, since the right-hand side of the identity (1) is positive, we get

$$\frac{1}{G_n - G_{n-1}} > \frac{1}{G_n} + \frac{1}{G_{n+1}} + \frac{1}{G_{n+2} - G_{n+1}}.$$
 (2)

By applying inequality (2) repeatedly we have

$$\frac{1}{G_n - G_{n-1}} > \frac{1}{G_n} + \frac{1}{G_{n+1}} + \frac{1}{G_{n+2} - G_{n+1}}$$

$$> \frac{1}{G_n} + \frac{1}{G_{n+1}} + \frac{1}{G_{n+2}} + \frac{1}{G_{n+3}} + \frac{1}{G_{n+4} - G_{n+3}}$$

$$> \frac{1}{G_n} + \frac{1}{G_{n+1}} + \frac{1}{G_{n+2}} + \frac{1}{G_{n+3}} + \frac{1}{G_{n+4}} + \frac{1}{G_{n+5}} + \cdots$$

Thus, we obtain

$$\sum_{k=n}^{\infty} \frac{1}{G_k} < \frac{1}{G_n - G_{n-1}} \,. \tag{3}$$

In a similar way, if n is odd with $n \ge 1$, then

$$\sum_{k=n}^{\infty} \frac{1}{G_k} > \frac{1}{G_n - G_{n-1}} \,. \tag{4}$$

On the other hand, if n is even with $n \ge 2$, then by Lemma 5, parts (1) and (4)

$$\frac{1}{G_n - G_{n-1} + 1} - \frac{1}{G_n} - \frac{1}{G_{n+1}} - \frac{1}{G_{n+2} - G_{n+1} + 1}$$
$$= -\frac{2(-1)^{n-1} + (-1)^{n-1}G_{n+2} + (-1)^n G_{n-1} + aG_{2n+1} + G_n + G_{n+1}}{G_n G_{n+1} (G_n - G_{n-1} + 1)(G_{n+2} - G_{n+1} + 1)}$$
$$= -\frac{(aG_{2n+1} - G_{n+2}) + (G_{n-1} + G_n + G_{n+1} - 2)}{G_n G_{n+1} (G_n - G_{n-1} + 1)(G_{n+2} - G_{n+1} + 1)} < 0.$$

Hence, by applying the inequality

$$\frac{1}{G_n - G_{n-1} + 1} < \frac{1}{G_n} + \frac{1}{G_{n+1}} + \frac{1}{G_{n+2} - G_{n+1} + 1}$$

repeatedly, we obtain

$$\frac{1}{G_n - G_{n-1} + 1} < \frac{1}{G_n} + \frac{1}{G_{n+1}} + \frac{1}{G_{n+2} - G_{n+1} + 1}$$
$$< \frac{1}{G_n} + \frac{1}{G_{n+1}} + \frac{1}{G_{n+2}} + \frac{1}{G_{n+3}} + \frac{1}{G_{n+4} - G_{n+3} + 1}$$
$$< \frac{1}{G_n} + \frac{1}{G_{n+1}} + \frac{1}{G_{n+2}} + \frac{1}{G_{n+3}} + \frac{1}{G_{n+4}} + \frac{1}{G_{n+5}} + \cdots$$

Thus,

$$\frac{1}{G_n - G_{n-1} + 1} < \sum_{k=n}^{\infty} \frac{1}{G_k} \,.$$

Together with (3) we have

$$\frac{1}{G_n - G_{n-1} + 1} < \sum_{k=n}^{\infty} \frac{1}{G_k} < \frac{1}{G_n - G_{n-1}},$$

 \mathbf{SO}

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{G_k}\right)^{-1} \right\rfloor = G_n - G_{n-1}.$$

In a similar manner, if n is odd with $n \ge 1$, then

$$\begin{aligned} \frac{1}{G_n - G_{n-1} - 1} &- \frac{1}{G_n} - \frac{1}{G_{n+1}} - \frac{1}{G_{n+2} - G_{n+1} - 1} \\ &= \frac{2(-1)^{n-1} + (-1)^n G_{n+2} + (-1)^{n-1} G_{n-1} + a G_{2n+1} - G_n - G_{n+1}}{G_n G_{n+1} (G_n - G_{n-1} - 1) (G_{n+2} - G_{n+1} - 1)} \\ &= \frac{a G_{n+1} (G_{n+1} - 1) + G_n (a G_n - a - 2) + 2}{G_n G_{n+1} (G_n - G_{n-1} - 1) (G_{n+2} - G_{n+1} - 1)} \ge 0 \,, \end{aligned}$$

where the equality holds only for n = a = 1. Hence,

$$\frac{1}{G_n - G_{n-1} - 1} > \sum_{k=n}^{\infty} \frac{1}{G_k} \,.$$

Together with (4) we have

 \mathbf{SO}

$$\frac{1}{G_n - G_{n-1}} < \sum_{k=n}^{\infty} \frac{1}{G_k} < \frac{1}{G_n - G_{n-1} - 1},$$
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_k} \right)^{-1} \right] = G_n - G_{n-1} - 1.$$

Proof of Theorem 4. By Lemma 5(1)

$$\frac{1}{aG_{n-1}G_n - 1} - \frac{1}{G_n^2} - \frac{1}{aG_nG_{n+1} - 1} = \frac{a(G_nG_{n+1} - G_{n-1}G_n)}{(aG_{n-1}G_n - 1)(aG_nG_{n+1} - 1)} - \frac{1}{G_n^2}$$
$$= \frac{a^2G_n^4 - (aG_{n-1}G_n - 1)(aG_nG_{n+1} - 1)}{G_n^2(aG_{n-1}G_n - 1)(aG_nG_{n+1} - 1)}$$
$$= \frac{a^2G_n^2(-1)^{n-1} + aG_n(G_{n-1} + G_{n+1}) - 1}{G_n^2(aG_{n-1}G_n - 1)(aG_nG_{n+1} - 1)}$$
$$\ge \frac{2aG_{n-1}G_n - 1}{G_n^2(aG_{n-1}G_n - 1)(aG_nG_{n+1} - 1)}$$
$$\ge 0.$$

Therefore,

$$\frac{1}{aG_{n-1}G_n - 1} > \frac{1}{G_n^2} + \frac{1}{aG_nG_{n+1} - 1}$$

$$> \frac{1}{G_n^2} + \frac{1}{G_{n+1}^2} + \frac{1}{aG_{n+1}G_{n+2} - 1}$$

$$> \qquad \vdots$$

$$> \frac{1}{G_n^2} + \frac{1}{G_{n+1}^2} + \frac{1}{G_{n+2}^2} + \frac{1}{G_{n+3}^2} + \cdots$$

Thus, we have

$$\frac{1}{aG_{n-1}G_n - 1} > \sum_{k=n}^{\infty} \frac{1}{G_k^2} \,. \tag{5}$$

In a similar way,

$$\frac{1}{aG_{n-1}G_n+1} - \frac{1}{G_n^2} - \frac{1}{aG_nG_{n+1}+1} \le -\frac{2aG_{n-1}G_n+1}{G_n^2(aG_{n-1}G_n+1)(aG_nG_{n+1}+1)} < 0.$$

Thus, we have

$$\frac{1}{aG_{n-1}G_n+1} < \sum_{k=n}^{\infty} \frac{1}{G_k^2} \,. \tag{6}$$

On the other hand, by Lemma 5(1) and (3),

$$\frac{1}{aG_{n-1}G_n} - \frac{1}{G_n^2} - \frac{1}{G_{n+1}^2} - \frac{1}{aG_{n+1}G_{n+2}}$$

$$= \frac{G_{n-2}}{aG_{n-1}G_n^2} - \frac{G_{n+3}}{aG_{n+1}^2G_{n+2}}$$

$$= \frac{G_{n-2}G_{n+1}^2G_{n+2} - G_{n-1}G_n^2G_{n+3}}{aG_{n-1}G_n^2G_{n+1}^2G_{n+2}}$$

$$= \frac{a^2(G_n^2 - G_{n-1}G_{n+1})(G_nG_{n+2} + G_{n-1}G_{n+1})}{aG_{n-1}G_n^2G_{n+1}^2G_{n+2}}$$

$$= \frac{a(-1)^{n-1}G_{2n+1}}{G_{n-1}G_n^2G_{n+1}^2G_{n+2}}.$$

If n is even with $n \ge 2$, then

$$\frac{1}{aG_{n-1}G_n} < \frac{1}{G_n^2} + \frac{1}{G_{n+1}^2} + \frac{1}{aG_{n+1}G_{n+2}}$$

$$< \frac{1}{G_n^2} + \frac{1}{G_{n+1}^2} + \frac{1}{G_{n+2}^2} + \frac{1}{G_{n+3}^2} + \frac{1}{aG_{n+3}G_{n+4}}$$

$$< \qquad \qquad \vdots$$

$$< \frac{1}{G_n^2} + \frac{1}{G_{n+1}^2} + \frac{1}{G_{n+2}^2} + \frac{1}{G_{n+3}^2} + \frac{1}{G_{n+4}^2} + \frac{1}{G_{n+5}^2} + \cdots$$

Hence, we have

$$\sum_{k=n}^{\infty} \frac{1}{G_k^2} > \frac{1}{aG_{n-1}G_n} \,. \tag{7}$$

Similarly, if n is odd with $n\geq 1,$ then

$$\sum_{k=n}^{\infty} \frac{1}{G_k^2} < \frac{1}{aG_{n-1}G_n} \,. \tag{8}$$

If n is even with $n \ge 2$, then by equations (5) and (7) we obtain

$$aG_{n-1}G_n - 1 < \left(\sum_{k=n}^{\infty} \frac{1}{G_k^2}\right)^{-1} < aG_{n-1}G_n.$$

Thus,

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_k^2} \right)^{-1} \right] = a G_{n-1} G_n - 1.$$

If n is odd with $n \ge 1$, then by equations (6) and (8) we obtain

$$aG_{n-1}G_n < \left(\sum_{k=n}^{\infty} \frac{1}{G_k^2}\right)^{-1} < aG_{n-1}G_n + 1.$$

Thus,

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_k^2} \right)^{-1} \right] = a G_{n-1} G_n \, .$$

The following results are proved in similar manners. Such reciprocal sums of Fibonacci-type numbers have been studied by several authors (e.g. [1], [3], [6], [11]).

Theorem 6. We have

(1)
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_{2k}} \right)^{-1} \right] = G_{2n} - G_{2n-2} - 1 \quad (n \ge 1)$$

(2) $\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_{2k-1}} \right)^{-1} \right] = G_{2n-1} - G_{2n-3} \quad (n \ge 2)$

(3)
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_{2k-1}G_{2k+1}} \right)^{-1} \right] = G_{4n-1} - G_{4n-3} \qquad (n \ge 1)$$

(4)
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_{2k} G_{2k+2}} \right)^{-1} \right] = G_{4n+1} - G_{4n-1} - 1 \qquad (n \ge 1)$$

(5)
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_{2k}^2} \right)^{-1} \right] = G_{4n-1} - G_{4n-3} - 1 \qquad (n \ge 1)$$

(6)
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_{2k-1}^2} \right)^{-1} \right] = G_{4n-3} - G_{4n-5} \qquad (n \ge 2)$$

(7)
$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{G_{2k-1}G_{2k}} \right)^{-1} \right] = G_{4n-2} - G_{4n-4} \qquad (n \ge 1).$$

3. Generalized Fibonacci Numbers

Let c be a non-negative integer. Let $\{H_n\}$ be a generalized Fibonacci sequence defined by $H_{k+2} = H_{k+1} + H_k$ $(k \ge 0)$ with $H_0 = c$ and $H_1 = 1$.

Note that $H_n = F_{n+1}$ if c = 1, and $H_n = L_n$ (Lucas numbers) if c = 2 ([7, Corollary 5.5 (5.14)]).

The sequence H_n can be defined also as the total number of matchings in the connected planar graph on n vertices with n-2+c total edges, of which c-1 edges are between one pair of vertices. The c = 1 and c = 2 cases are stated in [10, A45 and A204], and the proof for c > 2 is a inductive counting argument. An similar result for the Fibonacci type sequence $G_{k+2} = aG_{k+1} + G_k$, $G_0 = 0$, $G_1 = 1$ can be generated by counting the total matchings in a path (as defined in [12] on k-1 vertices with a loops at each vertex.

Theorem 7. We have

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{H_k}\right)^{-1} \right\rfloor = \begin{cases} H_{n-2} - 1 & \text{if } n \text{ is even and } n \ge n_0; \\ H_{n-2} & \text{if } n \text{ is odd and } n \ge n_1. \end{cases}$$

Remark. n_0 and n_1 are determined depending only on the value of c. For example, if $H_k = L_k$ (Lucas number) or c = 2, then $n_0 = 2$ and $n_1 = 3$.

Precisely speaking, $n_0 = 2$ if c = 1, 2; $n_0 = 4$ if $c \le 4$; $n_0 = 6$ if $c \le 10$; $n_0 = 8$ if $c \le 26$; $n_0 = 10$ if $c \le 68$; $n_0 = 12$ if $c \le 178$; $n_0 = 14$ if $c \le 466$; $n_0 = 16$ if $c \le 1220$; $n_0 = 18$ if $c \le 3194$; $n_0 = 20$ if $c \le 8362$.

Similarly, $n_1 = 1$ if c = 1; $n_1 = 3$ if c = 2; $n_1 = 5$ if $c \le 6$; $n_1 = 7$ if $c \le 16$; $n_1 = 9$ if $c \le 42$; $n_1 = 11$ if $c \le 110$; $n_1 = 13$ if $c \le 288$; $n_1 = 15$ if $c \le 754$; $n_1 = 17$ if $c \le 1974$; $n_1 = 19$ if $c \le 5168$.

Theorem 8. We have

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{H_k^2}\right)^{-1} \right\rfloor = \begin{cases} H_{n-1}H_n + g(c) - 1 & \text{if } n \text{ is even and } n \ge n_2; \\ H_{n-1}H_n - g(c) & \text{if } n \text{ is odd and } n \ge n_3, \end{cases}$$

where

$$g(c) = \begin{cases} \frac{c(c+1)}{3} & \text{if } c \equiv 0, 2 \pmod{3}; \\ \frac{c(c+1)+1}{3} & \text{if } c \equiv 1 \pmod{3}. \end{cases}$$

Remark. Note that g(c) is an integer. If $H_k = L_k$, then we take $n_2 = 2$ and $n_3 = 1$. Precisely speaking, we can determine n_2 and n_3 as follows:

c	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
n_2	2	2	4	4	4	6	4	6	6	6	6	6	6	6	8	6	8	8	6	8
n_3	1	1	3	5	3	5	5	5	5	7	5	5	7	7	7	7	7	7	7	7

We need some lemmata in order to prove Theorems 7 and 8. Every proof of the lemmata is done by induction and omitted.

Lemma 9. For $n \ge 1$, $H_n = cF_{n-1} + F_n$.

Lemma 10. We have

- (1) $H_n^2 H_{n-1}H_{n+1} = H_nH_{n+1} H_{n-1}H_{n+2} = (-1)^n(c^2 + c 1)$
- (2) $H_{n-1}H_{n+1} H_{n-2}H_{n+2} = (-1)^{n-1}2(c^2 + c 1)$
- (3) $H_{n+4}H_n H_{n+2}H_{n-2} = H_{n+1}(H_{n+3} H_{n-1})$

INTEGERS 11A (2011): Proceedings of Integers Conference 2009

(4)
$$H_{n+1}H_{n+2} - H_{n-1}H_n = H_n^2 + H_{n+1}^2 = cH_{2n} + H_{2n+1}.$$

Proof of Theorem 7. By Lemma 10 (2)

$$\frac{1}{H_{n-2}} - \frac{2}{H_n} - \frac{1}{H_{n+1}} = \frac{(H_n - H_{n-2})H_{n+1} - H_{n-2}(H_n + H_{n+1})}{H_{n-2}H_nH_{n+1}}$$
$$= \frac{H_{n-1}H_{n+1} - H_{n-2}H_{n+2}}{H_{n-2}H_nH_{n+1}}$$
$$= \frac{(-1)^{n-1}2(c^2 + c - 1)}{H_{n-2}H_nH_{n+1}}.$$

Hence, if $c \ge 1$ and n is even, then by

$$\frac{1}{H_{n-2}} < \frac{1}{H_n} + \frac{1}{H_{n+1}} + \frac{1}{H_n}$$

$$< \frac{1}{H_n} + \frac{1}{H_{n+1}} + \frac{1}{H_{n+2}} + \frac{1}{H_{n+3}} + \frac{1}{H_{n+2}}$$

$$< \frac{1}{H_n} + \frac{1}{H_{n+1}} + \frac{1}{H_{n+2}} + \frac{1}{H_{n+3}} + \frac{1}{H_{n+4}} + \frac{1}{H_{n+5}} + \cdots,$$

we have

$$\frac{1}{H_{n-2}} < \sum_{k=n}^{\infty} \frac{1}{H_k} \,. \tag{9}$$

10

In a similar manner, if $c \ge 1$ and n is odd, then

$$\frac{1}{H_{n-2}} > \sum_{k=n}^{\infty} \frac{1}{H_k} \,. \tag{10}$$

On the other hand, if n is even, then by Lemma 10 (2)

$$\frac{1}{H_{n-2}-1} - \frac{1}{H_n} - \frac{1}{H_{n+1}} - \frac{1}{H_n-1}$$
(11)
$$= \frac{(-1)^{n-1}2(c^2+c-1)H_n + H_{n+2}(H_{n-2}+H_n-1)}{H_nH_{n+1}(H_{n-2}-1)(H_n-1)}$$
$$= \frac{-2(c^2+c-1)H_n + H_{n+2}(H_{n-2}+H_n-1)}{H_nH_{n+1}(H_{n-2}-1)(H_n-1)}.$$
(12)

The numerator is positive if n is large enough for a fixed c. For example, one can take n so that $H_{n+2} > 2(c^2 + c - 1)$ since H_n is monotone increasing for n. Exactly

speaking, if c = 1, then the right-hand side of (12) is positive for $n \ge 2$. If $2 \le c \le 4$, then $n \ge 4$. If $5 \le c \le 9$, then $n \ge 6$. If $10 \le c \le 24$, then $n \ge 8$. If $25 \le c \le 62$, then $n \ge 10$. If $63 \le c \le 161$, then $n \ge 12$. If $162 \le c \le 422$, then $n \ge 14$. If $423 \le c \le 1104$, then $n \ge 16$.

If n is odd, then

$$\frac{1}{H_{n-2}+1} - \frac{1}{H_n} - \frac{1}{H_{n+1}} - \frac{1}{H_n+1}$$
(13)
$$= \frac{(-1)^{n-1}2(c^2+c-1)H_n - H_{n+2}(H_{n-2}+H_n+1)}{H_nH_{n+1}(H_{n-2}+1)(H_n+1)}$$
$$= \frac{2(c^2+c-1)H_n - 1H_{n+2}(H_{n-2}+H_n+1)}{H_nH_{n+1}(H_{n-2}+1)(H_n+1)}.$$
(14)

The numerator is negative if n is large enough for a fixed c. For example, if c = 1, then the right-hand side of (14) is negative for $n \ge 1$. If c = 2, then $n \ge 3$. If $3 \le c \le 6$, then $n \ge 5$. If $7 \le c \le 15$, then $n \ge 7$. If $16 \le c \le 38$, then $n \ge 9$. If $39 \le c \le 100$, then $n \ge 11$. If $101 \le c \le 261$, then $n \ge 13$. If $262 \le c \le 682$, then $n \ge 15$.

When n is even, repeating the inequality

$$\frac{1}{H_{n-2}-1} - \frac{1}{H_n} - \frac{1}{H_{n+1}} - \frac{1}{H_n-1} > 0,$$

$$\frac{1}{H_n-1} - \sum_{n=1}^{\infty} \frac{1}{H_n} = 0,$$
(15)

we have

$$\frac{1}{H_{n-2}-1} > \sum_{k=n}^{\infty} \frac{1}{H_k} \,. \tag{15}$$

Together with (9), we obtain

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{H_k}\right)^{-1} \right\rfloor = H_{n-2} - 1.$$

When n is odd, repeating the inequality

$$\frac{1}{H_{n-2}+1} - \frac{1}{H_n} - \frac{1}{H_{n+1}} - \frac{1}{H_n+1} < 0 \,,$$

we have

$$\frac{1}{H_{n-2}+1} < \sum_{k=n}^{\infty} \frac{1}{H_k}.$$
(16)

Together with (10), we obtain

$$\left[\left(\sum_{k=n}^{\infty} \frac{1}{H_k} \right)^{-1} \right] = H_{n-2}.$$

12

Proof of Theorem 8. By Lemma 10 (1)

$$\frac{1}{H_{n-1}H_n + (-1)^n g(c) - 1} - \frac{1}{H_n^2} - \frac{1}{H_n H_{n+1} + (-1)^{n+1} g(c) - 1}$$

$$= \frac{H_n^2 + (-1)^{n+1} 2g(c)}{(H_{n-1}H_n + (-1)^n g(c) - 1)(H_n H_{n+1} + (-1)^{n+1} g(c) - 1)} - \frac{1}{H_n^2}$$

$$= \frac{(-1)^n (c^2 + c - 1 - 3g(c)) H_n^2 + (g(c))^2 + H_n (H_{n+1} + H_{n-1}) - 1}{H_n^2 (H_{n-1}H_n + (-1)^n g(c) - 1)(H_n H_{n+1} + (-1)^{n+1} g(c) - 1)}$$

Suppose that n is even with $n\geq 2.$ Then the numerator is

$$(c^{2} + c - 3g(c) - 1)H_{n}^{2} + (g(c))^{2} + H_{n}(H_{n+1} + H_{n-1} - 1)$$

$$\geq H_{n}(H_{n-1} - H_{n-2}) + (g(c))^{2} - 1 \geq 0$$

(the equalities hold only for n=2 and c=1). Suppose that n is odd with $n\geq 1$. Then the numerator is

$$(3g(c) - c^{2} - c + 1)H_{n}^{2} + (g(c))^{2} + H_{n}(H_{n+1} + H_{n-1} - 1)$$

$$\geq H_{n}^{2} + H_{n}(H_{n+1} + H_{n-1}) + (g(c))^{2} - 1 > 0.$$

Therefore, for all $n \ge 1$

$$\frac{1}{H_{n-1}H_n + (-1)^n g(c) - 1} > \sum_{k=n}^{\infty} \frac{1}{H_k^2}.$$
(17)

~

Similarly,

$$\frac{1}{H_{n-1}H_n + (-1)^n g(c) + 1} - \frac{1}{H_n^2} - \frac{1}{H_n H_{n+1} + (-1)^{n+1} g(c) + 1}$$

$$= \frac{H_n^2 + (-1)^{n+1} 2g(c)}{(H_{n-1}H_n + (-1)^n g(c) - 1)(H_n H_{n+1} + (-1)^{n+1} g(c) - 1)} - \frac{1}{H_n^2}$$

$$= \frac{(-1)^n (c^2 + c - 1 - 3g(c))H_n^2 + (g(c))^2 - H_n (H_{n+1} + H_{n-1}) - 1}{H_n^2 (H_{n-1}H_n + (-1)^n g(c) + 1)(H_n H_{n+1} + (-1)^{n+1} g(c) + 1)}$$

If n is even, then the numerator is less than or equal to

$$-H_n(H_{n+1} + H_n + H_{n-1}) + (g(c))^2 - 1.$$

If n is odd, then the numerator is less than or equal to

$$-H_n(H_{n-1} - H_{n-2}) + (g(c))^2 - 1.$$

INTEGERS 11A (2011): Proceedings of Integers Conference 2009

Thus, in any case, for $n \ge n_5$ (n_5 is large) both values are negative. Therefore,

$$\frac{1}{H_{n-1}H_n + (-1)^n g(c) + 1} < \sum_{k=n}^{\infty} \frac{1}{H_k^2}.$$
(18)

By Lemma 10, parts (1) and (4)

$$\begin{aligned} \frac{1}{H_{n-1}H_n + (-1)^n g(c)} &- \frac{1}{H_n^2} - \frac{1}{H_{n+1}^2} - \frac{1}{H_{n+1}H_{n+2} + (-1)^n g(c)} \\ &= \frac{H_{n+1}H_{n+2} - H_{n-1}H_n}{\left(H_{n-1}H_n + (-1)^n g(c)\right) \left(H_{n+1}H_{n+2} + (-1)^n g(c)\right)} - \frac{H_n^2 + H_{n+1}^2}{H_n^2 H_{n+1}^2} \\ &= \frac{\left(cH_{2n} + H_{2n+1}\right) \left((-1)^n \left(c^2 + c - 1\right) H_n H_{n+1}}{\left(H_{n-1}H_n + (-1)^n g(c)\right) \left(H_{n+1}H_{n+2} + (-1)^n g(c)\right) H_n^2 H_{n+1}^2} \right. \\ &+ \frac{\left(-1\right)^{n+1} g(c) \left(H_{n+1}H_{n+2} + H_{n-1}H_n\right) - \left(g(c)\right)^2\right)}{\left(H_{n-1}H_n + (-1)^n g(c)\right) \left(H_{n+1}H_{n+2} + (-1)^n g(c)\right) H_n^2 H_{n+1}^2} \,. \end{aligned}$$

Hence, if n is even with $n \ge n_6$ (large), then by

$$(c^{2} + c - 1)H_{n}H_{n+1} - g(c)(H_{n+1}H_{n+2} + H_{n-1}H_{n}) - (g(c))^{2} < 0$$

we have

$$\frac{1}{H_{n-1}H_n + g(c)} < \sum_{k=n}^{\infty} \frac{1}{H_k^2} \,. \tag{19}$$

If n is odd with $n \ge n_7$ (large), then by

$$-(c^{2}+c-1)H_{n}H_{n+1}+g(c)(H_{n+1}H_{n+2}+H_{n-1}H_{n})-(g(c))^{2}>0$$

we have

$$\frac{1}{H_{n-1}H_n - g(c)} > \sum_{k=n}^{\infty} \frac{1}{H_k^2}.$$
(20)

In conclusion, if n is even, by (17) and (19) we obtain

$$\frac{1}{H_{n-1}H_n + g(c)} < \sum_{k=n}^{\infty} \frac{1}{H_k^2} < \frac{1}{H_{n-1}H_n + g(c) - 1}.$$

If n is odd, by (18) and (20) we obtain

$$\frac{1}{H_{n-1}H_n - g(c) + 1} < \sum_{k=n}^{\infty} \frac{1}{H_k^2} < \frac{1}{H_{n-1}H_n - g(c)}.$$

4. The Sum of Reciprocal Jacobsthal Numbers

It would be interesting to find similar results for the sum $\sum_{k=n}^{\infty} U_k^{-1}$, where the sequence $\{U_n\}_n$ is defined by $U_n = aU_{n-1} + bU_{n-2}$ $(n \ge 2)$ with $U_0 = c$ and $U_1 = d$ for arbitrary fixed integers a, b, c and d.

Here, we mention the result for the sum of reciprocal Jacobsthal numbers, defined by $J_n = J_{n-1} + 2J_{n-2}$ $(n \ge 2)$ with $J_0 = 0$ and $J_1 = 1$ (*Cf.* [7, Ch.39]).

Theorem 11. We have

$$\left\lfloor \left(\sum_{k=n}^{\infty} \frac{1}{J_k}\right)^{-1} \right\rfloor = \begin{cases} J_{n-1} - 1 & \text{if } n \text{ is even and } n \ge 2; \\ J_{n-1} & \text{if } n \text{ is odd and } n \ge 1. \end{cases}$$

Acknowledgement. This work was done in part when the first author visited Hirosaki University in 2009. She was also supported by the Grant-in-Aid for Scientific Research (C) (No.18540006), the Japan Society for the Promotion of Science, represented by Takao Komatsu. The authors thank the referee for his/her valuable suggestions.

References

- R. André-Jeannin, Lambert series and the summation of reciprocals in certain Fibonacci-Lucastype sequences, Fibonacci Quart. 28 (1990), 223–226.
- [2] C. Elsner, S. Shimomura and I. Shiokawa, Algebraic relations for reciprocal sums of Fibonacci numbers, Acta Arith. 130 (2007), 37–60.
- [3] C. Elsner, S. Shimomura and I. Shiokawa, Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers, Ramanujan J. 17 (2008), 429–446.
- [4] C. Elsner and S. Shimomura and I. Shiokawa, Algebraic independence results for reciprocal sums of Fibonacci numbers, (preprint), http://www.carstenelsner.de/Abstract48.pdf.
- [5] T. Komatsu, On continued fraction expansions of Fibonacci and Lucas Dirichlet series, Fibonacci Quart. 46/47 (2008/2009), 268–278.
- [6] T. Komatsu, V. Laohakosol and P. Ruengsinsub, Independence measures of arithmetic functions, (preprint).
- [7] T. Koshy, Fibonacci and Lucas numbers with Applications, John Wiley & Sons, New York, 2001.
- [8] L. Navas, Analytic continuation of the Fibonacci Dirichlet series, Fibonacci Quart. 39 (2001), 409–418.
- H. Ohtsuka and S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Quart. 46/47 (2008/2009), 153–159.

- [10] N. J. A. Sloane, (2008), The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com/~njas/sequences/.
- [11] T.-a. Tanaka, Algebraic independence of Fibonacci reciprocal sums associated with Newton's method, Tsukuba J. Math. 27 (2003), 375–387.
- [12] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ, 1996.