Proceedings of Integers Conference 2009

ON THE SUM OF RECIPROCAL GENERALIZED FIBONACCI NUMBERS

Sarah H．Holliday
Dept．of Mathematics，Southern Polytechnic State University，Marietta，Georgia
shollida＠spsu．edu
Takao Komatsu ${ }^{1}$
Graduate School of Science and Technology，Hirosaki University，Hirosaki，Japan
komatsu＠cc．hirosaki－u．ac．jp

Received：8／22／09，Revised：5／27／10，Accepted：6／2／10，Published：3／9／11

Abstract

The Fibonacci Zeta functions are defined by $\zeta_{F}(s)=\sum_{k=1}^{\infty} F_{k}^{-s}$ ．Several aspects of the function have been studied．In this article we generalize the results by Ohtsuka and Nakamura，who treated the partial infinite $\operatorname{sum} \sum_{k=n}^{\infty} F_{k}^{-s}$ for all positive integers n ．

1．Introduction

The so－called Fibonacci and Lucas Zeta functions，defined by

$$
\zeta_{F}(s)=\sum_{n=1}^{\infty} \frac{1}{F_{n}^{s}} \quad \text { and } \quad \zeta_{L}(s)=\sum_{n=1}^{\infty} \frac{1}{L_{n}^{s}}
$$

respectively，have been considered in several different ways．In［8］the analytic continuation of these series is discussed．In［2］it is shown that the numbers $\zeta_{F}(2), \zeta_{F}(4), \zeta_{F}(6)$（respectively，$\left.\zeta_{L}(2), \zeta_{L}(4), \zeta_{L}(6)\right)$ are algebraically independent， and that each of $\zeta_{F}(2 s)$（respectively，$\left.\zeta_{L}(2 s)\right)(s=4,5,6, \ldots)$ can be written as a rational（respectively，algebraic）function of these three numbers over \mathbb{Q} ．Similar results are obtained in［2］for the alternating sums
$\zeta_{F}^{*}(2 s):=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{F_{n}^{2 s}} \quad\left(\right.$ respectively $\left., \zeta_{L}^{*}(2 s):=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{L_{n}^{2 s}}\right) \quad(s=1,2,3, \ldots)$.

[^0]From the main theorem in [4] it follows that for any positive distinct integers s_{1}, s_{2}, s_{3} the numbers $\zeta_{F}\left(2 s_{1}\right), \zeta_{F}\left(2 s_{2}\right)$, and $\zeta_{F}\left(2 s_{3}\right)$ are algebraically independent if and only if at least one of s_{1}, s_{2}, s_{3} is even. Other types of algebraic independence, including the functions

$$
\sum_{n=1}^{\infty} \frac{1}{F_{2 n-1}^{s}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{2 n}^{s}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2 n-1}^{s}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{2 n}^{s}}
$$

are discussed in [6]. In [5] Fibonacci zeta functions and Lucas zeta functions including

$$
\zeta_{F}(1), \zeta_{F}(2), \zeta_{F}(3), \zeta_{F}^{*}(1), \zeta_{L}(1), \zeta_{L}(2), \zeta_{L}^{*}(1)
$$

are expanded as non-regular continued fractions whose components are Fibonacci or Lucas numbers.

In [9] the partial infinite sums of reciprocal Fibonacci numbers were studied. In this paper we shall generalize their results, given in Propositions 1 and 2 below. Here, $\lfloor\cdot\rfloor$ denotes the floor function.

Proposition 1. We have

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{F_{k}}\right)^{-1}\right\rfloor= \begin{cases}F_{n-2} & \text { if } n \text { is even and } n \geq 2 \\ F_{n-2}-1 & \text { if } n \text { is odd and } n \geq 1\end{cases}
$$

Proposition 2. We have

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{F_{k}^{2}}\right)^{-1}\right\rfloor= \begin{cases}F_{n-1} F_{n}-1 & \text { if } n \text { is even and } n \geq 2 \\ F_{n-1} F_{n} & \text { if } n \text { is odd and } n \geq 1\end{cases}
$$

2. Main Results

Let a be a positive integer. Let $\left\{G_{n}\right\}$ be a general Fibonacci sequence defined by $G_{k+2}=a G_{k+1}+G_{k}(k \geq 0)$ with $G_{0}=0$ and $G_{1}=1$.

Theorem 3. We have

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{G_{k}}\right)^{-1}\right\rfloor= \begin{cases}G_{n}-G_{n-1} & \text { if } n \text { is even and } n \geq 2 \\ G_{n}-G_{n-1}-1 & \text { if } n \text { is odd and } n \geq 1\end{cases}
$$

Theorem 4. We have

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{G_{k}^{2}}\right)^{-1}\right\rfloor= \begin{cases}a G_{n-1} G_{n}-1 & \text { if } n \text { is even and } n \geq 2 \\ a G_{n-1} G_{n} & \text { if } n \text { is odd and } n \geq 1\end{cases}
$$

We need some identities in order to prove Theorems 1 and 2.
Lemma 5. For $n \geq 1$, we have
(1) $G_{n}^{2}-G_{n-1} G_{n+1}=(-1)^{n-1}$
(2) $G_{n-1} G_{n+3}-G_{n} G_{n+2}=(-1)^{n}\left(a^{2}+1\right)$
(3) $G_{n} G_{n+2}+G_{n-1} G_{n+1}=G_{2 n+1}$
(4) $G_{n+1} G_{n+2}-G_{n-1} G_{n}=a G_{2 n+1}$.

Proof. Every proof is done by induction and omitted.
Proof of Theorem 3. Using Lemma 5 (1), for $n \geq 1$ we have

$$
\begin{align*}
\frac{1}{G_{n}-G_{n-1}}-\frac{1}{G_{n}} & -\frac{1}{G_{n+1}}-\frac{1}{G_{n+2}-G_{n+1}} \\
& =\frac{G_{n+2}-G_{n+1}-G_{n}+G_{n-1}}{\left(G_{n}-G_{n-1}\right)\left(G_{n+2}-G_{n+1}\right)}-\frac{G_{n+1}+G_{n}}{G_{n} G_{n+1}} \\
& =\frac{G_{n+2}\left(G_{n-1} G_{n+1}-G_{n}^{2}\right)+G_{n-1}\left(G_{n} G_{n+2}-G_{n+1}^{2}\right)}{G_{n} G_{n+1}\left(G_{n}-G_{n-1}\right)\left(G_{n+2}-G_{n+1}\right)} \\
& =\frac{(-1)^{n}\left(G_{n+2}-G_{n-1}\right)}{G_{n} G_{n+1}\left(G_{n}-G_{n-1}\right)\left(G_{n+2}-G_{n+1}\right)} \tag{1}
\end{align*}
$$

If n is even with $n \geq 2$, since the right-hand side of the identity (1) is positive, we get

$$
\begin{equation*}
\frac{1}{G_{n}-G_{n-1}}>\frac{1}{G_{n}}+\frac{1}{G_{n+1}}+\frac{1}{G_{n+2}-G_{n+1}} \tag{2}
\end{equation*}
$$

By applying inequality (2) repeatedly we have

$$
\begin{aligned}
\frac{1}{G_{n}-G_{n-1}} & >\frac{1}{G_{n}}+\frac{1}{G_{n+1}}+\frac{1}{G_{n+2}-G_{n+1}} \\
& >\frac{1}{G_{n}}+\frac{1}{G_{n+1}}+\frac{1}{G_{n+2}}+\frac{1}{G_{n+3}}+\frac{1}{G_{n+4}-G_{n+3}} \\
& >\frac{1}{G_{n}}+\frac{1}{G_{n+1}}+\frac{1}{G_{n+2}}+\frac{1}{G_{n+3}}+\frac{1}{G_{n+4}}+\frac{1}{G_{n+5}}+\cdots
\end{aligned}
$$

Thus, we obtain

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{1}{G_{k}}<\frac{1}{G_{n}-G_{n-1}} \tag{3}
\end{equation*}
$$

In a similar way, if n is odd with $n \geq 1$, then

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{1}{G_{k}}>\frac{1}{G_{n}-G_{n-1}} \tag{4}
\end{equation*}
$$

On the other hand, if n is even with $n \geq 2$, then by Lemma 5 , parts (1) and (4)

$$
\begin{aligned}
\frac{1}{G_{n}-} G_{n-1}+1 & \frac{1}{G_{n}}-\frac{1}{G_{n+1}}-\frac{1}{G_{n+2}-G_{n+1}+1} \\
& =-\frac{2(-1)^{n-1}+(-1)^{n-1} G_{n+2}+(-1)^{n} G_{n-1}+a G_{2 n+1}+G_{n}+G_{n+1}}{G_{n} G_{n+1}\left(G_{n}-G_{n-1}+1\right)\left(G_{n+2}-G_{n+1}+1\right)} \\
& =-\frac{\left(a G_{2 n+1}-G_{n+2}\right)+\left(G_{n-1}+G_{n}+G_{n+1}-2\right)}{G_{n} G_{n+1}\left(G_{n}-G_{n-1}+1\right)\left(G_{n+2}-G_{n+1}+1\right)}<0 .
\end{aligned}
$$

Hence, by applying the inequality

$$
\frac{1}{G_{n}-G_{n-1}+1}<\frac{1}{G_{n}}+\frac{1}{G_{n+1}}+\frac{1}{G_{n+2}-G_{n+1}+1}
$$

repeatedly, we obtain

$$
\begin{aligned}
\frac{1}{G_{n}-G_{n-1}+1} & <\frac{1}{G_{n}}+\frac{1}{G_{n+1}}+\frac{1}{G_{n+2}-G_{n+1}+1} \\
& <\frac{1}{G_{n}}+\frac{1}{G_{n+1}}+\frac{1}{G_{n+2}}+\frac{1}{G_{n+3}}+\frac{1}{G_{n+4}-G_{n+3}+1} \\
& <\frac{1}{G_{n}}+\frac{1}{G_{n+1}}+\frac{1}{G_{n+2}}+\frac{1}{G_{n+3}}+\frac{1}{G_{n+4}}+\frac{1}{G_{n+5}}+\cdots
\end{aligned}
$$

Thus,

$$
\frac{1}{G_{n}-G_{n-1}+1}<\sum_{k=n}^{\infty} \frac{1}{G_{k}}
$$

Together with (3) we have

$$
\frac{1}{G_{n}-G_{n-1}+1}<\sum_{k=n}^{\infty} \frac{1}{G_{k}}<\frac{1}{G_{n}-G_{n-1}}
$$

so

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{G_{k}}\right)^{-1}\right\rfloor=G_{n}-G_{n-1}
$$

In a similar manner, if n is odd with $n \geq 1$, then

$$
\begin{aligned}
& \frac{1}{G_{n}-G_{n-1}-1}-\frac{1}{G_{n}}-\frac{1}{G_{n+1}}-\frac{1}{G_{n+2}-G_{n+1}-1} \\
& \quad=\frac{2(-1)^{n-1}+(-1)^{n} G_{n+2}+(-1)^{n-1} G_{n-1}+a G_{2 n+1}-G_{n}-G_{n+1}}{G_{n} G_{n+1}\left(G_{n}-G_{n-1}-1\right)\left(G_{n+2}-G_{n+1}-1\right)} \\
& \quad=\frac{a G_{n+1}\left(G_{n+1}-1\right)+G_{n}\left(a G_{n}-a-2\right)+2}{G_{n} G_{n+1}\left(G_{n}-G_{n-1}-1\right)\left(G_{n+2}-G_{n+1}-1\right)} \geq 0
\end{aligned}
$$

where the equality holds only for $n=a=1$. Hence,

$$
\frac{1}{G_{n}-G_{n-1}-1}>\sum_{k=n}^{\infty} \frac{1}{G_{k}}
$$

Together with (4) we have

$$
\frac{1}{G_{n}-G_{n-1}}<\sum_{k=n}^{\infty} \frac{1}{G_{k}}<\frac{1}{G_{n}-G_{n-1}-1}
$$

so

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{G_{k}}\right)^{-1}\right\rfloor=G_{n}-G_{n-1}-1
$$

Proof of Theorem 4. By Lemma 5(1)

$$
\begin{aligned}
\frac{1}{a G_{n-1} G_{n}-1}-\frac{1}{G_{n}^{2}}-\frac{1}{a G_{n} G_{n+1}-1} & =\frac{a\left(G_{n} G_{n+1}-G_{n-1} G_{n}\right)}{\left(a G_{n-1} G_{n}-1\right)\left(a G_{n} G_{n+1}-1\right)}-\frac{1}{G_{n}^{2}} \\
& =\frac{a^{2} G_{n}^{4}-\left(a G_{n-1} G_{n}-1\right)\left(a G_{n} G_{n+1}-1\right)}{G_{n}^{2}\left(a G_{n-1} G_{n}-1\right)\left(a G_{n} G_{n+1}-1\right)} \\
& =\frac{a^{2} G_{n}^{2}(-1)^{n-1}+a G_{n}\left(G_{n-1}+G_{n+1}\right)-1}{G_{n}^{2}\left(a G_{n-1} G_{n}-1\right)\left(a G_{n} G_{n+1}-1\right)} \\
& \geq \frac{2 a G_{n-1} G_{n}-1}{G_{n}^{2}\left(a G_{n-1} G_{n}-1\right)\left(a G_{n} G_{n+1}-1\right)} \\
& >0
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{1}{a G_{n-1} G_{n}-1} & >\frac{1}{G_{n}^{2}}+\frac{1}{a G_{n} G_{n+1}-1} \\
& >\frac{1}{G_{n}^{2}}+\frac{1}{G_{n+1}^{2}}+\frac{1}{a G_{n+1} G_{n+2}-1} \\
& >\quad \vdots \\
& >\frac{1}{G_{n}^{2}}+\frac{1}{G_{n+1}^{2}}+\frac{1}{G_{n+2}^{2}}+\frac{1}{G_{n+3}^{2}}+\cdots
\end{aligned}
$$

Thus, we have

$$
\begin{equation*}
\frac{1}{a G_{n-1} G_{n}-1}>\sum_{k=n}^{\infty} \frac{1}{G_{k}^{2}} \tag{5}
\end{equation*}
$$

In a similar way,

$$
\frac{1}{a G_{n-1} G_{n}+1}-\frac{1}{G_{n}^{2}}-\frac{1}{a G_{n} G_{n+1}+1} \leq-\frac{2 a G_{n-1} G_{n}+1}{G_{n}^{2}\left(a G_{n-1} G_{n}+1\right)\left(a G_{n} G_{n+1}+1\right)}<0
$$

Thus, we have

$$
\begin{equation*}
\frac{1}{a G_{n-1} G_{n}+1}<\sum_{k=n}^{\infty} \frac{1}{G_{k}^{2}} \tag{6}
\end{equation*}
$$

On the other hand, by Lemma 5(1) and (3),

$$
\begin{aligned}
& \frac{1}{a G_{n-1} G_{n}}-\frac{1}{G_{n}^{2}}-\frac{1}{G_{n+1}^{2}}-\frac{1}{a G_{n+1} G_{n+2}} \\
&=\frac{G_{n-2}}{a G_{n-1} G_{n}^{2}}-\frac{G_{n+3}}{a G_{n+1}^{2} G_{n+2}} \\
&=\frac{G_{n-2} G_{n+1}^{2} G_{n+2}-G_{n-1} G_{n}^{2} G_{n+3}}{a G_{n-1} G_{n}^{2} G_{n+1}^{2} G_{n+2}} \\
&=\frac{a^{2}\left(G_{n}^{2}-G_{n-1} G_{n+1}\right)\left(G_{n} G_{n+2}+G_{n-1} G_{n+1}\right)}{a G_{n-1} G_{n}^{2} G_{n+1}^{2} G_{n+2}} \\
&=\frac{a(-1)^{n-1} G_{2 n+1}}{G_{n-1} G_{n}^{2} G_{n+1}^{2} G_{n+2}}
\end{aligned}
$$

If n is even with $n \geq 2$, then

$$
\begin{aligned}
\frac{1}{a G_{n-1} G_{n}} & <\frac{1}{G_{n}^{2}}+\frac{1}{G_{n+1}^{2}}+\frac{1}{a G_{n+1} G_{n+2}} \\
& <\frac{1}{G_{n}^{2}}+\frac{1}{G_{n+1}^{2}}+\frac{1}{G_{n+2}^{2}}+\frac{1}{G_{n+3}^{2}}+\frac{1}{a G_{n+3} G_{n+4}} \\
& <\quad \quad \vdots \\
& <\frac{1}{G_{n}^{2}}+\frac{1}{G_{n+1}^{2}}+\frac{1}{G_{n+2}^{2}}+\frac{1}{G_{n+3}^{2}}+\frac{1}{G_{n+4}^{2}}+\frac{1}{G_{n+5}^{2}}+\cdots
\end{aligned}
$$

Hence, we have

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{1}{G_{k}^{2}}>\frac{1}{a G_{n-1} G_{n}} \tag{7}
\end{equation*}
$$

Similarly, if n is odd with $n \geq 1$, then

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{1}{G_{k}^{2}}<\frac{1}{a G_{n-1} G_{n}} \tag{8}
\end{equation*}
$$

If n is even with $n \geq 2$, then by equations (5) and (7) we obtain

$$
a G_{n-1} G_{n}-1<\left(\sum_{k=n}^{\infty} \frac{1}{G_{k}^{2}}\right)^{-1}<a G_{n-1} G_{n}
$$

Thus,

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{G_{k}^{2}}\right)^{-1}\right\rfloor=a G_{n-1} G_{n}-1
$$

If n is odd with $n \geq 1$, then by equations (6) and (8) we obtain

$$
a G_{n-1} G_{n}<\left(\sum_{k=n}^{\infty} \frac{1}{G_{k}^{2}}\right)^{-1}<a G_{n-1} G_{n}+1
$$

Thus,

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{G_{k}^{2}}\right)^{-1}\right\rfloor=a G_{n-1} G_{n}
$$

The following results are proved in similar manners. Such reciprocal sums of Fibonacci-type numbers have been studied by several authors (e.g. [1], [3], [6], [11]).

Theorem 6. We have

$$
\begin{align*}
& \left|\left(\sum_{k=n}^{\infty} \frac{1}{G_{2 k}}\right)^{-1}\right|=G_{2 n}-G_{2 n-2}-1 \quad(n \geq 1) \tag{1}\\
& \left.\left\lvert\,\left(\sum_{k=n}^{\infty} \frac{1}{G_{2 k-1}}\right)^{-1}\right.\right\rfloor=G_{2 n-1}-G_{2 n-3} \quad(n \geq 2) \tag{2}\\
& \left.\left\lvert\,\left(\sum_{k=n}^{\infty} \frac{1}{G_{2 k-1} G_{2 k+1}}\right)^{-1}\right.\right\rfloor=G_{4 n-1}-G_{4 n-3} \quad(n \geq 1) \tag{3}\\
& \left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{G_{2 k} G_{2 k+2}}\right)^{-1}\right\rfloor=G_{4 n+1}-G_{4 n-1}-1 \quad(n \geq 1) \tag{4}\\
& \left\lfloor\left.\left(\sum_{k=n}^{\infty} \frac{1}{G_{2 k}^{2}}\right)^{-1} \right\rvert\,=G_{4 n-1}-G_{4 n-3}-1 \quad(n \geq 1)\right. \tag{5}\\
& \left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{G_{2 k-1}^{2}}\right)^{-1}\right]^{-1}=G_{4 n-3}-G_{4 n-5} \quad(n \geq 2) \tag{6}\\
& \left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{G_{2 k-1} G_{2 k}}\right)^{-1}\right\rfloor=G_{4 n-2}-G_{4 n-4} \quad(n \geq 1) . \tag{7}
\end{align*}
$$

3. Generalized Fibonacci Numbers

Let c be a non-negative integer. Let $\left\{H_{n}\right\}$ be a generalized Fibonacci sequence defined by $H_{k+2}=H_{k+1}+H_{k}(k \geq 0)$ with $H_{0}=c$ and $H_{1}=1$.

Note that $H_{n}=F_{n+1}$ if $c=1$, and $H_{n}=L_{n}$ (Lucas numbers) if $c=2$ ([7, Corollary 5.5 (5.14)]).

The sequence H_{n} can be defined also as the total number of matchings in the connected planar graph on n vertices with $n-2+c$ total edges, of which $c-1$ edges are between one pair of vertices. The $c=1$ and $c=2$ cases are stated in [10, A45 and A204], and the proof for $c>2$ is a inductive counting argument. An similar result for the Fibonacci type sequence $G_{k+2}=a G_{k+1}+G_{k}, G_{0}=0, G_{1}=1$ can be generated by counting the total matchings in a path (as defined in [12] on $k-1$ vertices with a loops at each vertex.

Theorem 7. We have

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{H_{k}}\right)^{-1}\right\rfloor= \begin{cases}H_{n-2}-1 & \text { if } n \text { is even and } n \geq n_{0} \\ H_{n-2} & \text { if } n \text { is odd and } n \geq n_{1}\end{cases}
$$

Remark. n_{0} and n_{1} are determined depending only on the value of c. For example, if $H_{k}=L_{k}$ (Lucas number) or $c=2$, then $n_{0}=2$ and $n_{1}=3$.
Precisely speaking, $n_{0}=2$ if $c=1,2 ; n_{0}=4$ if $c \leq 4 ; n_{0}=6$ if $c \leq 10 ; n_{0}=8$ if $c \leq 26 ; n_{0}=10$ if $c \leq 68 ; n_{0}=12$ if $c \leq 178 ; n_{0}=14$ if $c \leq 466 ; n_{0}=16$ if $c \leq 1220 ; n_{0}=18$ if $c \leq 3194 ; n_{0}=20$ if $c \leq 8362$.
Similarly, $n_{1}=1$ if $c=1 ; n_{1}=3$ if $c=2 ; n_{1}=5$ if $c \leq 6 ; n_{1}=7$ if $c \leq 16 ; n_{1}=9$ if $c \leq 42 ; n_{1}=11$ if $c \leq 110 ; n_{1}=13$ if $c \leq 288 ; n_{1}=15$ if $c \leq 754 ; n_{1}=17$ if $c \leq 1974 ; n_{1}=19$ if $c \leq 5168$.

Theorem 8. We have

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{H_{k}^{2}}\right)^{-1}\right\rfloor= \begin{cases}H_{n-1} H_{n}+g(c)-1 & \text { if } n \text { is even and } n \geq n_{2} \\ H_{n-1} H_{n}-g(c) & \text { if } n \text { is odd and } n \geq n_{3}\end{cases}
$$

where

$$
g(c)= \begin{cases}\frac{c(c+1)}{3} & \text { if } c \equiv 0,2 \quad(\bmod 3) \\ \frac{c(c+1)+1}{3} & \text { if } c \equiv 1 \quad(\bmod 3)\end{cases}
$$

Remark. Note that $g(c)$ is an integer. If $H_{k}=L_{k}$, then we take $n_{2}=2$ and $n_{3}=1$. Precisely speaking, we can determine n_{2} and n_{3} as follows:

c	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
20																			
n_{2}	2	2	4	4	4	6	4	6	6	6	6	6	6	6	8	6	8	8	6
n_{3}	1	1	3	5	3	5	5	5	5	7	5	5	7	7	7	7	7	7	7

We need some lemmata in order to prove Theorems 7 and 8. Every proof of the lemmata is done by induction and omitted.

Lemma 9. For $n \geq 1, H_{n}=c F_{n-1}+F_{n}$.
Lemma 10. We have
(1) $H_{n}^{2}-H_{n-1} H_{n+1}=H_{n} H_{n+1}-H_{n-1} H_{n+2}=(-1)^{n}\left(c^{2}+c-1\right)$
(2) $H_{n-1} H_{n+1}-H_{n-2} H_{n+2}=(-1)^{n-1} 2\left(c^{2}+c-1\right)$
(3) $H_{n+4} H_{n}-H_{n+2} H_{n-2}=H_{n+1}\left(H_{n+3}-H_{n-1}\right)$
(4) $H_{n+1} H_{n+2}-H_{n-1} H_{n}=H_{n}^{2}+H_{n+1}^{2}=c H_{2 n}+H_{2 n+1}$.

Proof of Theorem 7. By Lemma 10 (2)

$$
\begin{aligned}
\frac{1}{H_{n-2}}-\frac{2}{H_{n}}-\frac{1}{H_{n+1}} & =\frac{\left(H_{n}-H_{n-2}\right) H_{n+1}-H_{n-2}\left(H_{n}+H_{n+1}\right)}{H_{n-2} H_{n} H_{n+1}} \\
& =\frac{H_{n-1} H_{n+1}-H_{n-2} H_{n+2}}{H_{n-2} H_{n} H_{n+1}} \\
& =\frac{(-1)^{n-1} 2\left(c^{2}+c-1\right)}{H_{n-2} H_{n} H_{n+1}}
\end{aligned}
$$

Hence, if $c \geq 1$ and n is even, then by

$$
\begin{aligned}
\frac{1}{H_{n-2}} & <\frac{1}{H_{n}}+\frac{1}{H_{n+1}}+\frac{1}{H_{n}} \\
& <\frac{1}{H_{n}}+\frac{1}{H_{n+1}}+\frac{1}{H_{n+2}}+\frac{1}{H_{n+3}}+\frac{1}{H_{n+2}} \\
& <\frac{1}{H_{n}}+\frac{1}{H_{n+1}}+\frac{1}{H_{n+2}}+\frac{1}{H_{n+3}}+\frac{1}{H_{n+4}}+\frac{1}{H_{n+5}}+\cdots
\end{aligned}
$$

we have

$$
\begin{equation*}
\frac{1}{H_{n-2}}<\sum_{k=n}^{\infty} \frac{1}{H_{k}} \tag{9}
\end{equation*}
$$

In a similar manner, if $c \geq 1$ and n is odd, then

$$
\begin{equation*}
\frac{1}{H_{n-2}}>\sum_{k=n}^{\infty} \frac{1}{H_{k}} \tag{10}
\end{equation*}
$$

On the other hand, if n is even, then by Lemma 10 (2)

$$
\begin{align*}
\frac{1}{H_{n-2}-1}-\frac{1}{H_{n}}-\frac{1}{H_{n+1}} & -\frac{1}{H_{n}-1} \tag{11}\\
& =\frac{(-1)^{n-1} 2\left(c^{2}+c-1\right) H_{n}+H_{n+2}\left(H_{n-2}+H_{n}-1\right)}{H_{n} H_{n+1}\left(H_{n-2}-1\right)\left(H_{n}-1\right)} \\
& =\frac{-2\left(c^{2}+c-1\right) H_{n}+H_{n+2}\left(H_{n-2}+H_{n}-1\right)}{H_{n} H_{n+1}\left(H_{n-2}-1\right)\left(H_{n}-1\right)} \tag{12}
\end{align*}
$$

The numerator is positive if n is large enough for a fixed c. For example, one can take n so that $H_{n+2}>2\left(c^{2}+c-1\right)$ since H_{n} is monotone increasing for n. Exactly
speaking, if $c=1$, then the right-hand side of (12) is positive for $n \geq 2$. If $2 \leq c \leq 4$, then $n \geq 4$. If $5 \leq c \leq 9$, then $n \geq 6$. If $10 \leq c \leq 24$, then $n \geq 8$. If $25 \leq c \leq 62$, then $n \geq 10$. If $63 \leq c \leq 161$, then $n \geq 12$. If $162 \leq c \leq 422$, then $n \geq 14$. If $423 \leq c \leq 1104$, then $n \geq 16$.

If n is odd, then

$$
\begin{gather*}
\frac{1}{H_{n-2}+1}-\frac{1}{H_{n}}-\frac{1}{H_{n+1}}-\frac{1}{H_{n}+1} \tag{13}\\
=\frac{(-1)^{n-1} 2\left(c^{2}+c-1\right) H_{n}-H_{n+2}\left(H_{n-2}+H_{n}+1\right)}{H_{n} H_{n+1}\left(H_{n-2}+1\right)\left(H_{n}+1\right)} \\
=\frac{2\left(c^{2}+c-1\right) H_{n}-1 H_{n+2}\left(H_{n-2}+H_{n}+1\right)}{H_{n} H_{n+1}\left(H_{n-2}+1\right)\left(H_{n}+1\right)} \tag{14}
\end{gather*}
$$

The numerator is negative if n is large enough for a fixed c. For example, if $c=1$, then the right-hand side of (14) is negative for $n \geq 1$. If $c=2$, then $n \geq 3$. If $3 \leq c \leq 6$, then $n \geq 5$. If $7 \leq c \leq 15$, then $n \geq 7$. If $16 \leq c \leq 38$, then $n \geq 9$. If $39 \leq c \leq 100$, then $n \geq 11$. If $101 \leq c \leq 261$, then $n \geq 13$. If $262 \leq c \leq 682$, then $n \geq 15$.

When n is even, repeating the inequality

$$
\frac{1}{H_{n-2}-1}-\frac{1}{H_{n}}-\frac{1}{H_{n+1}}-\frac{1}{H_{n}-1}>0
$$

we have

$$
\begin{equation*}
\frac{1}{H_{n-2}-1}>\sum_{k=n}^{\infty} \frac{1}{H_{k}} \tag{15}
\end{equation*}
$$

Together with (9), we obtain

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{H_{k}}\right)^{-1}\right\rfloor=H_{n-2}-1
$$

When n is odd, repeating the inequality

$$
\frac{1}{H_{n-2}+1}-\frac{1}{H_{n}}-\frac{1}{H_{n+1}}-\frac{1}{H_{n}+1}<0
$$

we have

$$
\begin{equation*}
\frac{1}{H_{n-2}+1}<\sum_{k=n}^{\infty} \frac{1}{H_{k}} \tag{16}
\end{equation*}
$$

Together with (10), we obtain

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{H_{k}}\right)^{-1}\right\rfloor=H_{n-2}
$$

Proof of Theorem 8. By Lemma 10 (1)

$$
\begin{aligned}
& \frac{1}{H_{n-1} H_{n}+(-1)^{n} g(c)-1}-\frac{1}{H_{n}^{2}}-\frac{1}{H_{n} H_{n+1}+(-1)^{n+1} g(c)-1} \\
&=\frac{H_{n}^{2}+(-1)^{n+1} 2 g(c)}{\left(H_{n-1} H_{n}+(-1)^{n} g(c)-1\right)\left(H_{n} H_{n+1}+(-1)^{n+1} g(c)-1\right)}-\frac{1}{H_{n}^{2}} \\
& \quad=\frac{(-1)^{n}\left(c^{2}+c-1-3 g(c)\right) H_{n}^{2}+(g(c))^{2}+H_{n}\left(H_{n+1}+H_{n-1}\right)-1}{H_{n}^{2}\left(H_{n-1} H_{n}+(-1)^{n} g(c)-1\right)\left(H_{n} H_{n+1}+(-1)^{n+1} g(c)-1\right)}
\end{aligned}
$$

Suppose that n is even with $n \geq 2$. Then the numerator is

$$
\begin{aligned}
\left(c^{2}+c-3 g(c)-1\right) H_{n}^{2}+(g(c))^{2}+H_{n} & \left(H_{n+1}+H_{n-1}-1\right) \\
\geq & H_{n}\left(H_{n-1}-H_{n-2}\right)+(g(c))^{2}-1 \geq 0
\end{aligned}
$$

(the equalities hold only for $n=2$ and $c=1$). Suppose that n is odd with $n \geq 1$. Then the numerator is

$$
\begin{aligned}
\left(3 g(c)-c^{2}-c+1\right) H_{n}^{2}+(g(c))^{2} & +H_{n}\left(H_{n+1}+H_{n-1}-1\right) \\
& \geq H_{n}^{2}+H_{n}\left(H_{n+1}+H_{n-1}\right)+(g(c))^{2}-1>0
\end{aligned}
$$

Therefore, for all $n \geq 1$

$$
\begin{equation*}
\frac{1}{H_{n-1} H_{n}+(-1)^{n} g(c)-1}>\sum_{k=n}^{\infty} \frac{1}{H_{k}^{2}} \tag{17}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
& \frac{1}{H_{n-1} H_{n}+(-1)^{n} g(c)+1}-\frac{1}{H_{n}^{2}}-\frac{1}{H_{n} H_{n+1}+(-1)^{n+1} g(c)+1} \\
&=\frac{H_{n}^{2}+(-1)^{n+1} 2 g(c)}{\left(H_{n-1} H_{n}+(-1)^{n} g(c)-1\right)\left(H_{n} H_{n+1}+(-1)^{n+1} g(c)-1\right)}-\frac{1}{H_{n}^{2}} \\
& \quad=\frac{(-1)^{n}\left(c^{2}+c-1-3 g(c)\right) H_{n}^{2}+(g(c))^{2}-H_{n}\left(H_{n+1}+H_{n-1}\right)-1}{H_{n}^{2}\left(H_{n-1} H_{n}+(-1)^{n} g(c)+1\right)\left(H_{n} H_{n+1}+(-1)^{n+1} g(c)+1\right)}
\end{aligned}
$$

If n is even, then the numerator is less than or equal to

$$
-H_{n}\left(H_{n+1}+H_{n}+H_{n-1}\right)+(g(c))^{2}-1
$$

If n is odd, then the numerator is less than or equal to

$$
-H_{n}\left(H_{n-1}-H_{n-2}\right)+(g(c))^{2}-1
$$

Thus, in any case, for $n \geq n_{5}$ (n_{5} is large) both values are negative. Therefore,

$$
\begin{equation*}
\frac{1}{H_{n-1} H_{n}+(-1)^{n} g(c)+1}<\sum_{k=n}^{\infty} \frac{1}{H_{k}^{2}} \tag{18}
\end{equation*}
$$

By Lemma 10, parts (1) and (4)

$$
\begin{aligned}
& \frac{1}{H_{n-1} H_{n}+(-1)^{n} g(c)}-\frac{1}{H_{n}^{2}}-\frac{1}{H_{n+1}^{2}}-\frac{1}{H_{n+1} H_{n+2}+(-1)^{n} g(c)} \\
& =\frac{H_{n+1} H_{n+2}-H_{n-1} H_{n}}{\left(H_{n-1} H_{n}+(-1)^{n} g(c)\right)\left(H_{n+1} H_{n+2}+(-1)^{n} g(c)\right)}-\frac{H_{n}^{2}+H_{n+1}^{2}}{H_{n}^{2} H_{n+1}^{2}} \\
& =\frac{\left(c H_{2 n}+H_{2 n+1}\right)\left((-1)^{n}\left(c^{2}+c-1\right) H_{n} H_{n+1}\right.}{\left(H_{n-1} H_{n}+(-1)^{n} g(c)\right)\left(H_{n+1} H_{n+2}+(-1)^{n} g(c)\right) H_{n}^{2} H_{n+1}^{2}} \\
& \quad+\frac{\left.(-1)^{n+1} g(c)\left(H_{n+1} H_{n+2}+H_{n-1} H_{n}\right)-(g(c))^{2}\right)}{\left(H_{n-1} H_{n}+(-1)^{n} g(c)\right)\left(H_{n+1} H_{n+2}+(-1)^{n} g(c)\right) H_{n}^{2} H_{n+1}^{2}}
\end{aligned}
$$

Hence, if n is even with $n \geq n_{6}$ (large), then by

$$
\left(c^{2}+c-1\right) H_{n} H_{n+1}-g(c)\left(H_{n+1} H_{n+2}+H_{n-1} H_{n}\right)-(g(c))^{2}<0
$$

we have

$$
\begin{equation*}
\frac{1}{H_{n-1} H_{n}+g(c)}<\sum_{k=n}^{\infty} \frac{1}{H_{k}^{2}} \tag{19}
\end{equation*}
$$

If n is odd with $n \geq n_{7}$ (large), then by

$$
-\left(c^{2}+c-1\right) H_{n} H_{n+1}+g(c)\left(H_{n+1} H_{n+2}+H_{n-1} H_{n}\right)-(g(c))^{2}>0
$$

we have

$$
\begin{equation*}
\frac{1}{H_{n-1} H_{n}-g(c)}>\sum_{k=n}^{\infty} \frac{1}{H_{k}^{2}} \tag{20}
\end{equation*}
$$

In conclusion, if n is even, by (17) and (19) we obtain

$$
\frac{1}{H_{n-1} H_{n}+g(c)}<\sum_{k=n}^{\infty} \frac{1}{H_{k}^{2}}<\frac{1}{H_{n-1} H_{n}+g(c)-1}
$$

If n is odd, by (18) and (20) we obtain

$$
\frac{1}{H_{n-1} H_{n}-g(c)+1}<\sum_{k=n}^{\infty} \frac{1}{H_{k}^{2}}<\frac{1}{H_{n-1} H_{n}-g(c)}
$$

4. The Sum of Reciprocal Jacobsthal Numbers

It would be interesting to find similar results for the sum $\sum_{k=n}^{\infty} U_{k}^{-1}$, where the sequence $\left\{U_{n}\right\}_{n}$ is defined by $U_{n}=a U_{n-1}+b U_{n-2}(n \geq 2)$ with $U_{0}=c$ and $U_{1}=d$ for arbitrary fixed integers a, b, c and d.

Here, we mention the result for the sum of reciprocal Jacobsthal numbers, defined by $J_{n}=J_{n-1}+2 J_{n-2}(n \geq 2)$ with $J_{0}=0$ and $J_{1}=1$ (Cf. [7, Ch.39]).

Theorem 11. We have

$$
\left\lfloor\left(\sum_{k=n}^{\infty} \frac{1}{J_{k}}\right)^{-1}\right\rfloor= \begin{cases}J_{n-1}-1 & \text { if } n \text { is even and } n \geq 2 \\ J_{n-1} & \text { if } n \text { is odd and } n \geq 1\end{cases}
$$

Acknowledgement. This work was done in part when the first author visited Hirosaki University in 2009. She was also supported by the Grant-in-Aid for Scientific Research (C) (No.18540006), the Japan Society for the Promotion of Science, represented by Takao Komatsu. The authors thank the referee for his/her valuable suggestions.

References

[1] R. André-Jeannin, Lambert series and the summation of reciprocals in certain FibonacciLucastype sequences, Fibonacci Quart. 28 (1990), 223-226.
[2] C. Elsner, S. Shimomura and I. Shiokawa, Algebraic relations for reciprocal sums of Fibonacci numbers, Acta Arith. 130 (2007), 37-60.
[3] C. Elsner, S. Shimomura and I. Shiokawa, Algebraic relations for reciprocal sums of odd terms in Fibonacci numbers, Ramanujan J. 17 (2008), 429-446.
[4] C. Elsner and S. Shimomura and I. Shiokawa, Algebraic independence results for reciprocal sums of Fibonacci numbers, (preprint), http://www.carstenelsner.de/Abstract48.pdf.
[5] T. Komatsu, On continued fraction expansions of Fibonacci and Lucas Dirichlet series, Fibonacci Quart. 46/47 (2008/2009), 268-278.
[6] T. Komatsu, V. Laohakosol and P. Ruengsinsub, Independence measures of arithmetic functions, (preprint).
[7] T. Koshy, Fibonacci and Lucas numbers with Applications, John Wiley \& Sons, New York, 2001.
[8] L. Navas, Analytic continuation of the Fibonacci Dirichlet series, Fibonacci Quart. 39 (2001), 409-418.
[9] H. Ohtsuka and S. Nakamura, On the sum of reciprocal Fibonacci numbers, Fibonacci Quart. 46/47 (2008/2009), 153-159.
[10] N. J. A. Sloane, (2008), The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com/ $\sim n j a s /$ sequences $/$.
[11] T.-a. Tanaka, Algebraic independence of Fibonacci reciprocal sums associated with Newton's method, Tsukuba J. Math. 27 (2003), 375-387.
[12] D. B. West, Introduction to Graph Theory, Prentice-Hall, Upper Saddle River, NJ, 1996.

[^0]: ${ }^{1}$ Supported in part by the Grant－in－Aid for Scientific Research（C）（No．18540006），the Japan Society for the Promotion of Science．

