Delannoy numbers and a combinatorial proof of the orthogonality of the Jacobi polynomials with natural number parameters

Gábor Hetyei
Department of Mathematics and Statistics
UNC Charlotte
http://www.math.uncc.edu/~ghetyei

Delannoy numbers

$d_{i, j}:=$	i	0	1	2	3	4
	0	1	1	1	1	1
	1	1	3	5	7	9
	2	1	5	13	25	41
	3	1	7	25	63	129
	4	1	9	41	129	321

They count the number of lattice paths from $(0,0)$ to (m, n) using only steps $(1,0),(0,1)$, and $(1,1)$. $\Rightarrow d_{n, n}=\sum_{j=0}^{n}\binom{n}{j}\binom{n+j}{j}$.
(Defined by Henri Delannoy (1895), Sulanke has ≥ 29 interpretations.)

A mysterious relation with the Legendre polynomials

Good (1958), Lawden (1952), Moser and Zayachkowski (1963) observed that

$$
d_{n, n}=P_{n}(3),
$$

where $P_{n}(x)$ is the n-th Legendre polynomial.
There has been a consensus that this link is not very relevant.

Banderier and Schwer (2004): "there is no "natural" correspondence between Legendre polynomials and these lattice paths."

Sulanke (2003): "the definition of Legendre polynomials does not appear to foster any combinatorial interpretation leading to enumeration".

Jacobi and Legendre polynomials

Usual definition of the Jacobi polynomial $P_{n}^{(\alpha, \beta)}(x)$:

$$
\begin{aligned}
P_{n}^{(\alpha, \beta)}(x)= & (-2)^{-n}(n!)^{-1}(1-x)^{-\alpha}(1+x)^{-\beta} \\
& \frac{d^{n}}{d x^{n}}\left((1-x)^{n+\alpha}(1+x)^{n+\beta}\right)
\end{aligned}
$$

$\alpha, \beta>-1$ "for integrability purposes", $\alpha=\beta=0$ gives Legendre.

The formula below extends to all $\alpha, \beta \in \mathbb{C}$ (see Szegő (4.21.2)):

$$
P_{n}^{(\alpha, \beta)}(x)=\sum_{j}\binom{n+\alpha+\beta+j}{j}\binom{n+\alpha}{n-j}\left(\frac{x-1}{2}\right)^{j} .
$$

Substitute $\alpha=\beta=0$:

$$
P_{n}^{(0,0)}(x)=\sum_{j}\binom{n+j}{j}\binom{n}{j}\left(\frac{x-1}{2}\right)^{j}
$$

is the n-th Legendre polynomial.

Properties of Jacobi polynomials

For $\alpha, \beta>-1$ the Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$ form an orthogonal basis with respect to the inner product

$$
\langle f, g\rangle:=\int_{-1}^{1} f(x) \cdot g(x) \cdot(1-x)^{\alpha}(1+x)^{\beta} d x .
$$

"Swapping rule:"

$$
(-1)^{n} P_{n}^{(\alpha, \beta)}(-x)=P_{n}^{(\beta, \alpha)}(x),
$$

$\widetilde{d}_{m, n}$ is the number of lattice paths from $(0,0)$ to ($m, n+1$) having steps $(x, y) \in \mathbb{N} \times \mathbb{P}$.
(Variant of A049600 in the On-Line Encyclopedia of Integer Sequences.)

Lemma 1 The asymmetric Delannoy numbers satisfy

$$
\widetilde{d}_{m, n}=\sum_{j=0}^{n}\binom{n}{j}\binom{m+j}{j}
$$

Proof: We are enumerating sequences $(0,0)=$ $\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{j}, y_{j}\right),\left(x_{j+1}, y_{j+1}\right)=(m, n+1)$, where $0 \leq j \leq n, 0=x_{0} \leq x_{1} \leq \cdots \leq x_{j} \leq x_{j+1}=m$, and $0=y_{0}<y_{1}<\cdots<y_{j}<y_{j+1}=n+1$. For a given j there are $\binom{m+j}{j}$ ways to choose $0=x_{0} \leq x_{1} \leq \cdots \leq x_{j} \leq x_{j+1}=m$ and $\binom{n}{j}$ ways to choose $0=y_{0}<y_{1}<\cdots<y_{j}<y_{j+1}=n+1$.

Since

$$
P_{n}^{(0, \beta)}(x)=\sum_{j}\binom{n+\beta+j}{j}\binom{n}{j}\left(\frac{x-1}{2}\right)^{j}
$$

we get

$$
\widetilde{d}_{n+\beta, n}=P_{n}^{(0, \beta)}(3) \quad \text { for } m \geq n
$$

because $\frac{3-1}{2}=1$.

Shifted Jacobi and Legendre polynomials

Shifted Legendre polynomials appear even in Abramowitz-Stegun:

$$
\widetilde{P}_{n}(x):=P_{n}(2 x-1) .
$$

Shifted Jacobi polynomials seem to be less widely used:

$$
\widetilde{P}_{n}^{(\alpha, \beta)}(x):=P_{n}^{(\alpha, \beta)}(2 x-1) .
$$

Well-known:

$$
\begin{aligned}
\widetilde{P}_{n}(x) & =\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\binom{n+k}{n} x^{k} \\
& =\sum_{k=0}^{n}(-1)^{n-k}\binom{n+k}{n-k}\binom{2 k}{k} x^{k} .
\end{aligned}
$$

Generalization for shifted Jacobi polynomials $(\alpha \in \mathbb{N}$, $\beta \in \mathbb{C})$:

$$
\begin{aligned}
(x-1)^{\alpha} \widetilde{P}_{n}^{(\alpha, \beta)}(x) & =\sum_{k=0}^{n+\alpha}(-1)^{n+\alpha-k} x^{k}\binom{n+\alpha}{k}\binom{n+\beta+k}{n} . \\
\Rightarrow \widetilde{P}_{n}^{(0, \beta)}(x) & =\sum_{k=0}^{n}(-1)^{n-k} x^{k}\binom{n}{k}\binom{n+\beta+k}{n} .
\end{aligned}
$$

Weighted Delannoy numbers

Let u, v, w be commuting variables. We define the weighted Delannoy numbers $d_{m, n}^{u, v, w}$ as the total weight of all Delannoy paths from $(0,0)$ to (m, n), where each step $(0,1)$ has weight u, each step $(1,0)$ has weight v, and each step $(1,1)$ has weight w. The weight of a lattice path is the product of the weights of its steps.

Easy to show:

$$
d_{n, n}^{u, v, w}=\sum_{k=0}^{n}\binom{2 n-k}{k}\binom{2 n-2 k}{n-k} u^{n-k} v^{n-k} w^{k} .
$$

Since

$$
d_{n, n}^{u, v, w}=(-w)^{n} d_{n, n}^{u,-v / w,-1}=(-w)^{n} d_{n, n}^{1,-u v / w,-1}
$$

we have

$$
\begin{aligned}
& d_{n, n}^{1,-u v / w,-1}= \sum_{k=0}^{n}\binom{2 n-k}{k}\binom{2 n-2 k}{n-k}\left(-\frac{u v}{w}\right)^{n-k}(-1)^{k} . \\
& d_{n, n}^{u, v, w}=(-w)^{n} \widetilde{P}_{n}\left(-\frac{u v}{w}\right) .
\end{aligned}
$$

Now

$$
d_{n, n}=d_{n, n}^{1,1,1}=(-1)^{n} \widetilde{P}_{n}(-1)=(-1)^{n} P_{n}(-3)=P_{n}(3)
$$

since $(-1)^{n} P_{n}(-x)=P_{n}(x)$.

Generalization to shifted Jacobi polynomials

$$
\begin{gathered}
d_{m, n}^{u, v, w}=\sum_{k=0}^{n}\binom{m+n-k}{k}\binom{m+n-2 k}{n-k} u^{m-k} v^{n-k} w^{k} \\
d_{n+\beta, n}^{u, v, w}=u^{\beta}(-w)^{n} \widetilde{P}_{n}^{(0, \beta)}\left(-\frac{u v}{w}\right)
\end{gathered}
$$

Here $\beta \in \mathbb{Z}$ is any integer satisfying $\beta \geq-n$.

$$
d_{n+\beta, n}=(-1)^{n} \widetilde{P}_{n}^{(0, \beta)}(-1)=(-1)^{n} P_{n}^{(0, \beta)}(-3)
$$

Using the "swapping rule"

$$
(-1)^{n} P_{n}^{(\alpha, \beta)}(-x)=P_{n}^{(\beta, \alpha)}(x)
$$

we get

$$
d_{n+\beta, n}=P_{n}^{(\beta, 0)}(3)
$$

"Swapped" variant of the formula for weighted Delannoy numbers:

$$
d_{n+\beta, n}^{u, v, w}=u^{\beta} w^{n} \widetilde{P}_{n}^{(\beta, 0)}\left(\frac{u v}{w}+1\right) .
$$

Many arrays, same diagonal

$$
d_{n, n}=d_{n, n}^{r, 2 / r,-1} \quad \text { for all } r \in \mathbb{R} \backslash\{0\}
$$

and

$$
d_{n, n}=d_{n, n}^{r, 1 / r, 1} \quad \text { for all } r \in \mathbb{R} \backslash\{0\}
$$

Lattice path model for the shifted Legendre and Jacobi polynomials

$$
\begin{gathered}
\widetilde{P}_{n}(x)=d_{n, n}^{1, x-1,1}=d_{n, n}^{1, x,-1} \\
\widetilde{P}_{n}^{(0, \beta)}(x)=d_{n+\beta, n}^{1, x,-1}
\end{gathered}
$$

Fact: The Jacobi polynomials $P_{n}^{(\alpha, \beta)}(x)$ form an orthogonal basis with respect to the inner product

$$
\langle f, g\rangle:=\int_{-1}^{1} f(x) \cdot g(x) \cdot(1-x)^{\alpha}(1+x)^{\beta} d x
$$

Goal: to provide a combinatorial, non-inductive proof of this fact for all $\alpha, \beta \in \mathbb{N}$

A linear substitution gives the following equivalent form. The shifted Jacobi polynomials $\widetilde{P}_{n}^{(\alpha, \beta)}(x)$ form an orthogonal basis with respect to the inner product

$$
\langle f, g\rangle:=\int_{0}^{1} f(x) \cdot g(x) \cdot(1-x)^{\alpha} x^{\beta} d x
$$

The case $\alpha=0$

Assume $m<n$.

$$
\begin{aligned}
& (n+m+\beta+1)!\int_{0}^{1} x^{m+\beta} \widetilde{P}_{n}^{(0, \beta)}(x) d x \\
= & \sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k}\binom{n+\beta+k}{n} \frac{(n+m+\beta+1)!}{m+\beta+k+1}
\end{aligned}
$$

total weight of all pairs (L, σ) where L is a Delannoy path from $(0,0)$ to $(n+\beta, n)$ and σ is a bijection $\left\{r, a_{1}, \ldots, a_{n+\beta}, b_{1}, \ldots, b_{m}\right\} \rightarrow\{1, \ldots, m+n+\beta+1\}$, subject to:
(i) $\sigma(r)<\sigma\left(a_{i}\right)$ holds for all i such that there is an east step in L from $(i-1, y)$ to (i, y) for some y;
(ii) $\sigma(r)<\sigma\left(b_{j}\right)$ holds for $j=1,2, \ldots, m$.

Diagonal steps contribute a factor of (-1), all others contribute 1.

Cancelling terms

Cancel the diagonal steps with the $((1,0),(0,1))$ sequences, when possible. You will be left with pairs of lattice paths and permutations such that
(a) $((1,0),(0,1))$ is forbidden;
(b) $\sigma(r)>\sigma\left(a_{i}\right)$ holds for all i such that there is a northeast east step in L from $(i-1, y)$ to $(i, y+1)$ for some y.
(b) makes $\sigma(r)$ unique, (a) makes the lattice path depend on the position of the diagonal steps only (\sim "rook placements").

Example

$$
\alpha=0, n=6, m=2
$$

Connection to the orthogonality of Laguerre polynomials

We obtained

$$
\begin{aligned}
& (n+m+\beta+1)!\cdot \int_{0}^{1} x^{m+\beta} \cdot \widetilde{P}_{n}^{(0, \beta)}(x) d x \\
& =\sum_{k=0}^{n}(-1)^{k}\binom{n+\beta}{k}\binom{n}{k} \cdot k!(n+m+\beta-k)!
\end{aligned}
$$

The right hand side is

$$
\int_{0}^{\infty} x^{m} l_{n}^{(\beta)}(x) x^{\beta} e^{-x} d x \quad \text { for all } m, n \in \mathbb{N} .
$$

Here

$$
l_{n}^{(\beta)}(x):=\sum_{k=0}^{n}(-1)^{k}\binom{n+\beta}{k}\binom{n}{k} k!x^{n-k}
$$

is the n-th generalized Laguerre polynomial associated to the rectangular board $[n+\beta] \times[n]$.

Rook polynomials

Board: $B \subseteq[n] \times[n] . S \subseteq B$ compatible if no two elements of S agree in either coordinate. The rook polynomial of B is

$$
r_{B}(x):=\sum_{k=0}^{n}(-1)^{k} r_{k} x^{n-k}
$$

where r_{k} is the number of compatible k-subsets of B. Let \mathcal{L} be the linear functional defined by $\mathcal{L}\left(x^{n}\right):=n!$. Then

$$
\mathcal{L}(p(x))=\int_{0}^{\infty} e^{-x} p(x) d x
$$

and the number of permutations π of $[n] \times[n]$ such that no $(i, \pi(i))$ belongs to B is $\mathcal{L}\left(r_{B}(x)\right)$.

The rook polynomial of $[n] \times[n]$ is the Laguerre polynomial

$$
\begin{gather*}
l_{n}(x):=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} k!x^{n-k} \tag{1}\\
l_{n}(x)=(-1)^{n} n!L_{n}(x)
\end{gather*}
$$

Laguerre polynomials form an orthogonal basis:

$$
\mathcal{L}\left(l_{m}(x) l_{n}(x)\right)=\delta_{m, n} n!
$$

Just for completeness sake

The right hand side is $(m+\beta)$! times

$$
\begin{aligned}
p(m) & :=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(n+\beta)_{k}(n+m+\beta-k)_{n-k} \\
& =(-1)^{n} \sum_{k=0}^{n}\binom{n}{k}(n+\beta)_{k}(-m-\beta-1)_{n-k} .
\end{aligned}
$$

The number $(-1)^{n} p(-m)$ is then the number of ways to select a k-element subset of an n-element set and injectively color its elements using $n+\beta$ colors, then color the remaining $n-k$ elements injectively, using a disjoint set of $m-\beta-1$ colors. Thus

$$
\begin{aligned}
& (-1)^{n} p(-m)=\binom{n+m-1}{n} \\
& p(m)=(-1)^{n}\binom{n-m-1}{n} .
\end{aligned}
$$

The case $\alpha>0$

$$
(x-1)^{\alpha} \widetilde{P}_{n}^{(\alpha, \beta)}(x)=\sum_{i=0}^{\alpha}\binom{\alpha}{i}(-1)^{i} x^{\alpha-i} \widetilde{P}_{n}^{(0, \alpha+\beta-i)}(x)
$$

since both sides are the total weight of all Delannoy paths from $(0,0)$ to $(n+\alpha+\beta, n+\alpha)$ subject to the restriction that none of the first α steps is an east step. As a consequence

$$
\begin{aligned}
& \int_{0}^{1} x^{m} \cdot \widetilde{P}_{n}^{(\alpha, \beta)}(x) \cdot(1-x)^{\alpha} x^{\beta} d x \\
& =(-1)^{\alpha} \int_{0}^{1} x^{m+\beta} \cdot \sum_{i=0}^{\alpha}\binom{\alpha}{i}(-1)^{i} x^{\alpha-i} \widetilde{P}_{n}^{(0, \alpha+\beta-i)}(x) d x \\
& =\sum_{i=0}^{\alpha}\binom{\alpha}{i}(-1)^{\alpha+i} \int_{0}^{1} x^{m+(\alpha+\beta-i)} \cdot \widetilde{P}_{n}^{(0, \alpha+\beta-i)}(x) d x .
\end{aligned}
$$

$$
\widetilde{P}_{n}^{(0, \beta)}(x) \text { with negative integer } \beta
$$

For $\beta \in \mathbb{N}$ and $n \geq \beta$ we have

$$
\widetilde{P}_{n}^{(0,-\beta)}(x)=x^{\beta} \widetilde{P}_{n-\beta}(x)
$$

Reason:

$$
\widetilde{P}_{n}^{(0, \beta)}(x)=x^{n} d_{n+\beta, n}^{1,1,-1 / x}
$$

and we may swap the horizontal and vertical axis.

$$
\begin{array}{ll}
\widetilde{P}_{0}^{(0,-6)}(x)=1 & \widetilde{P}_{1}^{(0,-6)}(x)=5-4 x \\
\widetilde{P}_{2}^{(0,-6)}(x)=3 x^{2}-12 x+10 & \widetilde{P}_{3}^{(0,-6)}(x)=3 x^{2}-12 x+10 \\
\widetilde{P}_{4}^{(0,-6)}(x)=5-4 x & \widetilde{P}_{5}^{(0,-6)}(x)=1 \\
\widetilde{P}_{6}^{(0,-6)}(x)=x^{6} &
\end{array}
$$

transformed Jacobi polynomials $\widehat{P}_{n}^{(\alpha, \beta)}(x)$:

$$
\begin{gathered}
\widehat{P}_{n}^{(\alpha, \beta)}(x):=P_{n}^{(\alpha, \beta)}(2 x+1) \\
\widehat{P}_{n}^{(\alpha, \beta)}(x)=\sum_{j=0}^{n}\binom{n+\alpha+\beta+j}{j}\binom{n+\alpha}{n-j} x^{j} .
\end{gathered}
$$

Claim: For $\beta \in \mathbb{N}$ and $0 \leq n \leq \beta-1$ we have

$$
\widehat{P}_{n}^{(0,-\beta)}(x)=\widehat{P}_{\beta-1-n}^{(0,-\beta)}(x)
$$

A finite orthogonal polynomial sequence

Let $\beta \geq 2$ be any positive integer and let \mathcal{L} be the linear functional defined defined on the vector space $\{p(x) \in \mathbb{C}[x]: \operatorname{deg}(p) \leq(\beta-2) / 2\}$ by

$$
\mathcal{L}\left(x^{k}\right)=k!\cdot(\beta-2-k)!\quad \text { for } 0 \leq k \leq \beta-2 .
$$

Then the transformed Jacobi polynomials $\left\{\widehat{P}_{n}^{(0,-\beta)}(x): 0 \leq n \leq(\beta-2) / 2\right\}$ form an orthogonal basis in the with respect to inner product $\langle f, g\rangle:=\mathcal{L}(f \cdot g)$. For odd β we may extend \mathcal{L} and the induced inner product to polynomials of degree at most ($\beta-1$)/2 by making $\mathcal{L}\left(x^{\beta-1}\right)$ large enough to make the determinant of the $(\beta+1) / 2 \times(\beta+1) / 2$ matrix

$$
\left(\begin{array}{cccc}
\mathcal{L}\left(x^{0}\right) & \mathcal{L}\left(x^{1}\right) & \cdots & \mathcal{L}\left(x^{(\beta-1) / 2}\right) \\
\mathcal{L}\left(x^{1}\right) & \mathcal{L}\left(x^{2}\right) & \cdots & \mathcal{L}\left(x^{(\beta-1) / 2+1}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{L}\left(x^{(\beta-1) / 2}\right) & \mathcal{L}\left(x^{(\beta-1) / 2+1}\right) & \cdots & \mathcal{L}\left(x^{\beta-1}\right)
\end{array}\right)
$$

positive. The polynomial $\widehat{P}_{(\beta-1) / 2}^{(0,-\beta)}(x)$ may then be added to the orthogonal basis.

Elements of the proof

For $0 \leq k \leq \beta-2$ we have:

$$
\mathcal{L}\left(x^{k}\right)=(\beta-1)!B(k+1, \beta-1-k) .
$$

Here $B(z, w)$ is the beta function

$$
\begin{gathered}
B(z, w)=\frac{\Gamma(z) \Gamma(w)}{\Gamma(z+w)} . \\
\mathcal{L}\left(x^{k}\right)=(\beta-1)!\int_{0}^{1}\left(\frac{t}{1-t}\right)^{k}(1-t)^{\beta-2} d t . \\
\langle f, g\rangle=(\beta-1)!\int_{0}^{1} f\left(\frac{t}{1-t}\right) \cdot g\left(\frac{t}{1-t}\right) \cdot(1-t)^{\beta-2} d t
\end{gathered}
$$

Thus we have an inner product for polynomials of degree at most $(\beta-1) / 2$.

Orthogonality:

$$
\sum_{j=0}^{n}(-1)^{j}\binom{n}{j}\binom{m+j}{m}\binom{\beta-2-m-j}{n-m-1}=0
$$

Total weight of all (X, A, B) where
(i) $X \subseteq\{1,2, \ldots, n\}$;
(ii) $A=\left\{a_{1}, \ldots, a_{m}\right\}$ is an m-element multiset such that each a_{i} belongs to $X \cup\{0\} ;$
(iii) $B=\left\{b_{1}, \ldots, b_{n-m-1}\right\}$ is an $(n-m-1)$-element multiset such that each b_{j} belongs to $\{1, \ldots, \beta-n\} \backslash X$.

The weight of (X, A, B) is $(-1)^{|X|}$. Since $|A|+|B|=n-1$, there is $c \in\{1, \ldots, n\}$ that does not appear in A, nor in B. For each $X \subset\{1, \ldots, n\} \backslash\{c\}$, the weight of (X, A, B) and of $(X \cup\{c\}, A, B)$ cancel.

Extending to degree $(\beta-1) / 2$ for odd β :
Only need to make sure entire matrix has positive determinant, all other principal minors have. The determinant is a linear function of $\mathcal{L}\left(x^{\beta}\right)$ whose coefficient is positive.

Weighted Schröder numbers

Schröder path from $(0,0)$ to (n, n) : a Delannoy path not going above the line $y=x$.
weighted Schröder numbers $s_{n}^{u, v, w}$: the total weight of all Schröder paths from $(0,0)$ to (n, n), where each east step $(0,1)$ has weight u, each north step has weight v, and each northeast step has weight w.

Schröder polynomials: $S_{n}(x):=s_{n}^{1, x,-1}$.

$$
\begin{gathered}
S_{n}(x)=\sum_{j=0}^{n} \frac{(-1)^{n-j}}{j+1}\binom{2 j}{j}\binom{n+j}{n-j} x^{j} \quad \text { for } n \geq 1 \\
S_{n}(x)=\frac{1}{n+1} \sum_{j=0}^{n}(-1)^{n-j}\binom{n}{j+1}\binom{n+j}{n} x^{j}
\end{gathered}
$$

For $n \geq 1$ we also have

$$
(x-1) \widetilde{P}_{n}^{(1,-1)}(x)=\sum_{k=0}^{n+1}(-1)^{n+1-k} x^{k}\binom{n+1}{k}\binom{n-1+k}{n}
$$

Therefore,

$$
S_{n}(x)=\frac{x-1}{(n+1) x} \widetilde{P}_{n}^{(1,-1)}(x)
$$

Facts about $s_{n}^{u, v, w}$ and $S_{n}(x)$

$$
\begin{gathered}
s_{n}^{u, v, w}=(-w)^{n} S_{n}\left(-\frac{u v}{w}\right) \\
s_{n}^{u, v, w}=\frac{(-w)^{n}}{n+1}\left(1+\frac{w}{u v}\right) \widetilde{P}_{n}^{(1,-1)}\left(-\frac{u v}{w}\right) \\
s_{n}:=s_{n}^{1,1,1}=\frac{(-1)^{n} 2}{n+1} \widetilde{P}_{n}^{(1,-1)}(-1)=\frac{(-1)^{n} 2}{n+1} P_{n}^{(1,-1)}(-3)
\end{gathered}
$$

The "swapping rule" yields

$$
\begin{gathered}
s_{n}=\frac{2}{n+1} \cdot P_{n}^{(-1,1)}(3) \text { for } n \geq 1 . \\
d_{n, n}^{u, v, w}=2 u v \sum_{k=0}^{n-1} d_{k, k}^{u, v, w} s_{n-k-1}^{u, v, w}+w d_{n-1, n-1}^{u, v, w} \\
\widetilde{P}_{n}(x)=2 x \sum_{k=0}^{n-1} \widetilde{P}_{k}(x) S_{n-k-1}(x)-\widetilde{P}_{n-1}(x) . \\
\widetilde{P}_{n}(x)=2 \sum_{k=0}^{n-2} \widetilde{P}_{k}(x) \frac{x-1}{n-k} \widetilde{P}_{n-k-1}^{(1,-1)}(x)+(2 x-1) \widetilde{P}_{n-1}(x) \quad \text { and } \\
P_{n}(x)=\sum_{k=0}^{n-2} P_{k}(x) \frac{x-1}{n-k} P_{n-k-1}^{(1,-1)}(x)+x P_{n-1}(x) \quad \text { for } n \geq 1
\end{gathered}
$$

A formula for repeated antiderivatives of the shifted Legendre polynomials

$$
S_{n}(x)=\frac{1}{x} \int_{0}^{x} \widetilde{P}_{n-1}(t) d t \quad \text { holds for } n \geq 1
$$

Let n and α be positive integers. Applying the antiderivative operator

$$
f(x) \mapsto \int_{0}^{x} f(t) d t
$$

to $\widetilde{P}_{n}(x)$ exactly α times yields the polynomial $\frac{1}{(n+\alpha)_{\alpha}}(x-1)^{\alpha} \widetilde{P}_{n}^{(\alpha,-\alpha)}(x)$.
This follows from

$$
\frac{d}{d x} \frac{(x-1)^{\alpha} \widetilde{P}_{n}^{(\alpha,-\alpha)}(x)}{(n+\alpha)_{\alpha}}=\frac{(x-1)^{\alpha-1} \widetilde{P}_{n}^{(\alpha-1,-(\alpha-1))}(x)}{(n+\alpha-1)_{\alpha-1}}
$$

for $\alpha \geq 1$.

Favard's theorem

Favard's theorem states that a sequence of monic polynomials $\left\{p_{n}(x)\right\}_{n \geq 0}$ is an orthogonal polynomial sequence, if and only if it satisfies

$$
p_{n}(x)=\left(x-c_{n}\right) p_{n-1}(x)-\lambda_{n} p_{n-2}(x) \quad n=1,2,3, \ldots
$$

where $p_{-1}(x)=0, p_{0}(x)=1$, the numbers c_{n} and λ_{n} are constants, $\lambda_{n} \neq 0$ for $n \geq 2$, and λ_{1} is arbitrary. The original proof provides only a recursive description of \mathcal{L}. Viennot gave a combinatorial proof of Favard's theorem, upon which he has built a general combinatorial theory of orthogonal polynomials. In his theory, the values $\mathcal{L}\left(x^{n}\right)$ are explicitly given as sums of weighted Motzkin paths.

Two notes of Favard's theorem and Viennot's model

The polynomials $\left\{S_{n}(x)\right\}_{n \geq 0}$ almost form an orthogonal polynomial sequence.

$$
\begin{gathered}
p_{n}(x):=\frac{1}{\binom{2 n}{n}} \frac{x-1}{x} \widetilde{P}_{n}^{(1,-1)}(x) \\
p_{n}(x)=\left(x-\frac{1}{2}\right) p_{n-1}(x)-\frac{n(n-2)}{4(2 n-1)(2 n-3)} p_{n-2}(x)
\end{gathered}
$$

for $n \geq 2$. Substituting $n=2$ yields $\lambda_{2}=0$.
The monic variant of the Legendre polynomials is

$$
p_{n}(x):=\frac{2^{n} P_{n}(x)}{\binom{2 n}{n}}
$$

Favard's recursion formula takes the form

$$
p_{n}(x)=x p_{n-1} x-\frac{(n-1)^{2}}{(2 n-1)(2 n-3)} p_{n-2}(x)
$$

Challenge: Consider weighted Motzkin paths from (0,0) to $(n, 0)$. The horizontal steps have zero weight, the northeast steps $(1,1)$ have weight 1 , the southeast steps $(1,-1)$ have weight $k^{2} /\left(4 k^{2}-1\right)$ if they start at a point whose second coordinate k. Using Viennot's model, the total weight if these paths should be $1 /(n+1)$ for all even $n \in \mathbb{N}$.

Connection to Riordan arrays

A Riordan array is a pair $(d(t), h(t))$ of formal power series in the variable t. These function define the triangle $d_{n, k}=\left[t^{n}\right] d(t)(t h(t))^{k}$.

The weighted Delannoy number $d_{m, n}^{u, v, w}$ is the coefficient of t^{n} in $(u+w t)^{m} /(1-v t)^{m+1}$. An immediate consequence of this observation is that the n-th row k-th column entry in the Riordan array $(1 /(1-v t), t(u+w t) /(1-v t))$ is $d_{k, n-k}^{u, v, w}$. The numbers $d_{m, n}^{1,2,-1}$ appear as entry A1016195 in Sloane [16], listing the entries of the Riordan array $(1 /(1-2 t), t(1-t) /(1-2 t))$. Our results should allow to write summation formulas for Jacobi polynomials using the theory of Riordan arrays.

References

[1] M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," National Bureau of Standards, Washington, D.C., issued 1964, Tenth Printing, 1972, with corrections.
[2] C. Banderier and S. Schwer, Why Delannoy numbers ?, J. Statist. Plan. Inference 135 (1) (2005), 40-54.
[3] T.S. Chihara, "An Introduction to Orthogonal Polynomials," Gordon and Breach Science Publishers, New York-London-Paris, 1978.
[4] L. Comtet, "Advanced Combinatorics," D. Reidel Publishing Co., 1974.
[5] H. Delannoy, Employ d'échiquier pour la résolution de certains problèmes de probabilités, Assoc. Franc. Bordeaux 24 (1895), 70-90.
[6] L. Gatteschi, On Some Orthogonal Polynomial Integrals, Math. Comp. 35 (1980) 1291-1298.
[7] I. M. Gessel, Generalized rook polynomials and orthogonal polynomials, in: q-Series and Partitions, ed. D. Stanton, The IMA Volumes
in Mathematics and Its Applications, Vol. 18, Springer-Verlag, New York, 1989, pp. 159-176.
[8] I.J. Good, Legendre polynomials and trinomial random walks, Proc. Cambridge Philos. Soc. 54 (1958), 39-42.
[9] G. Hetyei, Central Delannoy numbers and balanced Cohen-Macaulay complexes, Annals of Combinatorics 10 (2006) 443-462.
[10] G. Hetyei, Delannoy orthants of Legendre polytopes, preprint 2007, http://www.math.uncc.edu/preprint/2007/ 2007_11.pdf.
[11] I. Kaplansky, Symbolic solution of certain problems in permutations, Bull. Amer. Math. Soc. 50 (1944), 906-914.
[12] I. Kaplansky, and J. Riordan, The problem of rooks and its applications, Duke Math. J. 13 (1946), 259-268.
[13] D.F. Lawden, On the solution of a linear difference equation, Mah. Gaz. 36 (1952), 193-196.
[14] L. Moser and W. Zayachkowski, Lattice paths with diagonal steps, Scripta Math. 26 (1963), 223-229.
[15] J. Riordan, "An Introduction to Combinatorial Analysis," Wiley, 1958.
[16] N.J.A. Sloane, "On-Line Encyclopedia of Integer Sequences," http://www.research.att.com/~njas/ sequences
[17] R. Sprugnoli, Riordan arrays and combinatorial sums, Discrete Math. 132 (1994) 267-290.
[18] R.P. Stanley, "Enumerative Combinatorics, Volume II," Cambridge University Press, Cambridge, 1999.
[19] Gábor Szegő, "Orthogonal Polynomials", AMS Colloquium Publications Vol. 23, Providence, Rhode Island 2000.
[20] R.A. Sulanke, Objects counted by the central Delannoy numbers, J. Integer Seq. 6 (2003), Article 03.1.5, 19 pp .
[21] X. Viennot, "Une théorie combinatoire des polynômes orthogonaux généraux," Lecture Notes LACIM, UQAM, 1983. Available online at the author's personal website http://web.mac.com/xgviennot

