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Delannoy numbers

di,j = di−1,j + di,j−1 + di−1,j−1

di,j :=

H
H

H
H

H
H

i

j
0 1 2 3 4

0 1 1 1 1 1

1 1 3 5 7 9

2 1 5 13 25 41

3 1 7 25 63 129

4 1 9 41 129 321

They count the number of lattice paths from (0, 0) to

(m, n) using only steps (1, 0), (0, 1), and (1, 1).

⇒ dn,n =
∑n

j=0

(
n
j

)(
n+j

j

)
.

(Defined by Henri Delannoy (1895), Sulanke has ≥ 29

interpretations.)





A mysterious relation with the Legendre

polynomials

Good (1958), Lawden (1952), Moser and Zayachkowski

(1963) observed that

dn,n = Pn(3),

where Pn(x) is the n-th Legendre polynomial.

There has been a consensus that this link is not very

relevant.

Banderier and Schwer (2004): “there is no “natural”

correspondence between Legendre polynomials and these

lattice paths.”

Sulanke (2003): “the definition of Legendre polynomials

does not appear to foster any combinatorial

interpretation leading to enumeration”.



Jacobi and Legendre polynomials

Usual definition of the Jacobi polynomial P
(α,β)
n (x):

P (α,β)
n (x) = (−2)−n(n!)−1(1 − x)−α(1 + x)−β

dn

dxn

(
(1 − x)n+α(1 + x)n+β

)
.

α, β > −1 “for integrability purposes”, α = β = 0 gives

Legendre.

The formula below extends to all α, β ∈ C (see Szegő

(4.21.2)):

P (α,β)
n (x) =

∑

j

(
n + α + β + j

j

)(
n + α

n − j

)(
x − 1

2

)j

.

Substitute α = β = 0:

P (0,0)
n (x) =

∑

j

(
n + j

j

)(
n

j

) (
x − 1

2

)j

is the n-th Legendre polynomial.



Properties of Jacobi polynomials

For α, β > −1 the Jacobi polynomials P
(α,β)
n (x) form an

orthogonal basis with respect to the inner product

〈f, g〉 :=

∫ 1

−1

f(x) · g(x) · (1 − x)α(1 + x)β dx.

“Swapping rule:”

(−1)nP (α,β)
n (−x) = P (β,α)

n (x),



Asymmetric Delannoy numbers

d̃m,n :=

H
H

H
H

H
H

m

n
0 1 2 3 4

0 1 2 4 8 16

1 1 3 8 20 48

2 1 4 13 38 104

3 1 5 19 63 192

4 1 6 26 96 321

d̃m,n is the number of lattice paths from (0, 0) to

(m, n + 1) having steps (x, y) ∈ N × P.

(Variant of A049600 in the On-Line Encyclopedia of

Integer Sequences.)



Lemma 1 The asymmetric Delannoy numbers satisfy

d̃m,n =
n∑

j=0

(
n

j

)(
m + j

j

)
.

Proof: We are enumerating sequences (0, 0) =

(x0, y0), (x1, y1), . . . , (xj , yj), (xj+1, yj+1) = (m, n + 1),

where 0 ≤ j ≤ n, 0 = x0 ≤ x1 ≤ · · · ≤ xj ≤ xj+1 = m,

and 0 = y0 < y1 < · · · < yj < yj+1 = n + 1. For a given j

there are
(
m+j

j

)
ways to choose

0 = x0 ≤ x1 ≤ · · · ≤ xj ≤ xj+1 = m and
(
n
j

)
ways to

choose 0 = y0 < y1 < · · · < yj < yj+1 = n + 1. 3

Since

P (0,β)
n (x) =

∑

j

(
n + β + j

j

)(
n

j

) (
x − 1

2

)j

,

we get

d̃n+β,n = P (0,β)
n (3) for m ≥ n

because
3 − 1

2
= 1.



Shifted Jacobi and Legendre polynomials

Shifted Legendre polynomials appear even in

Abramowitz-Stegun:

P̃n(x) := Pn(2x − 1).

Shifted Jacobi polynomials seem to be less widely used:

P̃ (α,β)
n (x) := P (α,β)

n (2x − 1).

Well-known:

P̃n(x) =

n∑

k=0

(−1)n−k

(
n

k

)(
n + k

n

)
xk

=
n∑

k=0

(−1)n−k

(
n + k

n − k

)(
2k

k

)
xk.

Generalization for shifted Jacobi polynomials (α ∈ N,

β ∈ C):

(x−1)αP̃ (α,β)
n (x) =

n+α∑

k=0

(−1)n+α−kxk

(
n + α

k

)(
n + β + k

n

)
.

⇒ P̃ (0,β)
n (x) =

n∑

k=0

(−1)n−kxk

(
n

k

)(
n + β + k

n

)
.



Weighted Delannoy numbers

Let u, v, w be commuting variables. We define the

weighted Delannoy numbers du,v,w
m,n as the total weight of

all Delannoy paths from (0, 0) to (m, n), where each step

(0, 1) has weight u, each step (1, 0) has weight v, and

each step (1, 1) has weight w. The weight of a lattice

path is the product of the weights of its steps.

Easy to show:

du,v,w
n,n =

n∑

k=0

(
2n − k

k

)(
2n − 2k

n − k

)
un−kvn−kwk.

Since

du,v,w
n,n = (−w)ndu,−v/w,−1

n,n = (−w)nd1,−uv/w,−1
n,n

we have

d1,−uv/w,−1
n,n =

n∑

k=0

(
2n − k

k

)(
2n − 2k

n − k

)(
−

uv

w

)n−k

(−1)k.

du,v,w
n,n = (−w)nP̃n

(
−

uv

w

)
.

Now

dn,n = d1,1,1
n,n = (−1)nP̃n(−1) = (−1)nPn(−3) = Pn(3)

since (−1)nPn(−x) = Pn(x).



Generalization to shifted Jacobi polynomials

du,v,w
m,n =

n∑

k=0

(
m + n − k

k

)(
m + n − 2k

n − k

)
um−kvn−kwk.

du,v,w
n+β,n = uβ(−w)nP̃ (0,β)

n

(
−

uv

w

)
.

Here β ∈ Z is any integer satisfying β ≥ −n.

dn+β,n = (−1)nP̃ (0,β)
n (−1) = (−1)nP (0,β)

n (−3).

Using the “swapping rule”

(−1)nP (α,β)
n (−x) = P (β,α)

n (x),

we get

dn+β,n = P (β,0)
n (3).

“Swapped” variant of the formula for weighted Delannoy

numbers:

du,v,w
n+β,n = uβwnP̃ (β,0)

n

(uv

w
+ 1

)
.



Many arrays, same diagonal

dn,n = dr,2/r,−1
n,n for all r ∈ R \ {0},

and

dn,n = dr,1/r,1
n,n for all r ∈ R \ {0}.



Lattice path model for the shifted Legendre and

Jacobi polynomials

P̃n(x) = d1,x−1,1
n,n = d1,x,−1

n,n

P̃ (0,β)
n (x) = d1,x,−1

n+β,n

Fact: The Jacobi polynomials P
(α,β)
n (x) form an

orthogonal basis with respect to the inner product

〈f, g〉 :=

∫ 1

−1

f(x) · g(x) · (1 − x)α(1 + x)β dx.

Goal: to provide a combinatorial, non-inductive proof of

this fact for all α, β ∈ N

A linear substitution gives the following equivalent form.

The shifted Jacobi polynomials P̃
(α,β)
n (x) form an

orthogonal basis with respect to the inner product

〈f, g〉 :=

∫ 1

0

f(x) · g(x) · (1 − x)αxβ dx.



The case α = 0

Assume m < n.

(n + m + β + 1)!

∫ 1

0

xm+βP̃ (0,β)
n (x) dx

=

n∑

k=0

(−1)n−k

(
n

k

)(
n + β + k

n

)
(n + m + β + 1)!

m + β + k + 1

total weight of all pairs (L, σ) where L is a Delannoy

path from (0, 0) to (n + β, n) and σ is a bijection

{r, a1, . . . , an+β, b1, . . . , bm} → {1, . . . , m + n + β + 1},

subject to:

(i) σ(r) < σ(ai) holds for all i such that there is an east

step in L from (i − 1, y) to (i, y) for some y;

(ii) σ(r) < σ(bj) holds for j = 1, 2, . . . , m.

Diagonal steps contribute a factor of (−1), all others

contribute 1.



Cancelling terms

Cancel the diagonal steps with the ((1, 0), (0, 1))

sequences, when possible. You will be left with pairs of

lattice paths and permutations such that

(a) ((1, 0), (0, 1)) is forbidden;

(b) σ(r) > σ(ai) holds for all i such that there is a

northeast east step in L from (i − 1, y) to (i, y + 1)

for some y.

(b) makes σ(r) unique, (a) makes the lattice path

depend on the position of the diagonal steps only (∼

“rook placements”).



Example

α = 0, n = 6, m = 2.

4

8(0, 0)

(6, 6)

7

6 952

3

1



Connection to the orthogonality of Laguerre

polynomials

We obtained

(n + m + β + 1)! ·

∫ 1

0

xm+β · P̃ (0,β)
n (x) dx

=
n∑

k=0

(−1)k

(
n + β

k

)(
n

k

)
· k!(n + m + β − k)!

The right hand side is
∫ ∞

0

xml(β)
n (x)xβe−x dx for all m, n ∈ N.

Here

l(β)
n (x) :=

n∑

k=0

(−1)k

(
n + β

k

)(
n

k

)
k!xn−k

is the n-th generalized Laguerre polynomial associated to

the rectangular board [n + β] × [n].



Rook polynomials

Board: B ⊆ [n] × [n]. S ⊆ B compatible if no two

elements of S agree in either coordinate. The rook

polynomial of B is

rB(x) :=
n∑

k=0

(−1)krkxn−k

where rk is the number of compatible k-subsets of B. Let

L be the linear functional defined by L(xn) := n!. Then

L(p(x)) =

∫ ∞

0

e−xp(x) dx

and the number of permutations π of [n] × [n] such that

no (i, π(i)) belongs to B is L(rB(x)).

The rook polynomial of [n] × [n] is the Laguerre

polynomial

ln(x) :=
n∑

k=0

(−1)k

(
n

k

)2

k!xn−k (1)

ln(x) = (−1)nn!Ln(x).

Laguerre polynomials form an orthogonal basis:

L(lm(x)ln(x)) = δm,nn!



Just for completeness sake

The right hand side is (m + β)! times

p(m) :=
n∑

k=0

(−1)k

(
n

k

)
(n + β)k(n + m + β − k)n−k

=(−1)n
n∑

k=0

(
n

k

)
(n + β)k(−m − β − 1)n−k.

The number (−1)np(−m) is then the number of ways to

select a k-element subset of an n-element set and

injectively color its elements using n + β colors, then

color the remaining n − k elements injectively, using a

disjoint set of m − β − 1 colors. Thus

(−1)np(−m) =

(
n + m − 1

n

)

p(m) = (−1)n

(
n − m − 1

n

)
.



The case α > 0

(x − 1)αP̃ (α,β)
n (x) =

α∑

i=0

(
α

i

)
(−1)ixα−iP̃ (0,α+β−i)

n (x)

since both sides are the total weight of all Delannoy

paths from (0, 0) to (n + α + β, n + α) subject to the

restriction that none of the first α steps is an east step.

As a consequence

∫ 1

0

xm · P̃ (α,β)
n (x) · (1 − x)αxβ dx

= (−1)α

∫ 1

0

xm+β ·
α∑

i=0

(
α

i

)
(−1)ixα−iP̃ (0,α+β−i)

n (x) dx

=
α∑

i=0

(
α

i

)
(−1)α+i

∫ 1

0

xm+(α+β−i) · P̃ (0,α+β−i)
n (x) dx.



P̃
(0,β)
n (x) with negative integer β

For β ∈ N and n ≥ β we have

P̃ (0,−β)
n (x) = xβP̃n−β(x).

Reason:

P̃ (0,β)
n (x) = xnd

1,1,−1/x
n+β,n ,

and we may swap the horizontal and vertical axis.

P̃
(0,−6)
0 (x) = 1 P̃

(0,−6)
1 (x) = 5 − 4x

P̃
(0,−6)
2 (x) = 3x2 − 12x + 10 P̃

(0,−6)
3 (x) = 3x2 − 12x + 10

P̃
(0,−6)
4 (x) = 5 − 4x P̃

(0,−6)
5 (x) = 1

P̃
(0,−6)
6 (x) = x6

transformed Jacobi polynomials P̂
(α,β)
n (x):

P̂ (α,β)
n (x) := P (α,β)

n (2x + 1).

P̂ (α,β)
n (x) =

n∑

j=0

(
n + α + β + j

j

)(
n + α

n − j

)
xj .

Claim: For β ∈ N and 0 ≤ n ≤ β − 1 we have

P̂ (0,−β)
n (x) = P̂

(0,−β)
β−1−n(x).



A finite orthogonal polynomial sequence

Let β ≥ 2 be any positive integer and let L be the linear

functional defined defined on the vector space

{p(x) ∈ C[x] : deg(p) ≤ (β − 2)/2} by

L(xk) = k! · (β − 2 − k)! for 0 ≤ k ≤ β − 2.

Then the transformed Jacobi polynomials

{P̂
(0,−β)
n (x) : 0 ≤ n ≤ (β − 2)/2} form an orthogonal

basis in the with respect to inner product

〈f, g〉 := L(f · g). For odd β we may extend L and the

induced inner product to polynomials of degree at most

(β − 1)/2 by making L(xβ−1) large enough to make the

determinant of the (β + 1)/2 × (β + 1)/2 matrix



L(x0) L(x1) · · · L(x(β−1)/2)

L(x1) L(x2) · · · L(x(β−1)/2+1)
...

...
. . .

...

L(x(β−1)/2) L(x(β−1)/2+1) · · · L(xβ−1)




positive. The polynomial P̂
(0,−β)
(β−1)/2(x) may then be added

to the orthogonal basis.



Elements of the proof

For 0 ≤ k ≤ β − 2 we have:

L(xk) = (β − 1)!B(k + 1, β − 1 − k).

Here B(z, w) is the beta function

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
.

L(xk) = (β − 1)!

∫ 1

0

(
t

1 − t

)k

(1 − t)β−2 dt.

〈f, g〉 = (β − 1)!

∫ 1

0

f

(
t

1 − t

)
· g

(
t

1 − t

)
· (1 − t)β−2 dt

Thus we have an inner product for polynomials of degree

at most (β − 1)/2.



Orthogonality:

n∑

j=0

(−1)j

(
n

j

)(
m + j

m

)(
β − 2 − m − j

n − m − 1

)
= 0.

Total weight of all (X, A, B) where

(i) X ⊆ {1, 2, . . . , n};

(ii) A = {a1, . . . , am} is an m-element multiset such that

each ai belongs to X ∪ {0};

(iii) B = {b1, . . . , bn−m−1} is an (n − m − 1)-element

multiset such that each bj belongs to

{1, . . . , β − n} \ X .

The weight of (X, A, B) is (−1)|X|. Since

|A| + |B| = n − 1, there is c ∈ {1, . . . , n} that does not

appear in A, nor in B. For each X ⊂ {1, . . . , n} \ {c}, the

weight of (X, A, B) and of (X ∪ {c}, A, B) cancel.

Extending to degree (β − 1)/2 for odd β:

Only need to make sure entire matrix has positive

determinant, all other principal minors have. The

determinant is a linear function of L(xβ) whose

coefficient is positive.



Weighted Schröder numbers

Schröder path from (0, 0) to (n, n): a Delannoy path not

going above the line y = x.

weighted Schröder numbers su,v,w
n : the total weight of

all Schröder paths from (0, 0) to (n, n), where each east

step (0, 1) has weight u, each north step has weight v,

and each northeast step has weight w.

Schröder polynomials: Sn(x) := s1,x,−1
n .

Sn(x) =
n∑

j=0

(−1)n−j

j + 1

(
2j

j

)(
n + j

n − j

)
xj for n ≥ 1.

Sn(x) =
1

n + 1

n∑

j=0

(−1)n−j

(
n

j + 1

)(
n + j

n

)
xj

For n ≥ 1 we also have

(x−1)P̃ (1,−1)
n (x) =

n+1∑

k=0

(−1)n+1−kxk

(
n + 1

k

)(
n − 1 + k

n

)

Therefore,

Sn(x) =
x − 1

(n + 1)x
P̃ (1,−1)

n (x).



Facts about su,v,w
n and Sn(x)

su,v,w
n = (−w)nSn

(
−

uv

w

)

su,v,w
n =

(−w)n

n + 1

(
1 +

w

uv

)
P̃ (1,−1)

n

(
−

uv

w

)
.

sn := s1,1,1
n =

(−1)n2

n + 1
P̃ (1,−1)

n (−1) =
(−1)n2

n + 1
P (1,−1)

n (−3)

The “swapping rule” yields

sn =
2

n + 1
· P (−1,1)

n (3) for n ≥ 1.

du,v,w
n,n = 2uv

n−1∑

k=0

du,v,w
k,k su,v,w

n−k−1 + wdu,v,w
n−1,n−1.

P̃n(x) = 2x
n−1∑

k=0

P̃k(x)Sn−k−1(x) − P̃n−1(x).

P̃n(x) = 2
n−2∑

k=0

P̃k(x)
x − 1

n − k
P̃

(1,−1)
n−k−1(x)+(2x−1)P̃n−1(x) and

Pn(x) =
n−2∑

k=0

Pk(x)
x − 1

n − k
P

(1,−1)
n−k−1(x)+xPn−1(x) for n ≥ 1.



A formula for repeated antiderivatives of the

shifted Legendre polynomials

Sn(x) =
1

x

∫ x

0

P̃n−1(t) dt holds for n ≥ 1.

Let n and α be positive integers. Applying the

antiderivative operator

f(x) 7→

∫ x

0

f(t) dt

to P̃n(x) exactly α times yields the polynomial
1

(n+α)α

(x − 1)αP̃
(α,−α)
n (x).

This follows from

d

dx

(x − 1)αP̃
(α,−α)
n (x)

(n + α)α
=

(x − 1)α−1P̃
(α−1,−(α−1))
n (x)

(n + α − 1)α−1

for α ≥ 1.



Favard’s theorem

Favard’s theorem states that a sequence of monic

polynomials {pn(x)}n≥0 is an orthogonal polynomial

sequence, if and only if it satisfies

pn(x) = (x − cn)pn−1(x) − λnpn−2(x) n = 1, 2, 3, . . .

where p−1(x) = 0, p0(x) = 1, the numbers cn and λn are

constants, λn 6= 0 for n ≥ 2, and λ1 is arbitrary. The

original proof provides only a recursive description of L.

Viennot gave a combinatorial proof of Favard’s theorem,

upon which he has built a general combinatorial theory of

orthogonal polynomials. In his theory, the values L(xn)

are explicitly given as sums of weighted Motzkin paths.



Two notes of Favard’s theorem and Viennot’s

model

The polynomials {Sn(x)}n≥0 almost form an orthogonal

polynomial sequence.

pn(x) :=
1(
2n
n

) x − 1

x
P̃ (1,−1)

n (x)

pn(x) =

(
x −

1

2

)
pn−1(x) −

n(n − 2)

4(2n − 1)(2n − 3)
pn−2(x)

for n ≥ 2. Substituting n = 2 yields λ2 = 0.

The monic variant of the Legendre polynomials is

pn(x) :=
2nPn(x)(

2n
n

) .

Favard’s recursion formula takes the form

pn(x) = xpn−1x −
(n − 1)2

(2n − 1)(2n − 3)
pn−2(x).

Challenge: Consider weighted Motzkin paths from (0, 0)

to (n, 0). The horizontal steps have zero weight, the

northeast steps (1, 1) have weight 1, the southeast steps

(1,−1) have weight k2/(4k2 − 1) if they start at a point

whose second coordinate k. Using Viennot’s model, the

total weight if these paths should be 1/(n + 1) for all

even n ∈ N.



Connection to Riordan arrays

A Riordan array is a pair (d(t), h(t)) of formal power

series in the variable t. These function define the triangle

dn,k = [tn]d(t)(th(t))k.

The weighted Delannoy number du,v,w
m,n is the coefficient of

tn in (u + wt)m/(1 − vt)m+1. An immediate consequence

of this observation is that the n-th row k-th column

entry in the Riordan array (1/(1− vt), t(u + wt)/(1− vt))

is du,v,w
k,n−k. The numbers d1,2,−1

m,n appear as entry

A1016195 in Sloane [16], listing the entries of the

Riordan array (1/(1 − 2t), t(1 − t)/(1 − 2t)). Our results

should allow to write summation formulas for Jacobi

polynomials using the theory of Riordan arrays.
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