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1. Introduction

Engineering or scientific computational problems are typically reduced to matrix computations
- eventually, a linear system of equations has to be solved. The structure of the original problem
often leads to a structured coefficient matrix in the resulting linear system. Hence, designing special
algorithms that exploit these structures in order to be faster than standard algorithms is desirable.

We will present principles how to manage this issue. Moreover, if the coefficient matrix possesses
additional symmetry properties we will discuss how to take advantage from both, the structures and
the symmetries. Therefore, we offer not only classical material, but also new results which have been
subject of recent research and discussion.

The presentation is largely elementary. We only assume basic knowledge in linear algebra. This
should make the paper accessible to a wide readership, including graduate students and also re-
searchers who want to enter the field of structured matrices. The exercises aim at gaining deeper
understanding, some of them may be challenging.

The paper at hand is written self-contained and in the style of a textbook. Thus, it is suitable for stu-
dent’s self-study. Beyond that the text could serve as an elaborated manuscript for lectures on the topic
and could be integrated into courses on structured matrices and on numerical linear algebra as well.

Now, let us describe the content in more detail. The present paper is dedicated to so-called fast
algorithms for structured matrices. In particular, we consider Toeplitz matrices

ap a—1 ...d—p4+1

ay do
Tn = laijlijoy =
a—1
an—1 ap do
and Hankel matrices
hy hy ... hy
hz h3 . hn_1

Hy = [hi+j—l]2j:1 =

hn hn—l h2n—1

The entries of the matrices are taken from a given field [F. The attribute “fast”" indicates that the
complexity of the algorithm is O(n?) compared with O(n®) complexity for the corresponding standard
algorithms for unstructured matrices. Algorithms with a complexity less than O(n?) are often called
“superfast”. They are based on divide-and-conquer strategies, which, however, are beyond the scope
of our paper. We will consider two kinds of fast algorithms: Levinson-type and Schur-type algorithms.

ALevinson-type algorithm recursively computes solutions of special equations for submatrices. In the
classical Levinson algorithm these solutions are the last columns of the inverses of the leading principal
submatrices (or multiples of them). These solutions can be used in different ways. Firstly, with the help
of such algorithms Toeplitz and Hankel systems with general right-hand sides can be solved recursively
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using the bordering principle. Secondly, they produce a factorization of the inverse matrix. In the case
of the classical Levinson algorithm this is the UL-factorization of the inverse. The factorization can also
be used to solve a linear system, but its importance goes far beyond that. For example, it plays a crucial
role in the theory of orthogonal polynomials. Thirdly, the vectors eventually computed by the Levinson-
type algorithm provide the parameters needed in Bezoutian formulas for the inverse matrix. These
Bezoutian formulas represent in particular a basic tool for in the construction of superfast algorithms.

In the same way a Levinson-type algorithm produces a factorization of the inverse matrix, a Schur-
type algorithm produces a factorization of the matrix itself. The quantities which are computed in the
latter case can be interpreted as residuals for the solutions computed by the corresponding Levinson-
type algorithm. A Schur-type algorithm can be combined with a corresponding Levinson-type in order
to avoid inner product calculations. Let us point out that the importance of the Schur algorithm, like
that for the Levinson algorithm, goes far beyond solving linear systems. It was originally designed to
solve a problem in complex function theory.

Since asymmetric Toeplitz matrix is also centrosymmetric we can exploit these symmetry properties
to reduce the number of operations. The resulting algorithms are referred to as split algorithms. There
exist split algorithms of Levinson-type and Schur-type. Like the classical Levinson and Schur algorithms
are related to triangular factorization, the corresponding split algorithms are related to a different kind
of factorization, called butterfly factorization. The split Levinson algorithm computes such a factorization
of the inverse matrix whereas the split Schur algorithm computes a factorization of the matrix itself.

In most of the sections of this paper we assume that the Toeplitz or Hankel matrix under con-
sideration is strongly nonsingular. An n X n matrix A = [aij]}szl is called strongly nonsingular if all

its leading principal sections Ay = [a,;]ﬁ‘,j:l (k = 1, ..., n) are nonsingular. In particular, positive
definite matrices are strongly nonsingular. Toeplitz and Hankel matrices without this property can be

treated as well. However, this requires nontrivial generalizations of ideas presented here. Occasion-
ally the condition of strong nonsingularity is replaced by the condition that all central submatrices

[aij]ﬁzll_l (1 <l< %) are nonsingular. A matrix with this property is called centro-nonsingular.
Since for a Toeplitz matrix the central submatrices are equal to leading principal submatrices, centro-
nonsingularity means that every second leading principal submatrix is nonsingular.

At the end of the paper references on the history and the genesis of the results under consideration
can be found. We restrict ourselves to the original work of the inventors, but also to books and survey
papers. Moreover, we refer interested readers who want to apply the knowledge of this course or who
want to learn more about further and adjacent research to papers which are understandable on the
basis of the present text. This is a reason for citing a number of papers written by the authors.

We apologize for any omission, which seems to be unavoidable because of the huge and rapidly
growing number of publications on structured matrices.

2. Preliminaries

In this section, we discuss some general topics that will be used afterwards. Throughout the paper, IF
will denote an arbitrary field. In some sections we restrict ourselves to the case that IF' is of characteristic
different from 2 or to the case that F = C or R, the fields of complex or real numbers, respectively.
By {ei, ..., e, } the standard basis of [F" is denoted. Furthermore, 0} will stand for the zero vector of
length k. If there is no danger of misunderstanding we will omit the subscript k.

Sometimes we use “polynomial language"”. For x = (x;){; € F", we consider the polynomial

n
x(t) = Zxktk_l
k=1

and call it the generating polynomial of X. Polynomial language for matrices means that we introduce
the generating polynomial of an m x n matrix A = [aij]?1=1,}1=1 € F™*" 35 the bivariate polynomial

m n . .
Alt,s) =D D gt s

i=1j=1
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2.1. Symmetries

At several places we will exploit symmetry properties of matrices. Besides symmetry, skewsym-
metry and Hermitian symmetry in the usual sense we deal with persymmetry and centrosymmetry.

We introduce some notations. Let J,, be the matrix of the flip operator in F" mapping (x1, X2, . . . , X)
to (Xn, Xn—1, - - -5 X1),
0 1
= R (2.1)
1 0

For a vector X € F" we denote by x/ the vector J,x and, in case F = C, by x* the vector J,X, where X
is the vector with the conjugate complex entries,

x/ =Jnx and x* = JnX.
In polynomial language the latter looks like
X () =xHe" !, xFe) =x@ " He"

Avector X is called symmetricifx/ = x, skewsymmetricifx/ = —x, and conjugate symmetric if x* = x.
For an n x n matrix A, we denote

A=Ay and A" = AT,
where A is the matrix with the conjugate complex entries.
Ann x nmatrix A is called persymmetricif ' = AT. The matrix A is called centrosymmetricif A = A.
It is called centro-skewsymmetric if A/ = —A and centro-Hermitian if A* = A.
The following facts for square matrices are easy to verify:

1. Any Hankel matrix is symmetric.

2. Any Toeplitz matrix is persymmetric.

3. AToeplitz matrix is centrosymmetric if and only if it is symmetric.

4. A Toeplitz matrix is centro-skewsymmetric if and only if it is skewsymmetric.
5. A Toeplitz matrix is centro-Hermitian if and only if it is Hermitian.

2.2. Complexity

In this paper, we will estimate the quality of an algorithm according to its computational complex-
ity. The reader should be aware that complexity is not the only criterion to judge about an algorithm.
Another important criterion is stability. However, the issue of stability is much more difficult to handle
and is beyond the scope of the present paper. To some extend we will also discuss the parallel com-
plexity of the algorithms. Our approach to parallel processing is a naive one. We assume that we have
as many processors as we wish and we do not take into consideration the amount that is needed for
the information exchange between the processors.

By computational complexity we mean the number of arithmetic operations. We do not count, for
example, permutations, multiplication by —1 and, in the complex case, forming the conjugate complex
number and multiplication by the imaginary unit. (A) stands for additions or subtractions of elements
of IF, and (M) stands for multiplications or divisions.

Our complexity estimations will be of asymptotic nature, which means that we are not interested
in the exact number of operations but in its dependence on the size of the problem, which here is
the length of a vector or the order of a matrix. For example, “the algorithm A has complexity 0(n?)"
means that the complexity in dependence on n rises like a quadratic function. We will always neglect
lower order terms. For example, the statement “algorithm A has complexity C(n) = an®" means
that the complexity is equal to C(n) = an® 4+ C’(n) where n]_l)ngo C’'(n)n~2 = 0. We always have

C’(n) = 0(n).
We will mainly have three types of operations:
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1. addition of two vectors,
2. multiplication of a vector by a scalar, and
3. inner products.

By “inner product” we mean the multiplication of a row by a column vector of F*. Clearly, vector
addition of vectors of length k requires k (A) and multiplication of a vector by a scalar k (M). These two
operations are completely parallelizable. If k processors are available, then we need only 1 (A) or 1
(M), respectively. For an inner product k (A) plus k (M) are needed. But inner product calculation is not
completely parallelizable. The most what can be achieved is a parallel complexity of O(log k). This is one
reason why we are looking, among other things, for algorithms that avoid inner product calculations.

The number of operations reduce if the vectors have some symmetry properties. For example, the
sum of two vectors of length k which are both symmetric or skewsymmetric requires only % k (A).
The same reduction appears for the multiplication of such a vector by a scalar and for inner products
of such vectors. For an inner product of a general vector and a symmetric or skewsymmetric vector
of length k only % k (M) but k (A) are needed. In fact, suppose that f"u has to be computed, where

f= f andu = v Then
R v

f'u=(f +f§)Tv.

In the case that F = C it is reasonable to distinguish between complex multiplication (CM) and
addition (CA) and their real counterparts (RM) and (RA). We consider 1 (CA) as equivalent to 2 (RA)
and 1 (CM) as equivalent to 4 (RM) plus 2 (RA), although there are versions of complex multiplication
with only 3 (RM) but more (RA). Thus the inner product of two complex vectors of length k requires
4k (RM) plus 4k (RA). Let us estimate the amount for the inner product of a general by a conjugate

g1 +ihy

g +ihy

v —iw/
andu = , Where the vectors g1,
v+ iw

symmetric vector of CX. Suppose that f = {

g>, 1, and v are real. Then
flu= (gﬁ +g2)v+ (hll —hz)W-l-i[(h’l +h2)v— (g]l —gz)w].

That means the complexity is 2k (RM) plus 3k (RA).

The algorithms presented here in this paper are of recursive nature. In the Levinson-type algorithms
we will have vectors of length k where k runs from 1 to n. For the Schur-type algorithms we will have
vectors of length n + 1 — k for k running from 1 to n. If the complexity of the operations for vectors of
length k is about ak for some positive a, then in both cases the overall complexity will be % n?, since

> r_qkis about % n?.
The following table lists some complexities for quick reference. Here u, v € F¥ denote arbitrary

vectors, « is a scalar, uy, v, € IF¥ are symmetric or skewsymmetric vectors in the first two rows. The
special case ' = Cis considered in the last two rows. Here u.; and v are conjugate-symmetric vectors.

u+vioeulu'viuy +vijouy |ulvy [ulv
M| 0 |k|k 0 | 2k | 3k |1k
A | k |0 k| 1k | 0| k| k
(RM)| O |4k| 4k 0 2k | 2k | 2k

(RA) | 2k |2k| 4k k k 2k | 3k
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3. The Levinson algorithm

Throughout this section, let T, = [a,-_j]?jzl be a strongly nonsingular Toeplitz matrix. Besides T,
we consider the leading principal submatrices

Ty = [a,-_j]ﬁjzl fork=1,...,n—1.

First we show how to solve some special systems with the coefficient matrix Tj by recursion, then
we describe how general systems T,z = b can be solved using the bordering method, which will be
described in Section 3.4.

All procedures presented in this section will be referred to as Levinson algorithms, although the
original Levinson algorithm was designed only for the positive definite case, and the recursion for the
special systems is often referred to as Durbin algorithm.

3.1. Recursion for columns of the inverses

We consider two families of special systems
Tyx, =e; and Tkx,:r =e (k=1,...,n). (3.1)
Obviously, the vector x;_is the first and x;' is the last column of T, ' Our aim i to find a recursion for
+
the x; .
The crucial observation is that, due to the Toeplitz structure, the matrix T; can be found twice as a
submatrix of Ty41,

Ty * %
Tk1 = = .
% % * Ty

Hence we have

x, 0 e v,
T | 5 =1 27 (32)
0 x Vi €k

where
+_ - - +
Ve =lag...ailx,, v, =la_1...a_¢]x|. (3.3)
We introduce the 2 x 2 matrix
1
no=| (3.4)
Ve 1
. . | X . 0 .
Observe that I is nonsingular. In fact, otherwise would be a multiple of 4 But this is
0 X

dgtetT"T? # 0. Multiplying (3.2) from the right by 1“,:1 we obtain on the

right-hand side [e1 ek1], which is the image of [x;, ; x,jﬁrl]. Thus the following is true.

a contradiction to e]x, =

Theorem 3.1. Fork =1, ...,n — 1, the vectors xkjE satisfy the recursion
x, O
- o+ 7| X -1
(X1 Xl = | T
0 x;

where I, is defined by (3.4) and (3.3).

The recursion can be started with xft = —
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Complexity. In each step of this algorithm one has 2 inner products, 2 vector additions and 4 scalar
times vector multiplications. We conclude that the amount for computing the vectors x,it by the re-

cursion in Theorem 3.1 is 3 n? (M) plus 2 n® (A). In parallel processing the complexity is dominated by
the inner product calculation, so that the overall complexity is O(nlog n). An algorithm with parallel
complexity O(n) will be presented in the next section.

In polynomial language the recursion in Theorem 3.1 can be written as
— + — + 10 -1
[xk-H (t) xk-H(t)] = [xk (t) x; (f)} - I .

The numbers ykjE are called reflection coefficients or Schur-Szegé parameters.

3.2. Recursion for Yule-Walker solutions

From the view point of computational complexity it is convenient to consider instead of the vectors
xkjE the solutions ukjE of the equations
Tyu, = p, e, and Tku;r = p,j’ek, (3.5)
where pif € T are so that

ey, =1 and epuf =1.

In other words u,j' (t) is assumed to be monic and u; (t) comonic, which means that (u;’)’ (t) is monic.
Due to the strong nonsingularity of T, the numbers ,o,fc are nonzero, and the vectors u,f are uniquely
determined. The equations (3.5) are called Yule-Walker equations.

The vectors x;~ and u; " are related via

1 1
+ _ + + _ +
Xi = —7gu, and w = X,
Px k

where & is the first component of x; and Ek"’ the last component of x,j“. Note that, by Cramer’s rule,

& = S Thus, & = & # 0.This implies

P =P =t pre
Theorem 3.1 leads to a recursion formula for the vectors uf(t) which can also be deduced imme-
diately from the relation

- +
u 0 orer «
Tk+1 | = IR N (3.6)
0 ug o Pr€k
where o = [ag...a1]uy, a,j' =la_q...a_g] u,f. Note that the reflection coefficients yki intro-

duced in the previous subsection are given by

:F

+ _ %
Vk - .
Pk

We state the emerging recursion in polynomial language.
Theorem 3.2. Fork = 1,...,n — 1, the polynomials uki (t) and the numbers py satisfy the recursions
_ + _ 4 10
[“k+1 (t) uk+1(t)] = [u, () uy ()] 0t Dy

and
Pk+1 = Pk (1 - VkJrVI:) )
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where

L
P = PG (3.7)
—Vk 1

The recursion can be started withu;” = u; = 1and p; = ap.

Complexity. Like for the computation of the vectors x,f, in each step of this algorithm one has 2 inner
products and 2 vector additions. But we have only 2 scalar times vector multiplications, compared
with 4 for the x,f. Hence the amount for computing the vectors uki by the recursion in Theorem 3.2 is

2n? (M) plus 2 n? (A).

It is worth to mention that the reflection coefficients yki coincide with some components of the
vectors uf. In fact, the following can be concluded from Theorem 3.2.

Corollary 3.3. Let v, denote the last component of u, and vlj the first component of u,f. Then, for
k=1,...,n—1,
+
Ver1 = Ve -

3.3. Symmetric and Hermitian cases

We discuss the simplifications of the Levinson algorithm that we have if T, has some symmetry
properties.

Let T, be symmetric. Then T, is also centrosymmetric. Thus we have Tj (X, Y = e]l = ey, which

means that x,f = (X Y =: x. Analogously u,j' = (uk_)J =: uy and y,:r = ¥, =: Yk Hence the
recursions in Theorems 3.1 and 3.2 can be written as
1
X (0) = T3 (£x0(6) = M) (©O)  and W (6) = tug(t) — i (W) (0).
— Yk

Complexity. In the case of a symmetric Toeplitz matrix, the amount for computing the vectors u; by
the recursion in Theorem 3.2 is n® (M) plus n? (A).

Let now FF = C and T, be Hermitian. Then T;, is also centro-Hermitian. Thus we have Ty (x, )=

e¥ = ey, which means that x;” = (x;)* =: x,. Similarly, i = (W)* = w,y, =7 = n.

Hence the recursions in Theorems 3.1 and 3.2 can be written as

1
X1 () = —— (txk(t) - ykxlf(t)) and ug41(0) = tug(0) — Y (0).

lvkl?

Complexity. Inthe caseofacomplexHermitian Toeplitz matrix we count the number of real operations.
Thus the amount for computing the vectors uy, by the recursion in Theorem 3.2 is 4 n> (RM) plus 4 n?
(RA).

3.4. Bordering method

The solutions computed by a Levinson-type algorithm can be used to solve a general system T,z = b,
b = (bj)iL. The corresponding procedure is called bordering method. It is not restricted to Toeplitz
matrices. Therefore, we explain it for a system Az = b with a general strongly nonsingular coefficient
matrix A = [aj]i ;-

Let x;, be the solution of AyX;, = ey and z; be the solution of Ayz;, = by, where b, = (bi)ﬁ‘zl, k=
1,...,n, A= A,.Then
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z || by
Ak+l|:0i|—|:ﬂki|»

where
Br = |:ak+1,1 cee ak+1,k:| Z.
We conclude that
Z
Zyy1 = [ 0 } + (k1 — Bi)Xie+1- (3.8)

by
We start the recursion withz; = —.

an
Similar relations exist that involve the monic solutions uy of Ayu; = pre.

Complexity. The application of the bordering formula (3.8) requires in each step 1 inner product, 1
vector addition and 1 scalar times vector multiplication. This results in an overall amount for bordering
of n? (M) plus n? (A). Thus the amount for solving a Toeplitz system (using the vectors uki) is 3n?% (M)
plus 3 n? (A). This reduces to 2 n* (M) plus 2 n® (A) for solving a symmetric Toeplitz system. The cost
for an Hermitian Toeplitz system is 8 n> (RM) plus 8 n® (RA). In the case of a symmetric or Hermitian
Toeplitz matrix the cost for bordering can be reduced utilizing the symmetry properties. This will be
explained in Sections 10 and 12.

4. The Schur algorithm

We now present another algorithm, which is named after I. Schur. Originally the Schur algorithm
was designed to answer a question in complex function theory. Later it turned out that this algorithm
has a wide range of applications. In particular, it can be used to solve Toeplitz systems, since it pro-
duces the LU-factorization of the matrix (see Section 5.2). It can also be combined with the Levinson
algorithm replacing the inner product calculations there. The resulting method has a slightly higher
complexity than the pure Levinson algorithm in sequential but a significantly lower complexity in
parallel computing.

4.1. First version of the Schur algorithm

Besides the submatrix Ty, of T, we consider the two (n — k 4+ 1) x k Toeplitz matrices
Ag—pn ... A1—pn ak—1 ... Qo
T, =| : and T, =| Co. (41)
ap ... a1—k an—1 ... Qpn—k

Note that the last row of T, is the first row of Ty, and the first row of T,;F is the last row of Ty.

As in Section 3.4, xkjE will denote the first and the last column of T;~ 1 respectively. Then, for k =
1,...,n,

- —

|:Tk } X x']= |:Sk Sk }
+ ke BT = |
Ty Sk Sk

where the vectors sp = = (s7:)'fF1 € F"~k+1 are given by

++ + —+ +

Sik = |:ak+i72 cee Qi }Xk s Sik = [akﬂ-,],n ... Qj—p ] X -
In particular,

+— _ ++ _ —— _ — .

St =0, sip =1, s =1 Sk =0



G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1-59 11

and the reflection coefficients (3.3) are

yk+ = s;k_ and y, = Sn_j<,k- (4.2)

The vectors skjEi will be called residual vectors.

Let us explain briefly the importance of the residual vectors for an LU-factorization of the matrix
T,. More details are discussed in Section 5. Let V denote the upper triangular matrix the kth column
+
X 0
of whichis | " |.ThenL = T,V is lower triangular and the kth column of L equals — | Hence
0 Sk
T, = LV~ is a triangular factorization of T,. That means that the matrix L formed by the residual
vectors s,er is just the L-factor of an LU-factorization of Tj,.
The Schur algorithms computes the residual vectors recursively. To derive it we utilize the Toeplitz
structure, as in the derivation of the Levinson algorithm. Let us adapt some notation. Foru = (uj)Z; €

[F™, we denote by I u, [_u the vectors
[tu= ()i, I-u= (uj)jm=_11’ (4.3)

respectively. That means that I} cuts off the first and I_ cuts off the last component of the vector.
Moreover,

Ieiu = I (I1u). (4.4)
Note that
M o— ] —+
Ty, Sk
LT |xf=| 0y | e P K (k> 1),
+ 4+
Ty Sk

and the step k — k + 1 means to extend the zero vector in the middle of the right hand side by one
zero above and below. We have

Topr | | % O | | Lisg Isg

++
k

+ + +—
| Tk | 0 x; Iis,  I-s

Theorem 3.1 leads to the following.

Theorem 4.1. Fork = 1,...,n — 1, the residual vectors sfi satisfy the recursion
—— —— —+
|:Sk+1 5k+1} _ {I+Sk sy, } -1
+— | +— g | Tk
Sk+1 Sk+1 Lisp— I-sy
where
—+
Fk _ 1 Sn—k,k
=|
SZ,k 1

The recursion starts with

—

1 1
++ R
ST =8 = — (ai—l)?:p S =8 =— (ai—n)?:r
ao do

To write the Schur recursion in polynomial language, we introduce the projection Py, defined for
Laurent polynomials by

N _ m _
P (Zk?Mukr" 1) = zkzluktk 1 (4.5)
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That means Py, cuts off all negative powers of t and all powers greater than m — 1. In particular, for
u = (u)y,

(pu)(t) = (u(t) —up)t™ ! = Pp_qt 7 Tu(®), (_u)(t) = u(t) — upt™ ! = Pp_ju(t).
Now the recursion of Theorem 4.1 can be written in the form
[ se (0 s () } . [ 5.0 s, () } [ =10 } o
ssoosho | T setostto o o1] ke
Here the projection P,_j has to be applied entrywise to the matrix polynomial.
In view of (4.2), the recursion in Theorem 4.1 can be used to compute the vectors x,f without inner

product calculations. As for the Levinson algorithm, the number of multiplications can be reduced if
another normalization of the residual vectors is used.

4.2. Recursion for the Yule-Walker residuals

Let, fork = 1, ..., n, the vectors rf{ti = (rl-"’—LkﬂE)}”’;{‘+l € F"*+1 be given by

T, r, r "

k -+ k k

+ +— L+t
|:Tk } I, I

where uf are the solutions of the Yule-Walker equations (3.5). In particular,

= —t
+— -+ . ++ = _ + _ 2k — _ n—kk
Tk =Tnckpik =00 g =T 1= Pks Vi = s Ve = -

Pk Pk

We state the theorem that is analogous to Theorem 4.1 in polynomial language.
Theorem 4.2. The polynomials r,iti(t) satisfy the recursion
T 1 (D) 11 (0 , ., OO | [eTo o
— = Pn—k _ ks
50 nho o to || o1
where

— +— —+

Py = [ w1 } yi = 2 e = ok

- + 5 k — F+° Kk — ==
Yk 1 r

The initialization of the recursion is given by

n—1 n—1
— K — —
O =10 =D at, r7TO =770 =D qeoni th
k=0 k=0

Complexity. In each step of the recursion we have 4 vector additions and 4 scalar times vector mul-
tiplications. The lengths of the vectors are n — k + 1. Thus the overall complexity is 2 n? (M) plus 2 n?
(A), which is the same as for the Levinson algorithm. If the Schur algorithm is only used to replace
the inner product calculations in the Levinson algorithm, then the amount for computing the vectors
uf will be 3n? (M) plus 3 n? (A). In parallel processing we have 2 vector additions and 2 scalar times
vector multiplications, so that the parallel complexity is 2 n (M) plus 2 n (A).
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4.3. Symmetric and Hermitian cases

In the case of a symmetric Toeplitz matrix T, we have T, = ]n_k+1T,:“]k. Since in this case u, =
(u Y, we obtain

Lry” =Tou = Tdwl = (rf Y.
Together with r1+,'f =T, _ry1xthisleadstor, ~ = (r,j"")’. Analogously, rk_Jr = (r,j'_)f.
Similarly, in the case of an Hermitian Toeplitz matrix T, we have r, ~ = (r,:”L)# and r,:+ =
(r .
Thus, in both cases it is sufficient to describe the recursion of the vectors r,ft = r,j'i ,
B N et
(M1 () 15 (O] = Pk [rk (t) ry (f)] 0 1 Py
Analogously, the recursion for the residual vectors skjEjE collapses to
SR
t7' 0
_ _ -1
[5c01(O) sty (O] = Poi [ 500 s (0 ] R

where sf = skHE. In all cases the amount reduces by 50% compared with the general case in sequential

processing. In parallel processing the amount remains the same.

4.4. Schur-type bordering

The bordering method explained in Section 3.4 involves inner product calculations that could be
avoided as shown next.

We use the notation of Section 3.4 and introduce the (n — k) X k matrix A;, = [a;][_, _Hk j=1 and
residual vectors bj, = A,zy and sy = A, Xy. Note that Sy is the first component of bj,. Then the recursion
for z implies a recursion for the residual vector by,

biy1 = Libj + (b1 — BSk41. (4.6)

In the case of a Toeplitz matrix A = T, the matrix AL is obtained after the first row in T,j' is deleted

and s, = I+slf+, where s,;H’ is defined in Section 4.1.
In the next section, we show how to solve Toeplitz systems exclusively with the Schur algorithm.

5. Triangular factorizations

In this section, we show how the algorithms discussed before can be used to find triangular factor-
izations of Toeplitz matrices and their inverses.

5.1. General matrices

To begin with we recall some standard material and present it in a form which is convenient for
our purposes.

Arepresentation of a nonsingular n x n matrix A in the form A = LDU in which L is lower triangular,
U is upper triangular and D is diagonal is called LU-factorization. Clearly, the LU-factorization of a matrix
is, if it exists, not unique. We will consider three kinds of normalizations:

® In the unit LU-factorization L and U are assumed to be unit triangular. A triangular matrix is called
unit if it has ones on the main diagonal.
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e If A = LDU is the unit LU-factorization, then A = (LD)D~!(DU) will be called co-unit LU-
factorization. The reason why we consider this factorization is that in some cases the amount
to compute the co-unit LU-factorization is less than the amount for the computation of the unit
LU-factorization.

e [fF = CandAis Hermitian positive definite, then there exists an LU-factorization with D = I, and
U = L*. This is the Cholesky factorization. Moreover, the middle factor D in the unit factorization is
areal diagonal matrix.

Proposition 5.1. If a matrix A admits an LU-factorization, then it is strongly nonsingular. Conversely, any
strongly nonsingular matrix admits a unique unit, a unique co-unit and, in case A is Hermitian positive
definite, a unique Cholesky LU-factorization.

Analogously to LU-factorization a UL-factorization is defined. The n x n matrix A admits a UL-
factorization if and only if the matrix J,AJ, is strongly nonsingular. Speaking about triangular factor-
ization we mean an LU- or a UL-factorization.

If A = LDU is the unit LU-factorization of A, then AT = UTDLT is the unit LU-factorization of
the transpose of A. Furthermore, A~! = U~'D7'L~! is the unit UL-factorization of A~!. Let us also
mention the obvious fact that the LU-factorization of A includes an LU-factorization of all its leading
principal submatrices Ay, and the UL-factorization of A~! a UL-factorization of all Ak_l.

The following is a straightforward consequence of the uniqueness of the factorizations introduced
above.

Proposition 5.2. Let A = LDU be the unit or co-unit LU-factorization of A. IfA is symmetric, then U = LT.
IfF = C and A is Hermitian, then U = L*.

Now we show how the factors of the unit (or co-unit) LU-factorization of A and the co-unit (unit)
UL-factorization of A~! can be characterized. For this let us adapt a notation. Let (v ]’7:1 be a sequence

of vectors such thatv; € F. Then U (vj)]’-l:1 denotes the n x n upper triangular matrix the kth column
of which is equal to

Vi
U(Vj)]nzlek = 0
n—k

For a sequence (w;)i_; with w; € FH1=, by L(wj i is denoted the lower triangular matrix the
kth column of which is equal to

0r—1
L(Wj)}l:lek =
If (dj)}’zp then D(dj)]”=l will denote the diagonal matrix diag (dy, . .., dy).
LetA = [aij]?,j=1 and A, = [aij]gfj=1 (k=1,...,n),and let x; and X be the solutions of

AiXy = e, and Azik = ey,

&k = ezxk = ezik. Then
X 0y— X 0
A kel | Qe and AT kol /i 1
0r—1 Sk 0r—1 Sk
for some vectors s, $; € F"¥*1 the first component of which equals 1. Then the following is true.

Proposition 5.3

1. The factors of the unit LU-factorization of A, A = LDU, aregiven by L = L(sg)j_,, UT = LGk)i_,,
and D = (D(&)j—,) "
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2. The factors of the co-unit UL-factorization of A~!, A=! = U1D1Ly, are given by Uy = U(X)i_,,
L] = U®}i_y and D = (D(Ef_p) "

For the co-unit factorization of A we consider the solutions uy and Uy, of the equations Ayu, = pyey
and Agﬁk = prey satisfying ezuk = ezﬁk = 1. It can be checked that py = pi . Let

u 0,_ U 0,_
A k _ k—1 and AT k _ i 1 )
Ok—l I Ok—l Ik
Then the following is true.

Proposition 5.4

1. The factors of the co-unit LU-factorization of A,A = LDU, are given by L = L(rx)j_;, ul =
L(F)i—y, and D = (D(p)f_p) .

2. The factors of the unit UL-factorization of A=', A~! = U;D{L; are given by U; = Uiy,
L} = U@}, and D1 = (D(p)j—y) "

In the theory of orthogonal polynomials the unit UL-factorization of A~ appears in polynomial
language. In this language UL-factorization means the representation of the generating polynomial of
A~1in the form

n

1
ANt ) =D P (D) ug(s).

k=1
Analogously, the unit LU-factorization of A means to represent A(t, s) in the form

n

Alt,s) = Elsk(t)tk_1§k(s)sk_1.

k=1 Sk
5.2. Persymmetric matrices

Recall that an n x n matrix A is called persymmetric if A/ := J,AJ, = AT and that Toeplitz matrices
have this property. Obviously, A is persymmetric if and only if AJ,, is symmetric.

Proposition 5.5 If A is strongly nonsingular and persymmetric, and A = LDU is its (unit or co-unit) LU-
factorization, then the (unit or co-unit) UL-factorization of A is given by A = UyD1Lq, where U; = (UTY,
Dy = Dl and Ly = (LTY. Conversely, a UL-factorization can be transformed into an LU-factorization.

For a symmetric matrix A the upper triangular factor of the unit UL-factorization of A~ (or of the unit
LU-factorization of A) can be immediately obtained from the lower triangular factor by transposition,
L = UT. This is not the case for a persymmetric matrix. For the construction of the triangular factors
we need both the vectors uy and uy, (or s, and S ). However, due to the close relationship between
symmetric and persymmetric matrices, there should be some hidden relation between these vectors.
Let us describe such a relation between the vectors uy and Uy, in the following proposition.

Proposition 5.6 If A is persymmetric, then the vectors Uy and uy, are related via

k U
=~ J
Jke = px § —u,

j=1 P

where V; denotes the first component of u;.
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Proof. Due to the persymmetry we have
Akﬁ{( = prei.
Hence

~ _ -1 _ T
I = peA e = pU(u), (D(pj)]k:]) (U(“j)j';]) er.
The assertion is now immediate. [J

Proposition 5.6 can be interpreted in the following way. Both systems { u(t) } and {ﬁi(t) } are
bases of F"(t). Proposition 5.6 describes the matrix of basis change. The inverse of this matrix has a
similar form. We leave it to the reader to find it. We also leave to reader to find a relation between the
vectors s, and Sy that generate the triangular factors of the LU-factorization of A.

5.3. Toeplitz matrices

Comparing the discussion above with the content of the previous sections we see that in the case
of a strongly nonsingular Toeplitz matrix T, the Levinson algorithm just computes a UL-factorization
of T, 1"and the Schur algorithm computes an LU-factorization of T,. In fact we have with the notations
of Sections 3.1 and 3.2

Xe =%, %=, w=u, =)
and with the notations of Sections 4.1 and 4.2

sc=s; " Se=(s; Y, m=r", =@ ).
Recall that, since T, is persymmetric, the LU-factorization of T, can be transformed into a UL-
factorization of Ty, and the UL-factorization of T, ! into a LU-factorization of T, !. Furthermore, we
recall from Corollary 3.3 that the numbers V; appearing in Proposition 5.6 can be expressed in terms
of the reflection coefficients.

Note that apparently there is a close relationship between bordering and UL-factorization of T, 1

5.4. Solving Toeplitz systems with the Schur algorithm

We just have shown that the Schur algorithm produces the LU-factorization T, = LDU of a strongly
nonsingular Toeplitz matrix. This factorization can be used to solve a system T,z = b by back substi-
tution. That means we first solve the lower triangular system LDy = b and then the upper triangular
system Uz =y.

The complexity for solving a triangular system is % n? (M) plus % n? (A). Thus the overall complexity
for solving a Toeplitz system exclusively by applying the Schur algorithm is 3 n? (M) plus 3 n? (A) which
is the same as for the Levinson algorithm combined with bordering.

5.5. Inertia computation

First of all let us recall from the basic course in Linear Algebra what is meant by the inertia of a
matrix. Assume that F = C, and let A be an Hermitian n x n matrix. The triple of integers

InA = (p+,p-. Po)
in which p4 is the number of positive, p_ is the number of negative, and pg is the number of zero
eigenvalues, counting multiplicities, is called the inertia of A. Clearly p+ 4+ p— + po = n. The integer
SgnA =py —p—
is called the signature of A. Note that p_ +p. is the rank of A, so that rank and signature of an Hermitian
matrix determine its inertia.
Two Hermitian n x n matrices A and B are called congruent if there is a nonsingular matrix C
such that B = C*AC, where C* denotes the conjugate transpose of C. It follows Sylvester’s inertia law:
Congruent matrices have the same inertia.
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Both the Levinson and the Schur algorithm can be used for the computation of the inertia of a
Toeplitz matrix. In fact, let F = C and T, be Hermitian, and let T, = LDL* be an LU-factorization of
T,. Then, by Sylvester’s inertia law we have sgn T, = sgnD = sgn D~ '. Hence we have

n n
sgnTy = D> sgnpx = D sgnéy. (51)
k=1 k=1

The numbers & and py are computed by the Levinson algorithm, the numbers pj also by the Schur
algorithm.

6. Displacement structure and quasi-Toeplitz matrices

In this section, we present an alternative derivation of the Schur algorithm for the unit or co-unit
LU-factorization of a strongly nonsingular Toeplitz matrix not relying on the Levinson recursion. The
advantage of this approach is that it can easily be generalized to more general structured matrices.

6.1. Gauss-Schur reduction

To begin with let us recall a version of Gaussian elimination that is called Gauss-Schur reduction
or Schur reduction. The Gauss-Schur reduction produces an LU-factorization of a strongly nonsingular
matrix A = [a,-j]ﬁj=1. We show this for the co-unit LU-factorization. The procedure for the unit LU-
factorization is similar. We use the notation of the previous section.

Put Ay = A, and let A; = LDU be the co-unit LU-factorization of A;. The first column 1; of L, the
first row u{ of U, and the first diagonal element d; of D are given by

T T -1
l] = Aqeq, uy =e1A1, d] =day -

Furthermore, the matrix Zz =A—d; llu¥ is of the form

- 0o’
Ay, =
0 Ay

for some (n — 1) x (n — 1) matrix A,. Note that A, is the Schur complement of the element ay; in the
matrix Aq. Indeed, the representation of A; in the form

ayn (pup)?
A = | 90 (Iyuq) ’
I+l1 An

where I is defined in (4.3), and Ay; is the matrix in the upper right corner of A1, makes clear that
Ay = A — (I41h) - (uy)T.

an
From the first column and row of A, one can get now the second column of L, the second row of U
and the second diagonal element of D. Proceeding in this way one obtains the co-unit LU-factorization

of A. Let us summarize.
Proposition 6.1 Let A be a strongly nonsingular matrix of order n. Then the co-unit LU-factorization of A
is given by

D =D(d)j=y, L=LMWi—y, U" = Luj_s,
where Ay = A, dy = (elAwer) ™, Iy = Arer, uy = Aley, and Ar4q is the Schur complement of the
(1, 1)-entry in the matrix Ay.

6.2. Quasi-Toeplitz matrices

If A = T, is a Toeplitz matrix one would like to exploit the structure of the matrix. Unfortunately,
the matrix A, is not Toeplitz anymore. Nevertheless some structure is preserved, as we are going to
show now.
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We consider the transformation V4 (A) in the space of n x n matrices defined by

Vi(A) = A — S,AS!, (6.1)
where S, is the matrix of the forward shift operator,
00 0
10 0
Sy = o ) (6.2)
0 10

It can easily be checked that this transformation is one-to-one. The transformation V_ is called shift
displacement operator. Note that there are modifications of this transformations that will be discussed
in the exercises.

For a Toeplitz matrix T, = [aj_j]ﬂj:1 we have, obviously,

Gy a_1 ... Gi—p ag 1

ag 0 ... O a 0]|01 ag a_q ... aj—
vaa=| T = LO o

apn—1 0 ... 0 apn—1 0

where ay = % ap. Another rank decomposition of V1 (T,), which is more convenient for us, is

dp 0
1 a m ap d—q ... 41—
Vi =—| . . 2{“1 1ﬂ, (63)
ao : : 0 a1 ... a1—p
apn—1 Gp—1

where

z:[;_ol]

In particular, the rank of V(T,) equals 2, unless T, is triangular. In the latter case the rank of
V4 (T,) equals 1, unless T, = O.

Notice that if T, is Hermitian, then V4 (T;) is also Hermitian, and the signature of V4 (T;) equals
zero, unless T, is diagonal. (Obviously, T, diagonal means T, = apl, and sign(V(T,)) equals the
signum of ag.)

Definition Ann x n matrix A is called quasi-Toeplitz if rank V (A) < 2.

Clearly, Toeplitz matrices are also quasi-Toeplitz, but not vice versa. The following proposition gives
acomplete description of quasi-Toeplitz matrices. Since the proofis an elementary calculation, we leave
it to the reader.

Proposition 6.2 Suppose that V, (A) = g, g’ —h,h' g, = (gii)?:p hy = (hii)?zl. Then A can be

represented as the sum of 2 products of triangular Toeplitz matrices,
g o l[g ... g h 0 |[hy ... hH

n
A=| SRR el B R P (6.4)
gt ...g Lo g ht ..o hf |0 hy

Conversely, if A is given by (6.4), then V_(A) = g.g’ —h h’.
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For a quasi-Toeplitz matrix A, V4 (A) admits a representation
Vi) =G4+Z (G0)'
for n x 2 matrices G+. The middle factor ¥ is introduced for convenience. In particular, if A is a
symmetric Toeplitz matrix, then G_ = G4, and if A is an Hermitian Toeplitz matrix, then G_ = G.

The matrices G are called generators of A. The generators are not unique. In fact, if G+ = G404 for
some nonsingular 2 x 2 matrices @, then G, ©G' = G XGT if

6_=3x60]"%.
We now show that the property of being a quasi-Toeplitz matrix is preserved during the process of
Gauss-Schur reduction. First we consider a special case.

Suppose that G+ = I:g:t hy ] g+ = (g5),, he = (hF)™,, are the generators of the matrix
A= [aU]
We say that the generators are in proper form if hT = h; = 0. For example the generators in (6.3)

are in proper form.
If the generators are in proper form, then a;; = g; g]Jr # 0,

Aey =V, (Ae; =g; g, ejA=e V. (A) =g gl.
Hence

=g g. w=g g, d=@g) "

Proposition 6.3 Let A be a quasi-Toeplitz matrix, G its generators in proper form, and let A, be the Schur
complement of ay1 in A. Then A, is quasi-Toeplitz and

T
V+(A2) = I:I,g+ I+h+ j| P [I,g, I+h, ]
where I are defined in (4.3).

Proof. Let A, be defined as above. Then

Vi(A) =Vi(A) — Vi(gegl)
=g.g’ —hih! —gg’ +5.2 (Sg)"

This implies
ViA) = (-g)(-g )" — (4hp)(Iph)',
which is the assertion. [

It remains to show how generators can be transformed into proper form. For this we observe first
that, in view of aj; # 0, we have g"g;” — hi hy # 0.In particular, g g; # Oor hj hy # 0.Assume,
without loss of generality, that we have the first case. We define

1 —y-
D = v
v+ 1

with yp = g. In view of gi'g;” — hjh] # 0, this matrix is nonsingular. Furthermore, we set
G+ =G,®TandG_ = G_®.Then

Gi2Gl =G6.oTs0™Gl = (1 — y_y ) VL (A),
and G are in proper form.

6.3. Schur algorithm for quasi-Toeplitz matrices

We now describe an algorithm for LU-factorization of a strongly nonsingular quasi-Toeplitz matrix
A. As in Proposition 6.1, let Ay = A and A1 the Schur complement of the (1, 1)-entry in Ag. We
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represent Vi (Ax) in the form

V4m>= Pz,

ik

where ¢ = [g(k) h{ } ® = (g h h = (hi)"=f are in proper form, i.e. hf; = 0. In the
Toeplitz case G( ) are given by (6.3) and p; = ag # 0. Our discussion yields the following.

Proposition 6.4 The generators G(kﬂ) [gi‘ﬂ) h(i’“’l) ] and the number py1 are recursively given

by
k—+1 k k k+1 k k
Y = [I_gﬁr) I+h5r) ] @, ¢+ [l_g(,) 1,h%® ] P
and
_ -+
Pr+1 = 1 =y ¥ )px
where

— +

o | T TV +_ hy
k = + sy Yk & —x-
_yk 1 g]k

The factors of the co-unit factorization A = LDU are then given by
L =LYk, U'=L@oj_;, D=D(i_,
where I, = gff),uk = ggc) and d, = ,o,:l.
6.4. The Toeplitz case
We show that in the case of a Toeplitz matrix A = T, the algorithm described by Proposition 6.4

coincides with the Schur algorithm described in Section 4.2.
Comparing the initial data of both algorithms we see that

1 1 - 1 __ 1 _
gﬂr) = rl++ h(+) = rT — ageq g(,) =Jur; h(,) =/ (r1 R aoen) .
Hence
1 1 - 1 — 1 _
gV =1t L =0, g =gy, Y =g T
That means after the first step we have the same data. Consequently, fork = 2, ..., n,
k k k — 1 _
g-(i-) = 1'1_<H_ h( ) = l‘k g(—) = Jnt1-kT s h(_) = Jn+1—kTy +

This justifies to say that the algorithm described in Proposition 6.4 is in the Toeplitz case just the Schur
algorithm presented in Theorem 4.2.

6.5. Outlook to Toeplitz-like matrices

The algorithm described in Proposition 6.4 can easily be generalized to a wider class of matrices
called Toeplitz-like matrices. A matrix A is called Toeplitz-like if the rank r of V1 (A) is small compared
with the order of the matrix. Using a rank decomposition of V (A) a representation of the form (6.4)
can be derived, where a sum of r products of lower and upper triangular Toeplitz matrices occurs. It is
quite clear how the Schur algorithm can be generalized from quasi-Toeplitz to Toeplitz-like matrices.
This is however beyond the scope of the considerations here.

7. Algorithms for Hankel matrices

In this section, we consider strongly nonsingular Hankel matrices H, = [hi+j—l]21=1 and present
algorithms for the solution of Hankel systems and for triangular factorizations of H, and H, 1. Recall
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that a Hankel system can immediately transferred into a Toeplitz system by multiplying the system
by J,. However, the property of strong nonsingularity might be gotten lost after the transformation.
Furthermore, the algorithms for Hankel matrices are of independent interest.

As for Toeplitz matrices, there are two types of algorithms. We call them Levinson-type and Schur-
type, although in the literature different names are used.

7.1. Levinson-type algorithm

As in the Toeplitz case, the basic tool is a recursion for the solution of special systems. However, in
the Hankel case we consider only one family of equations. But similar to the Toeplitz case, we discuss
two versions of special systems, namely

Hixy = ey
and
T
Hyu, = prey, e u, = 1.

In contrast to the Toeplitz case, the Hankel algorithms are based on 3-term recursions. To deduce
these recursions for the vectors x; we observe that

00 0
Xj—1
0 x 10 ’ 1
Hi+1 = s Hikta 0 = ,
Xr 0 or 1 0 Ok—1
oy Ok Opq
where
ok = [hk41 - - horl Xk, 0 = [Mkga - - - hokr ] X
These observations lead directly to the following recursion.
Theorem 7.1 Fork = 2, ..., n — 1, the vectors Xy, satisfy the recursion
Xk—1
Xk
Xpp1 = — — (ox — ok—1) -] 0 ,
Tk Xk 0 0

where 1y, is the nonzero constant

/ /
Ty = 0 — 0_q — (Ok — 0}—1)0%.

Proof. We check that the vector of the last three components of

Xk—1
0 Xk
Hi41 — (ox — Ok—1) - 0
Xk 0 0

is equal to txes. This proves the recursion. [J

Obviously, x; = % o] = % and 01’ = 2—? We can start the recursion with k = 1 if we set Xg

empty and og = 0} = 0.
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In polynomial language the recursion of Theorem 7.1 can be written as
1
X1 (8) = P (t — ok + ok—1)Xk(t) — Xk—1(1).
k

For evaluating the monic vectors uy recursively, we compute in each step
/ V4
Px = [het1 .. hog]ue and o = [hgqa .. hopp1] ug.

Theorem 7.2 Fork = 2, ..., n — 1, the vectors uy, satisfy the recursion
Up—1q
0 Uy
Wy = — o —B| 0 |,
uy 0 0

where

!/ /

Pk Py Pr—1

Bo= ", ap="tk - DL

Pk—1 Pk Pik—1
Furthermore,

" !/ 4
Pkl = P — QP — PrPr—1-

Proof. The recursion formula immediately follows from the relation

pr 0 pr—1 1 0

Pl/< Pk ;0//<_1 —og | = 0 . U
i / i

Pr P Pr—1 | [ —Pk Pk+1

In polynomial language the recursion can be written in the form

w1 () = (6 — a)ug(t) — Brug—1(6).

We put ug empty, po = 1, py = py = 0and start withuy = 1, py = hy, p; = ha, p; = hs.

Complexity Comparing the number of operations in the computation of the vectors X, and u;, we
observe that, in contrast to the Toeplitz case, the overall complexity is about the same. In each step we
have 2 inner products, 2 vector additions and 2 scalar times vector multiplications. The vectors have
length k, and k runs from 2 to n. This leads to an overall complexity of 2 n? (M) plus 2 n® (A), which is
the same as for the second version of the Levinson algorithm for Toeplitz matrices (see Section 3.2).

Theorem 7.2 can be interpreted in the following way.

Corollary 7.3 The matrix D of the operator of multiplication by t with respect to the bases {uy, (t)}z;} and

{u(6)}3—; is the n x (n — 1) tridiagonal matrix

_Oll B2
1 o) ’
D= 1 . Bn-1

On—1
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7.2. Schur-type algorithm
Besides the submatrices Hy, of H, we consider the (2(n — k) + 1) x k Hankel matrices

he ... hy_q
H, =
han—r ... hap—q
Let us point out that the first row of H,’< is the last row of Hy. The residual vectors s, = (s,~,k),-2:("1_k)+1
are defined as
sk = Hpxy.

In particular, sy y = 1, s = ok, and s3 x = oj.
Then we have

0 Xp Xg—1

=l ySp IS IiySp1 ],
% 0 0, [++ +—Sk Ly ]

!
Hi iy

where I are defined in (4.4). From Theorem 7.1 we now conclude the following.

Theorem 74 Fork = 2, ..., n, the residual vectors sy satisfy the recursion

1
Sk = — (IyqsK — (52, — S2,k—1) Sk — Ly Sk—1),
k

where
Tk = S3.k — S3,k—1 — (S2,k — S2,k—1)S2.k-
: : 1 2n—1
The recursion can be started with s; = A (hi);=; ~ and an empty sg.
In polynomial language this can be written as

1 _
Sk+1(t) = o Pa(n—1)—1 ((1 — Sp.kt — S2,k—10)8k(t) — sp—1 (D)t 2) .
K

. . 2(n—k)+1 .
Now we introduce the residual vectors ry, = H,’cuk = (r,',k)ii"] )+ of the monic vectors u. From

Theorem 7.2 we obtain the following.
Theorem 7.5 The polynomials ry(t) satisfy the recursion

Ty 1(0) = Py(n—ky—1 ((1 — oDy (t) — ,31<l‘k71(t)f_2) ,

where
1,k 2k 2 k—1
Bx = , o= — .
T1,k—1 1,k T1,k—1

The recursion can be started withr; = (h,-)izil_] and an empty ryo.

Complexity In each step of the algorithm described in the previous two theorems we have 2 vector
additions and 2 scalar times vector multiplications. The lengths of the vectors are 2(n — k) + 1, so
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that the overall complexity is 2 n®> (RM) plus 2 n® (RA), which is the same as for the Schur algorithm
for Toeplitz matrices.

As for Toeplitz matrices, the Schur-type algorithm for Hankel matrices can be used in two ways.
Firstit can replace the inner product calculations in the Levinson-type algorithm. In this way we obtain
a mixed Levinson-Schur-type algorithm. Secondly, it provides an LU-factorization of a Hankel matrix,
which is, due to symmetry, of the form H, = LDL'.

7.3. Solution of Hankel systems and LU-factorization

For the solution of general Hankel systems we can repeat everything that was said about the solution
of Toeplitz systems. There is a pure Levinson-type algorithm based on Theorem 7.2 and the bordering
method described in Section 3.4. There is a mixed Levinson-Schur-type algorithm based on Theorems
7.2 and 7.4 and the Schur-type bordering described in Section 4.4. Finally there is a pure Schur-type
algorithm based on the (unit or co-unit) LU-factorization of the Hankel matrix and back substitution.
In all cases the complexity is the same as for Toeplitz matrices.

8. Padé recursions
8.1. Padé approximation at zero

Let f(t) = ?:O]aiti_l be a formal power series, a; € F. In case F = C one may think of f(t)
as a function that is analytic at t = 0 and the series is its Maclaurin (Taylor) series expansion. Padé
approximation at ty = 0 means the local approximation at 0 of f(t) by a rational function

f[m/n](t) — &’
u(t)
wherep € F™,u € F" and m, n are given. Since u(0) must be different from zero we may assume that
u(0) = 1 to make the fraction representation of the rational function unique. Note that this is only
one possibility of normalization. Here we will assume for convenience that u(t) is monic.

Since flm/n] (t) has m + n — 1 degrees of freedoms we can expect that in the generic case the first

m + n — 1 coefficients of the Maclaurin series expansion of f(t) and f[m/”](t) coincide, i.e.

f(0) — "/ (0) = " g (r)
for some formal power series g(t). If this relation holds, then
f(Ou(t) = p) + """ Th(o) (81)

for some formal power series h(t). This is the linearized form of the Padé approximation problem.
Speaking about Padé approximation we always have this problem in mind.

We translate (8.1) into matrix language. For this we introduce the n x n Toeplitz matrix Tp, , =
[ai_j+m]i,]1-1:1 and the m x n Toeplitz matrix Up,n = [ai—j+1]i%, };1. Here we set a; = 0 fori < 0.
Note that the last row of Uy, , equals the first row of T, ,. Comparing coefficients in (8.1) we see that
(8.1) is equivalent to

Um,n p
u=— ,
Tm.n P €
where p is the last component of p. That means, in order to find the Padé approximation f [m/n] (t) of

f(t) one has to solve first the Toeplitz system

Tmau=pe;, u0) =1
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to obtain u. Then the vector p is obtained via
p = Uy pu.
8.2. Padé approximation at oo and partial realization

Padé approximation at to = oo means the following. Let an infinite series in powers of t 1, f(t) =
Pn—1(t)

u, (1) ‘

Z§1sit_i, be given. The problem is to find, for given n, a proper rational function fi" (t) =
where u,(t) € F'(t) is monic and p,—1 (t) € F"~1(¢) such that
f(Oun(t) = pp1(0) + t"h(ET). (82)

Here h(t) is a formal power series. We introduce the n x n Hankel matrix H, = [SH.]‘_‘I]ijl and the
upper triangular n x n Toeplitz matrix T;, = [s;j—] where we sets; = 0 fori < 0.Comparing the
coefficients in (8.2) we find that then

n
ij=1

Hyu, = pe,, elu, =1 and Tyu, = {Pn] :| .
0

Here p = h(0). Consequently, a solution of the Padé approximation problem at ty = o0 is provided
by solving the Hankel system to get u,, and then by multiplying this vector by the triangular Toeplitz
matrix T, to get pp—1.

Let us now discuss the connection with partial realization. The partial realization problem in systems
theory consists, in its simplest form, in finding a linear time-invariant discrete-time system ¥ =
(A, B, 0),

X1 = Axk + Buk,

y=cx* *k=0,1,...)
from the first components of the impulse response. Here u¥ is the input, y* is the output and x* is
the state of the system at the time k, A is an m X m matrix, B is a column and C is a row matrix.

This problem splits into two. First one has to find a proper rational function f;(t) (called the transfer
function) with m as the degree of the (monic) denominator such that

fm(t) = Slt_] 4.+ Szml'_(zm) + o(t—(Zm-H))’

where the numbers s; (called Markov parameters) are given by the impulse response. Then one has to
find (A, B, C) such that

£ (t) = C(tl, — A)~'B.

The solution of the first part is, obviously, closely related to Padé approximation at ty = o0 pre-
sented above forn = m + 1.

8.3. The Padé table

Now we are going to show how the algorithms in Sections 7 and 3 can be applied to find Padé
approximants ™/ of a power series f(t) = ?Zolaiti_1. We know from (8.1) that the Padé ap-
proximation problem (in its linearized form) consists in finding, for given positive integers m and n,
polynomials p(t) = pm.n(t) € F™(t) and u(t) = up ,(t) € F*(t) such that

f(Oupm n(t) = pmn(t) + thrni]h(t)
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for some power series h(t). Both the pair (py,n(t), U, o (t)) and the rational function

Pm,n(t)
um,n(t)

will be called [m/n]-Padé approximant of f.

The Padé approximants can be arranged in a Padé table in which m is the row and n the column
index. The first column of the Padé table is given by the partial sums of f(t) and the first row by the
partial sums of £(t) . The latter can be computed recursively in an obvious way.

The Padé table is said to be normal if all Padé approximants exist. In this section, we assume that
the table of f is normal.

There are many possibilities to describe recursions between the entries of the Padé table. Here we
restrict ourselves to two of them, namely those which are directly related to the algorithms for Hankel
and Toeplitz matrices presented before. More relations can be found in the literature.

Recall from the end of Section 8.1 that u, , is the solution of the Toeplitz system

glm/n] (t) =

T nUm,n = Pm,n€1,
and py,, is given by pin,n = U, nUm,n, where
n m n
Tn = [ai—j+m]i,j:1 and Unn = [ai—j+1],’:1 j=1>

in which we set aq; = 0 fori < 0. In order to apply the algorithms presented earlier in this paper
directly we normalize u,, , by assuming that the last component of u;; , equals 1, i.e. uy, 5 (t) is monic.

8.4. Antidiagonal path

First we show that the algorithms for Hankel matrices presented in Section 7 correspond to a
recursion along an antidiagonal m 4+ n = N in the Padé table. Let us illustrate this by a picture, in
which empty circles denote elements in the Padé table that are known and full circles elements that
will be computed.

n—1 n n+1

/!
m+1 o

For fixed N, we set u, = Wy », Pn = Pm.n and p; = pm,n, and we introduce the Hankel matrices
Hy = JyTmn(n =1, ..., N).Itis easy to see that the matrices H, are the leading principal submatrices
of the Hankel matrix Hy = JyTi,n, and u, is the monic solution of the Hankel system Hyu, = p; €.
Furthermore, we have p, = Jnr,, where ry, is the residual vector of u,, in the sense of Section 7. In
particular, p, is the leading coefficient of p,(t). That means we can apply Theorems 7.2 and 7.5, which
results in the following.

Theorem 8.1 Forn =1, ...,n — 1 the polynomials u,(t) and p,(t) satisfy the recursions

U 1(0) = (t — ap)uy(6) — Bruy—q (D),
Pni1(t) = (t — ap)pn(t) — BnPn—1(1),
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where

On On Pri

Bn = , Oy = — — ——,
Pn—1 Pn Pn—1

and pn, p;, are the last two coefficients of py (t).

8.5. Horizontal path

We show that the Toeplitz algorithms correspond, in principle, to a horizontal path in the Padé
table,

n n+1
m o) — [ ]
m+1 o —> e
The crucial observation is that
Tnt1,nUm,n = Om, ne€n,
where
Om,p = [am+n cev Umt }um,n.
Since
Tmt1.n am+1—n am+1 Tm,n
Tmt1,n+1 = : =
Um+14n -+ Am41 Am+14+n - -+ Am41
we have

0

Pm+1,n Pm,n
j| = 0 0

Un+1,n
Tm+1,n4+1
0 u

m,n
Um+1,n %m,n

and
’ /
pm+1,n pm,n
Upy1n O
T, n+1 = | Pm+1,n Pm,n
0 umn
0 0

This yields the following.

Theorem 8.2 For fixed mandn=1,2,...,
10
[Um+1,n+1 (t) U npa (1) ] = [Um+1,n(f) Um,n(f)] - Pm,n,

[pm+1,n+l (t) Pm,n+1 (t) ] = [Perl,n(t) Pm,n(t) ] Pm.n,
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where
_ Um,n . Pm,n
P = Um+tin  Pmtin
1 1
Furthermore,
OmnPm+1,n — Cm+1,nPm,n
Am,n+1 = .

Pm+1,n

9. Hankel recursion and the Lanczos algorithm
9.1. Lanczos method

Let A be a real symmetric n X n matrix and b € R". In numerical linear algebra, in particular in
connection with iterative methods for solving linear systems, one has to deal with subspaces of the
form

Ki = span {b, Ab, ..., A* b}
These subspaces are called Krylov subspaces. Clearly, Ky is the range of the matrix

Ki=[bab... A "b],

which is called Krylov matrix.

If the vectors b, Ab, ..., A" 'b are linearly independent, then they form a basis of iC,,. However,
for increasing k the vectors A¥b become more and more parallel, so this basis is not convenient for
calculations. Therefore one is looking for an orthonormal basis of K,. The Lanczos algorithm is a
procedure for constructing such a basis. In this section, we show that this algorithm is closely related
to the Hankel matrix recursion described in Section 7.

To begin with let us state the problem. We want to find numbers g;; such that the vectors

i .
wj = > gjA"'b
i=1
form an orthonormal system. Introducing the matrix U, = [Qij]?,j:p qij = Ofori > j, the latter means
that Q, = KUy is a matrix with orthonormal columnsw; (j = 1, ..., n), ie. Q”TQ,., = I,. This shows

that K, = QuRy with R, = U, ! is the QR-factorization of K.
There is the following remarkable interpretation of the left factor of the QR-factorization of K.

Proposition 9.1 IfK, = QuR, is the QR-factorization of K, then M := QnT AQ,, is tridiagonal.

That means the matrix Q, generates an orthogonal similarity transform that maps A into a tridiag-
onal matrix.

To prove this proposition we introduce the operator of multiplication by t modulo a monic poly-
nomial

n
a) =D g, a;=1. (9.1)
j=0
This operator maps =1 to ¢ forj=1,...,n—2and "1 is mapped to t" — a(t). Thus the matrix

of the operator is given by
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0 —ap
C@) =

0 1 —ap—

and is called the companion (matrix) of the polynomial a(t).
First we observe that AK,, = K,C(a), where a(t) is the characteristic polynomial of A. Hence

Ky Ak = (R, Q1) A(QuRy) = C(@).
Consequently,
M = Q]AQ, = R.C(a)R; . (9.2)

SinceRpandR,; T are triangular, C(a) is upper Hessenberg we conclude that M is also upper Hessenbereg.
Since M is moreover symmetric, M must be tridiagonal.
Let

ar P

M — B1
Bn—1

Bn—1 oy

Taking (9.2) into account we see that §; is a product of diagonal entries of R, and R;; 1 thus Bj # 0 for
j=1,...,n— 1.From AQ, = Q,M we see that

AW;j = Bi_1Wj_1 + ojwj + Biwjy1.

From the orthogonality of the vectors w;j, we conclude that o; = ijij. Furthermore, we have
Bi = llAw; — Bi_1Wj_1 — a;jw;||>. That means that the vectors w; can be computed via the recursion
1 Bi—1
Wj11 = s (A — Otj[n)Wj - Wj_1. (9.3)
Bj Bi

The corresponding algorithm is named after C. Lanczos.

9.2. Hankel matrix factorization

Now we explain what the Lanczos algorithm has to do with Hankel matrix factorization algorithms.
For this we observe that the matrix
Hy = K} Ky = [bTA™ 2D},
is Hankel. Furthermore, H, = RER,,. Thus R;, is the upper triangular factor of the Cholesky factorization
of Hp (cf.Section 5.1). What we actually need tofindis U, = R ! The columns q; of Uy, are the coefficient
vectors of orthogonal polynomials that satisfy a 3-term recursion

1 Bi—1
qji1(t) = 5 (t — oj)q;(t) — —— qj—1(t) (94)
j

j
which has the same structure as the Lanczos recursion (9.3).
The conclusion s that the Lanczos algorithm computes recursively the Q-factor of the QR-factorization
of K;,, and the Levinson-type algorithm for Hankel matrices computes recursively the inverse of the
R-factor via the same formulas.
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10. Split algorithms for symmetric Toeplitz matrices

This section is dedicated to the special case of symmetric Toeplitz matrices T, = [a|i_j|]ﬁj=]. We
assume that the characteristic of the underlying field IF' is not equal to 2. The reason for this assumption
is that in the case of characteristic 2 we have 1 = —1, so that symmetric and skewsymmetric vectors
cannot be distinguished. This has the consequence that not every vector can be represented as the
sum of a symmetric and a skewsymmetric vector.

We also assume throughout the section that the order of the matrix T, is even, n = 2m. This
assumption is not essential. It is only to avoid considering different cases and to simplify notation. The
case of odd n can be treated analogously.

10.1. Splitting

A natural question is to ask whether the property of T, to be symmetric can further be exploited to
reduce the number of operations. The answer is “yes", but the reduction comes from the centrosym-
metry of T, rather than from the symmetry. Remember from Section 2.1 that T,, is symmetric if and
only if it is centrosymmetric.

Let IE‘”+ denote the subspace of all symmetric and F" the subspace of all skewsymmetric vectors in
IF". Obviously, IF" is the direct sum of '} and F" , and P+ := % (In £ Jp) are the projections onto [}
along ]F”jF

For a centrosymmetric matrix, the subspaces "} are invariant subspaces. Hence a general system
Tyz = b can be split into the two systems T,z+ = P+b, wherezy = Pyz,ie.z=1z +z_.

10.2. Centrosymmetric bordering

If a system T,z = b, with a symmetric right-hand side b = (b;)._; has to be solved, then it is
reasonable to use the following centrosymmetric version of the bordering method.

For Ap = [a;]j—, let A (k =1, ..., m) denote the 2k x 2k central submatrix
C _ .Mtk
Ay = lagli i S gt1-
Recall that a matrix is called centro-nonsingular if all central submatrices A, (k = 1,...,m) are
nonsingular.

Note that in the case of a Toeplitz matrix A = T, we have A}, = Ty. Hence any strongly nonsingular
Toeplitz matrix is also centro-nonsingular.

Assume now that A is centrosymmetric and centro-nonsingular. Suppose that the solutions wyy, of
AWy = 2Py ey = ey +ej are known. Then the solutions zj, of A}z, = by, where b, = (b,-);lfnk_k i1
can be computed recursively by

0
zp = | 2§ | + (b — B)Wakst2,
0
0
where f; = g; | z{ | and g is the last row of A} ;. (Start with z{ = byw>.)
0

Analogously, centrosymmetric bordering works for skewsymmetric right-hand sides.

Complexity Let us compare the complexity of centrosymmetric bordering with usual bordering. In
each step we have to evaluate 1 inner product of a general vector and a symmetric vector of length 2k.
As mentioned in Section 2.2 such an inner product requires only half of the number of multiplications
and the same number of additions. Thus, for the inner product k (M) plus 2k (A) are required. Besides
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this we have 1 addition of 2 symmetric vectors and 1 multiplication of symmetric vector by a scalar for
which k (M) plus k (A) are needed. Since k runs from 1 to m = n/2 the overall complexity is % n% (M)

plus 2 n? (A). Recall that the complexity for ordinary bordering is n? (M) plus n* (A), so that even if we

have to run centrosymmetric bordering twice (to compute zi) we will save 50% of the multiplications
and 25% of the additions.

10.3. The split Levinson algorithm

In view of the splitting idea, it is reasonable to consider, for k = 1, ..., n, the equations
1
Tkwy = 2P ey, = | 0 (10.1)
1

the solutions of which are symmetric vectors. We are looking for a recursion of the vectors wy. We
will obtain a 3-term recursion which is more similar to the recursion for Hankel matrices than to the
2-term Levinson recursion for Toeplitz matrices.

We have, fork =1,...,n—1,

1 yk_ Yk—1
0 1 0 1
wiy O
Ti+1 =00 and Tpt1 | we—q | =] 0
0 Wp
10 0
Lve 1] L Vk—1 |

with
v = [ag ... ar]wy.

From these relations we conclude that 14y, — yx—1 # 0, since otherwise T4 would have a nontrivial
nullspace. We obtain the following.

Theorem 10.1 Fork = 2, ..., n — 1, the vectors wy, satisfy the recursion
0
1 Wy 0
Wi = — + — | Wy_1 , (10.2)
Tk 0 Wy 0

where Ty = 1+ Yk — Vk—1.

1
The recursion can be started with wy = % and wy = allTaO |: :| . The emerging algorithm is

called split Levinson algorithm.
In polynomial language the recursion in Theorem 10.1 can be written as

1
Wit1(t) = = (1 + Owy (1) — twy_1 (1)) .

k

Clearly, there is an analogous recursion for the solutions w;,~ of the equations
-1
Tyw, =2P_e,=| 0
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Instead of the equations (10.1) the symmetric Yule-Walker equations could be considered. How-
ever, unlike in the classical Levinson algorithm, we will not get any computational gain from this
normalization.

Complexity In the kth step we have to compute 1 inner product of a general vector and a symmetric
vector of length k. This requires % k (M) plus k (A). Then we have 2 vector additions and 1 scalar times

vector multiplication of symmetric vectors for which % k (M) plus k (A) are needed. We have to run

the algorithm twice which results in % n% (M) plus n? (A) compared with n? (M) plus n? (A) for the
classical Levinson algorithm.

10.4. Double-step split Levinson algorithm

Since in centrosymmetric bordering we need only every second vector wy itis natural to ask whether
we can obtain some computational gain if we consider double steps in the split Levinson algorithm.
We are looking for a recursion of the form

0, 0
1 Wy 0,
W42 = — + — | wyk—p | Tk | wy |]- (10.3)
Ok 0, W2k
0, 0
If we multiply the right-hand side by Ty, from the left we obtain a symmetric vector with all com-

ponents equal to zero, except for the last 3 and the first 3 components. The vector of the last three
components is given by

. 1 0 1 0
— Yae | |0 — | vak— | Tok| 1 ,
O—k li /
Yak 1 Yak—2 Yok

where yyy, is defined as above and

/
Yok = [02k+1 R )} ] Wo.

We have to find «y and oy, such that this linear combination is equal to [0 0 1]7. (Note that oy #0
since otherwise T,x4+» would be singular.) An easy calculation leads to the following.

Theorem 10.2 Fork = 2, ..., m—1, the vectors wyy satisfy the recursion (10.3), where oty = Yok—2— Y2k
and

ok =1+ V3 — Vara + Yok (Vak—2 — v21)-

1
We can start the recursion with an empty wg and wy, = ﬁ |: }
1

Complexity Let us compare the complexity of the double-step with the single-step algorithm. For the
recursion from k to k 4 2, in the double-step algorithm 2 inner products and 2 scalar times vector
multiplications have to be computed, which is the same as for the single-step algorithm. That means
the number of multiplications is unchanged. However, we have only 3 vector additions for the double-
step algorithm compared with 4 for the single-step algorithm, so the number of additions is slightly
smaller. We have % n? (A) for the double-step algorithm compared with n® (A) for the single-step
algorithm.

An advantage of the double-step algorithm in comparison with the single-step algorithm is that
instead of strong nonsingularity we need only that every second leading principal submatrix is non-
singular.
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10.5. Relations between wy, w;, and Xy

To solve a general Toeplitz system T,z = b we use the splitting idea of Section 10.1. The naive
approach is to solve both T,z4 = P4b and T,z_ = P_b by centrosymmetric bordering. However,
then we have to run the split Levinson algorithm for both wy and w;, and we will have no gain
compared with the classical algorithm. Therefore, it is desirable to know some relation between the
vectors wy, and wy.

Proposition 10.3 Fork=2,...,n—1,
tWi—1(t) — kW41 ()

w; (t) = — : (10.4)
where Wiy 1(1) # 0and ¢, = x:: 8;
Proof. We have
- e
- 1 0 1
Tiet1 ({wk } - |: 0_ :|) =10| and Tip1 | wy—q |[= |0
0 W 1 0 1
L a . L b .

for some a, b € F. Hence (1 — t)w, (t) = twy_1 — cgWy1(t), for some ¢, € F. Taking t = 1 we
obtain cyWy41(1) = wi—_1(1). We have wy1(1) # 0, since wy41(1) = 0 would imply wy_1(1) =0
and so on, which finally leads to w; (1) = 0 or wy(1) = 0, which is not true. Hence w1 (1) # 0 and
_ W (D
BRTION

Ck

Note that polynomial division by a linear factor can be carried out by the Horner scheme and
requires k (M) and k (A). In the present case the factor is 1 — t, and hence we have only additions.

Since the solution xy, of TyX; = ey is given by x;, = %(wk + w, ), we conclude the following from
(10.4).

Corollary 104 Fork=2,...,n—1,

Xi(t) = % (Wk(f) 4 Wit (f)l—_ Ctka+1 (r)> |

(10.5)

wi—1(1)

where ¢, = W (1)

If we consider a nonsingular symmetric Toeplitz extension T, of T, (one can show that almost
all such extensions are nonsingular), then this corollary is also true for k = n, so that the vector x,, can
be computed from wy,, w1 and wy_1.

10.6. Solution of systems by classical bordering

The relation between the vectors w, and wy is quite remarkable but it is not convenient to compute
the w, from the wy, at each step, since this would add another 0(n?) complexity term. We are looking
for possibilities to solve a general system using only the vectors wy.

The first idea is to apply the classical bordering (3.8) with X replaced by wy. Doing this we obtain
vectors z;, for which Tyz;, equals by except for the first component. Finally we end up with a vector 2’
satisfying T,z' = b + c e; for some c. Now we compute X, by (10.5) and obtain z by

z=7 —cx.

The complexity for this method is n? (M) plus n? (A).
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10.7. Solution of systems by centrosymmetric bordering - first version

The first method to solve a general system by the split Levinson algorithm and centrosymmetric
bordering is based on the following fact.

Lemma 10.5 Any vectorb € F" can be represented in the form

b=c+|:d:|, (10.6)
0

wherec € F" andd € F .

We show this lemma for the case n = 4. The generalization to arbitrary nis obvious. Leth = (bi),i] ,
c= (c,-)?zl andd = (d,-),-3=1, €1 = C4, C3 = ¢3,dq = d3. Then (10.6) is equivalent to the system

1 c1 by
11 di | | b
11 o | | bs
11 do by

This system has a unique solution which can be found with n additions.
We solve the systems T,y = ¢ and T,_1v = d with symmetric right-hand sides ¢, d using cen-
trosymmetric bordering. Then

\'
T, (y—l— 0 ):b—l—cek.

Hence the solution z is of the form

v
z=y+ — CXp,
0

where x;, is computed by (10.5). In order to compute the coefficient c we multiply this equality by the
last row of T;,. From this we obtain

C:_bn+cn+|:an_1 al]V.

As explained in Section 10.2 this method requires, in addition to the amount for the split Levinson
algorithm, only 1 n? (M) plus 2 n? (A) compared with n* (M) plus n? (A) for the classical bordering.

We will have a problem in solving T,,_1v = d by centrosymmetric bordering if we run the double-
step Levinson algorithm because only every second vector wy is computed. In this case we consider
the equation T;v = d, where d(t) = (t + 1)d(t), d € I} We show how V is related to v.

We have

w([o] o)) 1¢]+ o] Faveee 0

for some ¢ € IF. Hence (1 + t)v(t) = V(t) + cwy(t), so v is given by
V(t) + cwp(t)
t+1

The number ¢ cannot be computed from this, since w,(—1) = 0 for even n, but it can be found by
applying a “test functional”, for example by left multiplication with any row of T,,_.

v(t) =
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10.8. Solution of systems by centrosymmetric bordering - second version

Now we show that the solution of the system T,z = b can be expressed in terms of the solutions of
the two symmetric systems T,z, = P.band T,_1z' = P, b’, where b/ is the vector of the first n — 1
components of b. This leads to an algorithm with the same complexity as that in Section 10.7. Besides
z, and Z’ we need the solution vector wy, 1 fora (n + 1) x (n + 1) nonsingular symmetric Toeplitz
extension Ty 41 of Ty.

It is sufficient to find the solution z_ of T,z_ = P_b, sincez =z +z_.

Proposition 10.6 The solution z_ can be computed from z and z’ via
(t + Dz (t) — 2tZ/(t) + c Wy 1 (0)

z_(t) = 10.8
® p— (108)
where
. @) —2.(1)
c=——(z -z .
Wi 1(1)
Proof. Note that w;,1(1) # 0 according to Proposition 10.3. We have
Fo ] [z ]\ [ « P_b |
Tnt1 — = — =:(¢c; U;H
! (_z__ 0 ) _P_b} { - Sl
and
[0 ]| 0 ] b :
z * P
Tt + =2z || = + | =2 ey | =)
Z, 0 P+b *
- L 0 - *
Now, fori =2,...,n,
¢ =bi—bpr1—i —bi—1 + bpya—i
and
;" = bi + byi1—i + bi—t + bpya—i — 2(bi—1 + bpy1-1),
sothatc¢; = c,-+ . Consequently,

(t =Dz (6) = (t + Dz (6) — 2tZ'(t) + c W11 (8)
for some ¢ € IF. This implies (10.8). [

10.9. Split Schur algorithm

The Schur counterpart of the split Levinson is designed in the same way as the classical Schur from
the classical Levinson algorithm. Let T,;F be defined by (4.1) and

+
T, wy = t;.

Ift, = (tik)?;{‘+l, then, in particular, t;p = 1and ty; = y%. From Theorem 10.1 we immediately obtain
the following.

Theorem 10.7 Fork = 2, ..., n — 1, the residual vectors t; satisfy the recursion

1
ter1 = - (I + 1)t — It 1),
k

14ty — tak—1, and Ly, 14— are defined in (4.3), (4.4), respectively.

where T

By Theorem 10.2 we also have a double-step recursion as follows.
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Theorem 10.8 Fork = 2, ..., m — 1, the residual vectors tyj, satisfy the recursion

1
topin = o—k((1++ + I oy )t — I _ty_p),

where

g =k — ok, Ok =14 132 — 322 + t2 2k (2,262 — £2,2¢)-

Similar recursions hold for the residuals t; = T;"wj_ of the solutions w;_ of Tyw, = 2 P_ey.

11. Split algorithms for skewsymmetric Toeplitz matrices

This section is dedicated to nonsingular skewsymmetric Toeplitz matrices T, = [ai—j]?,j=1' aj=
—aj. Like in the previous two sections we assume that the entries of the matrix belong to a field with
a characteristic not equal to 2. Since skewsymmetric matrices of odd order are always singular, n must
be even. Suppose that n = 2m. For the same reason, a skewsymmetric matrix cannot be strongly
nonsingular, which means that the classical Schur and Levinson algorithms cannot be applied. We
show that, however, the double-step split algorithms for symmetric Toeplitz matrices of the previous
section have skewsymmetric counterparts.

Instead of strong nonsingularity we assume, throughout this section, that all leading principal
submatrices of even order Ty are nonsingular. This is equivalent to the centro-nonsingularity of T,,. In
this case the nullspaces of Tox—1 (k = 1, ..., m) are one-dimensional. Let X} be a vector spanning this
subspace,

ker Tor—1 = span {Xy}.
We can normalize xy, in different ways, for example we could assume that x; is monic, since the last
component must be different from zero. However, for convenience we use another normalization by
assuming that

[a2k_1 R o1 ]Xk =1.

This can be done, since the inner product on the left-hand side is nonzero. Otherwise T, would be
singular. Clearly, with this normalization the vector Xy, is unique.

11.1. Splitting and symmetry property of the nullspaces

Recall from Section 2.1 that a skewsymmetric Toeplitz matrix is also centro-skewsymmetric, which

means that T, = —T,. A centro-skewsymmetric matrix maps ["} to [F" and F" to [F"}. So a general
system T,z = b splits into the two systems T,z+ = P+b,wherez4 = Piz,ie.z=2, +2z_.

Furthermore, we conclude from this property that with the vector x; also the vector xi belongs to
the nullspace of Toi—1. Thus X is either symmetric or skewsymmetric. We show that the latter is not
possible.

Lemma 11.1 The vector Xy, is symmetric.

Proof. Let w € F?X be the vector defined by w(t) = (t + 1)xi(t). Then
-1

Toyw = 0

Since the right-hand side is skewsymmetric, w must be symmetric. This implies that X is symmet-
ric. O

This lemma has the following consequence.
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Corollary 11.2 For any skewsymmetricb_ € F>~1 the system Tok—1z+ = b_ is solvable.

11.2. First and last columns of inverses
The following is a peculiar property of skewsymmetric Toeplitz matrices. Define

X 0
x,f = k and x, = .
0 Xk

Then we have
+ —
Tokxy = ey and Tyx, = —ey.

11.3. Levinson-type algorithm

We have
[0 —1 —n¢ | [0 ] [-na]
Xk 0 0 0 0 —1 0 —1
Tot1| 0 x 0 |=]0 0 0 and Topq1 | Xpe1 | = 0 ;
0 0 xg 1 0 O 0 1
e 1 ] L 0 | | =1 |
where
rk=[a2k az]xk.

From this we conclude the following.

Theorem 11.3 Fork = 2, ..., n — 1, the vectors Xy, satisfy the recursion
0 0,
1 0, X
Xpi1 = — + — (e —Te—1) | Xk | — | Xk=1 | | >
s X 0,
0 0,
where
o =Ty — 1jq — k(e — Ti—1)
with
/
I, = [a2k+1 . (13:| Xk-

In polynomial language this recursion can be written as

1
X1 (1) = " (% — (g — Dt + DX () — xp—1 (8).

The recursion can be started with an empty Xg, 1o = 0 and x; = é .

11.4. Schur-type algorithm

We define residual vectors r € F"~2+1 of x,, as

n—2k+1
Iy = (rj,k)j=1 , Tjk= [a2k+j_2 S G } Xk

In particular we have ry = 1and rp = . From Theorem 11.3 we conclude the following.

37

(11.1)
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Theorem 11.4 Fork = 2, ..., n — 1, the vectors ry, satisfy the recursion
1
Mot = - (U + 1= = (ro e — T2 =)+ )T — Ly _T1)
k

With the projections Py introduced in (4.5) this can be written in polynomial language,

1 2 -1 -2
T (0) = " Pr_k—1 ((1 + 7 = (g — o k=1t rp(t) — t l'kfl(t)) .

Complexity Since the Levinson-type and Schur-type algorithms for skewsymmetric Toeplitz matrices

have the same structure as the double—ste;p algorithms for symmetric Toeplitz matrices, they have the
: chie 1.2 7 .2

same complexity which is 5 n= (M) plus g n” (A).

11.5. Solution of systems

For solving a system with a skewsymmetric Toeplitz coefficient matrix, it is recommendable, like
for a symmetric Toeplitz system, to split the right-hand side into its symmetric and skewsymmetric
parts and then to apply centrosymmetric bordering, as it was explained in Section 10.2. For correction
we need the solution of equations

Tows, = k(e + eq).
These solutions are given by the vectors xkjE of (11.1),
F_ 7t -
Wi = Xi + X -

The structure of this method is in principle the same as for the symmetric case, so we expect the

same complexity. However, we have in addition the amount for computing the vectors wjk which

consists in two vector additions. This adds the term % n? (A) to the overall complexity.
This additional term can be avoided if we find a bordering that uses the vectors X, directly. For this

we need solutions of systems of odd order. Let us introduce skewsymmetric vectors c_ € F™ and
d_ e F! byc_(t) = (t — 1)b4(t),and d_(t) = (t + 1)b_(t), where b* = P.b. We consider the
equations

Thrip=c- and Tp1q=d_,
where Tp41 isany (n + 1) x (n + 1) skewsymmetric Toeplitz extension of T;,. These two systems can
be solved using centro-skewsymmetric bordering in which the vectors x;, are used for correction. We

have to show how the (symmetric) solutions p and q are related to the solutions zx of T,z = b.
We have

= (]2 )- 1)

Since the nullspace of T, is spanned by X;+1, we conclude from this that

(t+ Dz4 () = (t+ Dq() + o1 X1 (0) + S t X (0).
Analogously,
(t = Dz_(t) = (£ = DP(E) + o2 Xm41(t) + B2 t X (8).

It remains to find the coefficients «; and B;, (i = 1, 2). For this we can putt = 1 and t = —1 or apply
test functionals.

12. Split algorithms for Hermitian Toeplitz matrices

In this section, we consider Hermitian Toeplitz matrices T, = [a,-,j]f’jzp a_;j = a@;. Such matrices
can be represented as T, = T + iT/, where T, is a real symmetric and T, a real skewsymmetric
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Toeplitz matrix. Thus real symmetric and real skewsymmetric Toeplitz matrices can be considered as
special cases. Our aim is to design algorithms for strongly nonsingular Hermitian Toeplitz matrices that
exploit the additional symmetry property of the matrix, like it was done in the previous sections for
symmetric and skewsymmetric Toeplitz matrices. However, it turns out that a direct generalization
is not possible, due to the different nature of splitting, which will be discussed next. Nevertheless
algorithms with about the same gain in complexity as in the symmetric and skewsymmetric cases do
exist. Applying them to the real symmetric or skewsymmetric cases we will obtain algorithms that are
different from those presented in the previous sections.

Like in the symmetric case, we assume for the sake of simple notation that n is even, n = 2m. The
case of odd n can be treated analogously.

12.1. Splitting

To begin with, let us explain the nature of splitting for a general centro-Hermitian matrix A. Re-
member that an n x n matrix A is said to be centro-Hermitian if A* = J,AJ, = A. Let C! denote the set
of conjugate-symmetric vectors in C". The set C! is not a subspace of C" if this space is considered
as a complex vector space, but it is a subspace if C" is considered as a vector space over the reals. Fur-
thermore, C" = C]} @ iC]. The subspaces C}} and iC]} are invariant under a centro-Hermitian matrix
A. Thus the system Az = b is equivalent to the two systems Az = b, with conjugate-symmetric
right-hand sidesb; = J(b+b*)andb_ = - (b —b*)andz =z, +iz_.

All what was just said applies to an Hermitian Toeplitz matrix Ty, because any Hermitian Toeplitz
matrix is also centro-Hermitian (see Section 2.1).

12.2. Centro-Hermitian bordering

We know from Section 10.2 that for the solution of a system with a centrosymmetric coefficient
matrix A symmetric bordering is more efficient than usual bordering. Thus it can be expected that for
a centro-Hermitan coefficient matrix centro-Hermitian bordering leads to a reduction of complexity.
This turns out to be true. However, the situation is somehow different here. The reason for this is that
multiplication of a conjugate-symmetric vector by a number is conjugate-symmetric again only if the
number is real.

Suppose that A is a centro-nonsingular, centro-Hermitian matrix, and a system Az = b with a
conjugate-symmetric right-hand side b € C has to be solved. Let A}, z;, and b, be defined as in

0
Section 10.2. Then Af, 11| z, |isequalto b}, 1» except for the first and last components. For correction
0

we now need solutions wg,z € (Cik (I =1, 2) of equations

0ok

Awy = 0

(29)3

for two values oy = oe,il) and oy = a,ﬁ” which are linearly independent over the reals. With these
solutions one can find z,CH_1 via

0

1) (1) ) (2)
Zipr = |z | T & Wy +§7 Wil
0
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k(l) and sk(z). Applying A}, 1 to both sides we obtain that the latter equality holds if and only

with real &
if
1 (1) (2) (2)
& oyl & a5y = bm—k — Br,

0
where B = g | z§ | with g being the last row A ;.
0
This is equivalent to the following 2 x 2 system with a nonsingular coefficient matrix

1 2 1
Re a,54_)1 Re O‘IE+)1 Sk( ) _ | Re(bm—k — Bi)
1 2 2) | = :
Im O‘IE+)1 Im a,£+)1 é,f ) Im (byy—r — Br)
Complexity Let us compare the amount of centro-Hermitian bordering with ordinary bordering. First
we have to compute 1 inner product of a general vector and a conjugate-symmetric vector of length
2k. This costs 4k (RM) plus 6k (RA). To form the correction vector we have to evaluate 1 real linear
combination of two conjugate-symmetric vectors, which costs 4k (RM) plus 2k (RA). Finally we have
1 addition of conjugate-symmetric vectors for the amount of 2k (RA). Since k runs from 1 tom = n/2
the total amount is n® (RM) plus % n? (RA). Recall that a general system is reduced to two systems with
conjugate-symmetric right-hand sides. Hence solving a system with a nonsingular centro-Hermitian

coefficient matrix costs 2 n® (RM) plus % n® (RA), compared with 4 n? (RM) plus 4 n? (RA) for ordinary
bordering.

The problem with this approach s that for its application one has to compute two families of solution
Wy, which seems to be too costly. We now show that in the case of a strongly nonsingular Hermitian
Toeplitz matrix T;, one family of solutions is sufficient to carry out centro-Hermitian bordering.

Suppose we have one family of solutions of

(675
Trwy=| 0 (12.1)
(097 i
for the leading principal submatrices Ty (k = 1, ..., n). The idea is that we first solve recursively
systems of the form
71(
T2kili = bi + 0 s
L Ve
with arbitrary yx. For this we are looking for a recursion of the form
0 I W 0
=7 [+a| |+ . (12.2)
0 | 0 W2k+1
Applying T+ to both sides we see that the recursion is satisfied if we choose cj as
bm7k+l - ,312
Gk =—""—,
02k41
0
where ,3,2 = g,iT Z,i and gl/f is the last but one row of T,k4;. Finally we correct the first and last
0

components with the help of two linearly independent solutions of (12.1) once, for k = n. That means
we need a second solution of (12.1) only at the very last step.
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Complexity The amount for centro-Hermitian Toeplitz bordering, which was just explained, is ap-
proximately the same as for general centro-Hermitian bordering, since multiplication of a conjugate-
symmetric vector by a complex number and its conjugate complex costs as much as multiplication of
two conjugate-symmetric vectors by real numbers.

12.3. Recursion for solutions wy,
We now show how solutions of equations (12.1) can be recursively found .

Theorem 12.1 Fork = 2, ...,n — 1 the recursion
Wi r1(t) = (g + (i)W () — twy1 (1),

with (y, = ag: produces solutions of equation (12.1). Furthermore,

A1 = LyPr + k-1 — Br—1,
where

,3k=[ak al]wk.

Proof. The assertion follows from the relations

@ i Br-1
0 oy 0 op—1
wi O
Tk+1 =100 and Ty | wi_q | = 0 . O
0 wy
ag 0 0 -1
L Br o | L Br—1 |

For a reason that will be clear at once, it is reasonable to compute also a vector w,_; and to start

i
the recursion with an empty w; and wy = |: )
i
by w3 (t) = (uat + 1£)wx(t) is a solution of an equation (12.1) for k = 3. With this initialization all
wy (t) will have the property wy (1) = 0.

}.Ifwe choose 1y = (ag — a;)~!, then ws defined

12.4. Computing a second family of solutions wy,

We show how a second family of solutions of (12.1) can be constructed that is linearly independent
of the first one. Recall that for bordering according to (12.2) we need a second solution only for k = n.
However, the whole family will be needed to build factorizations, as discussed in the next section.
Since wi (1) = 0 we can define vectors qx—q fork = 2,...,n+ 1by

qr—1 () = t_% wi (0. (12.3)

Obviously, these vectors are conjugate-symmetric and

]

The following can easily be checked.

Lemma 12.2 Fork = 1, ..., n, the vectors qy satisfy the equations
Tkqx = Oke, (12.4)
where 0y, are nonzero real numbersande = (1,1, ..., 1).
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Proposition 12.3 Fork = 2, ..., n + 1, let wy, be a solution of (12.1), qx—1 be given by (12.3), and

Ok = |:Clk_1 ...(10i|qk.
Then the vector Wy, defined by
291(—1

Wi(t) = (1 + Oqe—1(8) — qi(0)
is a solution of
o
Trwy = 0
—

Proof. We have

k-1 Sk—1
Q-1 O
Ty = | Ok_1e Ok_1e |,

0 e Sk—1  Ok—1
where
so=|a...ar | Q. (12.5)
Combining these relations and taking (12.3) and(12.4) into account we obtain
—i(Sk—1 = Ok—1) Sk—1 — Ok—1
Twy, = 0 and Twy = 0 ,
i(sk—1 — Ok—1) Sk—1 — Gk—1

which is just the assertion. [J

Clearly, the vectors wy and Wy, are linearly independent, since the right-hand sides of the corre-
sponding equations have this property.

Now we have all ingredients for a Levinson-type algorithm that computes the solution of an
Hermitian Toeplitz system with conjugate-symmetric right-hand side. First we compute the family
of solutions wy, by Theorem 12.1, then we apply the Toeplitz centro-Hermitian bordering, and finally
we compute W, (use (12.3) for k = n, n + 1) to correct the first and last components.

Complexity Let us compare the complexity of this with the classical Levinson algorithm. In each step
of the recursion according to Theorem 12.1 we have first 1 inner product of a general vector and a
conjugate-symmetric vector, which requires 2k (RM) plus 3k (RA) (see Section 2.2). Then we have to
multiply a conjugate-symmetric vector by a complex number and by its conjugate complex. This is
equivalent to 4 real number times vector multiplications and 4 real vector additions, where the vectors
are symmetric or skewsymmetric, which requires 2k (RM) plus 2k (RA). In addition we have 2 complex
vector additions with conjugate-symmetric sums which costs 2k (RA). This results in a total amount of
2n? (RM) plus % n? (RA), compared with 4 n®> (RM) plus 4 n® (RA) for the classical Levinson recursion.

If an Hermitian Toeplitz system is solved with the help of Theorem 12.1 and Toeplitz centro-
Hermitian bordering, then the amount will be 4 n?> (RM) and 6 n? (RA). The amount for computing
the vector wy, is O(n) and can be neglected. Solving a system by the classical Levinson algorithm and
bordering costs 8 n® (RM) and 8 n? (RA). Thus we have 50% savings in multiplications and 25% savings
in additions.
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12.5. Solutions for the right-hand side e

If we want to find two linearly independent families of solutions of (12.1), then it is reasonable to
compute the solutions q of (12.4) instead of the wy, recursively. The following theorem is an immediate
consequence of (12.3) and Theorem 12.1.

Theorem 12.4 Fork =1, ...,n — 1, the polynomials qy(t) satisfy the recursion

ir1() = (U + VD) qr(t) — tqr—1 (1),
where

Sk—1 — Ok—1
Vg = ————
sk — Ok

and sy, is given by (12.5). Furthermore,
Okt1 = (U + V)0 — Ok—1.
The recursion can be started with an empty qg, q; = 1and v{ = ap — @;.

The vectors q; provide two families of solutions of (12.1) as the following proposition shows. It
follows from the discussion above, but can also be verified directly.

Proposition 12.5 Let the vectors W,E’), | = 1, 2, be defined by the solutions q via
1 .
w0 =i(1 = a1 (1),

2]
w2 (0 = (1 + Dger () — X

—1
0.
o qx ()

Then W,El) are (linearly independent over the reals) solutions of (12.1) with oy = a,’c and

1. 2
a =i(sg—1 — Ok—1), ) =sg—1 — Ok—1,

where s, is defined by (12.5).

Instead of the vector wlgz) the vector w,£3) defined by

O—
%Wo=m4m—?fm®

can be used. In fact, this vector solves also the equation (12.1) with o) = oz,f and

3
ap = sk—3 — Ok_1.

The advantage to take w,(f) instead of w,(f) is that its computation requires less additions. However, the

(1) (3) Sk—2—0k—2

vectors w;, * and w, " are only linearly independent if the number e is not purely imaginary.

12.6. Recursion for the residuals

All Levinson-type recursions described in this section have Schur counterparts. We here describe
only the Schur counterpart of the recursion of the solutions q.
Let T, be defined by (4.1) and

T qx = si. (12.6)

Ifsy = (s,-k)?z_lkﬂ, then, in particular, s; x = 6k and s xy = Sk. From Theorem 12.4 we immediately

obtain the following.
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Theorem 12.6 Fork = 2, ..., n — 1, the residual vectors sy, satisfy the recursion
Skr1 = (Wil + Ul )sg — 81,
where
S2,k—1 — S1,k—1
Ve = ———,
S2,k — S1,k
with I+ being defined in (4.3).

Complexity Ineach step of the algorithm we have to multiply a complex vector by a complex number
and by its conjugate complex number. This is equivalent to 4 real number times vector multiplications
and 4 real vector additions and requires 4k (RM) plus 4k (RA). In addition we have 2 complex vector
additions requiring 4k (RA). This results in a total amount of 2 n®> (RM) plus 4 n? (RA).

Corollary 12.7 With the help of the residuals s, we can find the residuals t,(f) of the solutions W,El) (I =
1, 2, 3) given by

S () I ()]
Tyw =1
via the relations
1 .
t,E )= i(IySp—1 — I-Sk—1),
251 k—
2 1,k—1
t1(< ) =I48k—1 +1-Sg—1 — ——— sk,
S1,k
3 S1,k—2
tlg ) =1y Sk — Sk.

1.k
Note that these vectors are needed only for even k.

13. Butterfly factorization

The triangular factorization of a matrix has the disadvantage that properties like centrosymmetry
are not inherited in the factors. But there is another type of factorization which has this property. We
call it butterfly factorization in view of the shape of the factors. This kind of factorization is the subject
of this section. It turns out that butterfly factorization is the background for the split Levinson-type
and the split Schur-type algorithms, like triangular factorization is for the classical Levinson and Schur
algorithms.

13.1. Z-, W-, and X-matrices

A matrix A = [a,j]}fj=l is called a W-matrix (or a bow tie matrix) if a;; = 0 for all (i, j) for which
i>jandi4+j >n+1ori < jandi-+j < n. The matrix A will be called a unit W-matrix if in
addition a;; = 1and a; p41—; = 0fori =1, ..., n. The transpose of a W-matrix is called a Z-matrix
(or hourglass matrix). A matrix which is both a Z- and a W-matrix will be called an X-matrix. A matrix
which is either a Z-matrix or a W-matrix will be called butterfly matrix.

These names are suggested by the shapes of the set of all possible positions for nonzero entries,
which are as follows:

[ ] [ ] ® 00 0 00
® O o e O O O

W = ® OO0 O0OO0Oe ,Z: o e i
@ Oe o060 ® O
e o0 [ ] [ele]
[ ] [ ] ® o0 0 00
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For an n x n matrix A, the following facts are easily verified.

If A is a Z-, W- or X-matrix, then A/ is a Z-, W- or X-matrix again, respectively.

The inverse of a nonsingular Z-, W- or X-matrix is again a Z-, W- or X-matrix, respectively.

If Z is a Z- and X is an X-matrix of the same order, then ZX and XZ are Z-matrices.

If Z is a nonsingular Z-matrix, then there exist unique nonsingular X-matrices X; and X5 such that
ZX1 and X»Z are unit Z-matrices.

From now on we assume again, for simplicity of notation, that the order n of the matrices is even,
n=2m.
In order to describe X-matrices we introduce a notation that is motivated by the “diag" notation for

. . ak P
diagonal matrices. If M, = (k=1,...,m), then we set
Yk Sk
Om Bm
ar B
xma(My)p, =
71 &
L Vm Im |

Clearly, xma(Mjy)}L; is nonsingular if and only if all My are nonsingular and

—1 —
(xma (M)_;) ™" = xma(M; i,

13.2. ZW-factorization and centro-nonsingularity

Arepresentation of the nonsingular matrix Ain the formA = ZXW inwhich ZisaZ-,X isan X-and W
is a W-matrix is called ZW-factorization. If Z and W are unit, then the factorization is referred to as unit.
Analogously, a WZ-factorization is defined. A factorization which is either a ZW- or WZ-factorization
is called butterfly factorization. The following is the analogue of Proposition 5.1.

Proposition 13.1 A necessary and sufficient condition for a matrix A to admit a ZW-factorization is that
A is centro-nonsingular. Among all ZW-factorization there is a unique unit one.

If A is nonsingular and A = ZXW a ZW-factorization, then A~! = W—'X~1z~1 is WZ-factorization
of A=1. Conversely, any WZ-factorization of A~! produces a ZW-factorization of A.

13.3. Symmetry properties

LetA = ZXW be the unit ZW-factorization of A. Then we immediately obtain a unit ZW-factorization
of Al as A/ = ZIX/W/. Taking the uniqueness of the unit ZW-factorization into account we conclude
the following.
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1. If A is centrosymmetric, then Z, X, and W are also centrosymmetric.

2. IfAis centro-skewsymmetric, thenZ and W are centrosymmetric and X is centro-skewsymmetric.
The later means that X is a skewsymmetric antidiagonal matrix.

3. If Ais centro-Hermitian, then Z, X, and W are also centro-Hermitian.

In addition, the unit ZW-factorization has similar properties as the unit LU-factorization.

1. If A is symmetric, then W = ZT and X is symmetric.
2. If Ais skewsymmetric, then W = ZT and X is a skewsymmetric antidiagonal matrix.
3. If A is Hermitian, then W = Z* and X is Hermitian.

13.4. Solution of centrosymmetric Z-systems

The advantage of the ZW-factorization over the LU-factorization is that in the former symmetry
properties are inherited in the factors. Now we show how this symmetry properties can be exploited.
We describe this for a centrosymmetric Z-system. For a W-system the situation is analogous.

Let Z be a centrosymmetric Z-matrix. Then Z is of the form

J
L L
7 0 Jmla ’ (131)

Ll]m LO
where Ly and Ly are m x m lower triangular matrices. The following is now easily checked.

Proposition 13.2 For Z of the form (13.1), the solution of a system Zu = b with a symmetric or skewsym-
J J
c +v
metric right-hand side b = is given by u = , Where v is the solution of the triangular
c \'

system
(Lo + L])V =C. (132)

Thus solving a centrosymmetric Z-system requires to solve 2 triangular systems of half size. This
reduces the number of operations from % n® (M) plus % n? (A) (needed for an unstructured Z-system)

to % n? (M) plus % n? (A). However, we have the additional amount of forming the matrices Ly =+ Ly,

which is % n%(A). We will see that in all cases we are interested in this additional amount can be
avoided.

13.5. Unit ZW-factorization of skewsymmetric Toeplitz matrices

We start with the case of a skewsymmetric Toeplitz matrix, since only for this case we will compute
the unit ZW-factorization. In the cases of symmetric and Hermitian Toeplitz matrices we will consider
some modifications.

We show how the Schur-type algorithm described in Theorem 11.4 provides the unit ZW-factorization
of a skewsymmetric Toeplitz matrix T,,. For simplification of notation, let us agree upon identifying

0y
any symmetric vector u € F"~2K with the vector | u | € F". From the vectors (11.1) we form the
0y

matrix

Vz[xJr oxToxp x*].
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Obviously, V is a centrosymmetric W-matrix. We investigate now the matrix T,,V. For n = 6 we have

[0 =1 —ry1 —ry —1p —1]

00 -1 —171 —1 0

oo o0 -1 0 O
T,V =

00 1 0 0 O

01 rmy 1 0 O

_1 Iy T3 1 1 0 i

We see that Z = TgVJs diag (—I3, I3) is a unit centrosymmetric Z-matrix and conclude that this matrix
is just the Z-factor of the unit ZW-factorization of Tg. This generalizes to arbitrary n = 2m. In particular,
the Z-factor of the unit ZW-factorization of Tj, is given by

Z = TaVJp diag (—Im, Im).

The middle factor X can be extracted from V. We obtain

X = xma <{ ?1 i }) , (13.3)
ék 0 k=1

where & is the last component of X;.. Recall from Theorem 11.3 that the numbers & satisfy the recursion
—1
k1 = oy &k

Theorem 13.3 The Z-factor of the unit ZW-factorization T, = ZXZ" is of the form (13.1), where Lo and L;
are given by

L=| " . L1 = Smlo.

I’mJ Tm’z rl,m

Here the r; i are the residuals defined in Section 11.4, and Sy, is the forward shift in F™ introduced in (6.2).
The X-factor is given by (13.3).

Note that the factors of the unit WZ-factorization of T, ', T;' = WXW" are given by W =
V],diag(—Ip, Im)X and X = X~ 1.

Complexity The ZW-factorization can be used to solve a system T,z = b. Of course, we first split
the right-hand side into its symmetric and skewsymmetric parts. For each part we have to solve
a centrosymmetric Z-system. This reduces to two systems (13.2) of size m, which in our case turn
into

(Im &= Sm)Lov = c.

We first solve (I, = Sp)d = ¢ and then Lyv = d. Since the system with the coefficient matrix
I, £ Sy can be solved with m additions there is no additional amount for forming Ly & L;. So
the complexity for solving both the Z- and the corresponding W-system is % n? (M) plus % n? (A).
If we add this to the amount for the Schur-type algorithm we obtain a complexity of n? (M) plus

1.2
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13.6. Split ZW-factorization of centrosymmetric matrices

The split Schur algorithm for symmetric Toeplitz matrices does not produce the unit ZW-factorization
but a version of it which we call split factorization.

We say that a matrix A of order n = 2m is split if the first m columns of A are skewsymmetric and
the last m columns are symmetric. Split and centrosymmetric matrices are closely related. In fact, let
A denote the matrix

—-11 —-11
A = xma ey .
11 11
Then it is easy to check that A is centrosymmetric if and only AA is split. A split Z-matrix is called unit
split Z-matrix if the last nonzero element in each row is equal to 1, i.e.
Ui nt1—i = Omtim+i = 1 fori=1,2,...,m.
A ZW-factorization of A of the form A = ZSXSZST in which Z; is unit split will be called unit split
ZW-factorization. The unit ZW-factorization is easily transformed into the unit split ZW-factorization,

and vice versa. In fact, let A = ZXZ" be the unit ZW-factorization, then the factors of the unit split
factorization are given by

1
Zi=7ZA Xs = p AXA.

The X-factor X; of the split factorization is diagonal. This follows from the fact that the X-factor of the

ab
unit ZW-factorization is built from blocks of the form |: b } and that
a
-11 ab -11
11 ba 11
is diagonal.
We show how a system with a split Z-coefficient matrix can be solved. A split Z-matrix Z; is of the
form
J
—L_ JnL
7 = JmL+ , (13.4)
LJm Ly

where L are m x m lower triangular matrices.

Proposition 13.4 LetZ; be the split Z-matrix (13.4). The system Zgu = bwith symmetric or skewsymmetric

, . + | 0 v
right-hand sideb = isequivalenttoLyvy = corL_v_ = ¢,whereu = oru = ,
C Vi 0
respectively.

Thus the amount for solving a split Z-system reduces by 50% compared with an unstructured Z-
system.

13.7. Solution of symmetric Toeplitz systems

It is obvious that the Schur-type algorithms for a symmetric Toeplitz matrix T, described in Theo-
rems 10.7 and 10.8 and their counterparts for the residuals of the vectors w;, produce the Z-factor of

the unit split factorization T,, = ZSXSZST . This Z-factor is given by (13.4), where
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t1,2
o2 1,4
Ly =
tn,2 tn—1,4 ... t12m

and L_ is analogously defined. The X-factor is the diagonal matrix
Xs; = diag (wz_m,...,wz_,wz,...,wm),

where wyy is the last component of wy, and w,, the last component of w., . The wyy can be found
recursively by wyk4+2 = Uik wok, Where oy, is given in Theorem 10.8.

In Sections 10.7 and 10.8 it was shown that the solution of a symmetric Toeplitz system with a
general right-hand side can be reduced to two systems with symmetric right-hand sides. Since for a
symmetric right-hand side we obtain a symmetric solution z, the first m components of ZST Z, are
zero. Hence for the product ZSXSZST z4 only the m x m matrices L+ and diag (w», . . . , wym) are relevant.
That means we have to compute only the matrix L and the numbers wy.

Complexity The solution of T,z = b reduces to 2 systems with coefficient matrix Ly and 2 systems

with coefficient matrix Li. Thus the amount is %nz (M) plus %nz (A). Together with the double-step

Schur-type algorithm this results in n (M) plus % n? (A), compared with 2 n% (M) plus 2 n? (A) for the
classical Schur algorithm and LU-factorization (cf. Sections 4.3 and 5.4).

13.8. Solution of Z-systems with conjugate symmetries

For centro-Hermitian Z-systems the situation is similar to that for centrosymmetric Z-systems.
These systems can be reduced to triangular systems. Also in this case it is convenient to consider the
systems in their split form.

A square matrix will be called column conjugate-symmetric if all columns are conjugate-symmetric.

We introduce the matrix

—i1 —i1
¥ = xma e,
i1 i1

Then it is easy to check that A is centro-Hermitian if and only if AX is column conjugate-symmetric.

A column conjugate-symmetric Z-matrix is called unit column conjugate-symmetric Z-matrix if the
X-matrix built from its diagonal and antidiagonal is equal to . A centro-Hermitian ZW-factorization
A = ZXZ* can be transformed into a ZW-factorization A = ZhXhZ,;" in which Zy is unit column
conjugate-symmetric. We will call this factorization unit column conjugate-symmetric ZW-factorization.
Concerning the factor X, we obtain X = % Y*XX. For X is Hermitian, Xj, is Hermitian. Moreover, Xj,
is real. In fact, we have

X —1§*ﬁ—1§*])gf—lz*xz—x
h—4 —4 nn —4 = Ah-

Obviously, a column conjugate-symmetric Z-matrix Zj has the form

Zh = JmLim JmLo 7 (13.5)

Lilm Lo
where Ly = Lo r +ilgj, L1 = Ly, + iLy ; are lower triangular matrices with L; , L;; (j = 1, 2) being
real matrices. In the case where Zj, is unit column conjugate-symmetric Lo, and Ly ; are unit, and Lo ;
and L, have zeros on their main diagonal.
From the representation (13.5) it can be seen that Zj, transforms real vectors to conjugate-symmetric
vectors, so that the solution of Zyu = b with conjugate-symmetric b is real.
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#
c v

Suppose that by = |: :|,c = ¢, +ic; with¢,, ¢; € R™ and letu = |: :| withv, w € R™ be
c

w
the solution of Zyu = b_.. Then we have

W] e, [
Zn = +1 )
w Cr C;
which is equivalent to
L1,iJmV + Lo.iw =¢;,

L1,rJmV + Lo,yW = ¢;.

This system can be written as a real Z-system

L

where

Y ]le,i.lm ]mLO,i
Zh == .
L],r]m LO,r

If Z, is unit column conjugate-symmetric then Z,’, is a real unit Z-matrix.

Complexity We just have shown that the solution of system with a unit column conjugate-symmetric
Z-coefficient matrix reduces, after splitting the right-hand side as explained in Section 12.1, to 2 real
unit Z-systems. That means that the solution requires n? (RM) plus n® (RA). The same is true for a
system with the adjoint coefficient matrix.

13.9. Solution of Hermitian Toeplitz systems

The Schur-type algorithm for an Hermitian Toeplitz matrix T, described by Theorem 12.6 produces
the Z-factor of a column conjugate-symmetric factorization T, = Z;X,Z;;. Indeed, we find the residual
vectors t,El) and t,(f) of the solutions w,ﬁl) and wlgz) defined in Proposition 12.5 via the relations of
Corollary 12.7 from the residual vectors of the solutions qy.

Now the factor Zj is given by (13.5), where Ly, Ly are the lower triangular matrices the kth columns
(k=1, ..., m) of which are

0y—1 0k—1
P R S

respectively.
It remains to describe the middle factor Xj,. Let v,}, v,?, denote the last components of w,gl), wlgz)'
v,'; = e,fw,g) forj=1,2.
We take advantage of the relation

21 Z —i1 Imz; Imz
122 1 2 (13.6)
21 2 i1 Rez; Rezy

for complex numbers z;, zo, and observe that Z,X, with
1\ m
Ima) Imo? i|

Xy = Xma 1 )
Re o, Recqj

k=1
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is a unit column conjugate-symmetric Z-matrix. From the uniqueness of the unit column conjugate-
symmetric ZW-factorization we now conclude

m

1 277! 1 2T
X 1 Imv, Imyy Imey, Imaj
h = — Xma .
2 Rev) Rev? Rea} Reo
k=1

(The factor % appears in view of this factor in £~ = % ¥*)
From Proposition 12.5 we know

1 _ 2
a = i(S2,k—1 — S1,k—1)»  Of = S2.k—1 — S1.k—1>
where sy is defined by (12.6). For the last components of w,E’) we obtain
S1k—
1 . 2 1,k—1
Ve = —ing—1, Vi = -1 — 20k ,
S1,k

where 7y are the last components of the vectors qy, a recursion of which is given in Theorems 12.4 and
12.6.

14. Split algorithms for centrosymmetric and centro-skewsymmetric Toeplitz-plus-Hankel ma-
trices

In this section, we consider n x n matrices R, which are the sum of a Toeplitz matrix T,, = T,(a), a =
(a,')?z_llfn and a Hankel matrix H, = T,(b)Jn, b = (b)"=,!

i=1-n>
ag ... Qi1_p bi_n ... bo
Ro=Ta@ +Tab)n=| © - = [+] © = [ (14.1)
ap—1 ... Qg bo ... by
Note that the chess-board matrices,
cdc---
dcd---
B= cdec... (c,d eF)

are both Toeplitz and Hankel matrices. Thus the representation (14.1) is not unique.
Hereafter, we also use a representation of R,, which involves the projections P+ = % (I, = J,) onto
F’, and the vectors

¢= (gt =a+b, d= (), =a-b

1-n
namely
Ry = Tp(c)P4 + Ty(d)P_. (14.2)

From now on we restrict ourselves to the case where R;, is a centrosymmetric or centro-skewsymmetric
matrix. (The general case is beyond the scope of the present paper.)

Proposition 14.1 Ann x n T+ H matrix R, is centrosymmetric or centro-skewsymmetric if and only if
it admits a representation (14.2) (or, equivalently, (14.1)) in which ¢ and d (a and b) are symmetric or
skewsymmetric, respectively.
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Proof. It is easily checked that J,T,(a)J, = T,(@), with & = J,,_1a. Hence

JnRnJn = UnTn(©)Jn) UnP+n) + UnTn(d)n) UnP—-Jn)
=T ()P4 + T (d)P_.

If now R, is centrosymmetric or centro-skewsymmetric, then

c+d d+d
Rn:iJnRrJn:Tn B P++Tn T pP_,

ctd dtd
2 and ==

respectively. [t remains to mention that are symmetric or skewsymmetric, respectively.
Representation (14.1) can be considered in an analogous way. The other direction of the assertion is
obvious. O

Corollary 14.2 Ann x n T+H matrix Ry, is centrosymmetric or centro-skewsymmetric if and only if there
is a representation (14.2) such that the Toeplitz matrices T, (c), T,(d) (or T,(Q), T,(b) in (14.1)) are both
symmetric or both skewsymmetric, respectively.

Remark It follows from Corollary 14.2 and can also be shown directly that a centrosymmetricn x n
T+H matrix is also symmetric. On the contrary, a centro-skewsymmetric n x n T+H matrix need not
to be neither symmetric nor skewsymmetric. In particular, a skewsymmetric T+H matrix is always a
pure Toeplitz matrix.

Obviously, a centrosymmetric T+H matrix can be written in the form
Rn = P4 Ta(c)Py + P_Ta(d)P—
and a centro-skewsymmetric T+H matrix in the form
Ry = P_Ty(c)P4 + P, Tp(d)P_.

Besides the matrix R, = [r;]} =1 We also consider the central submatrices R,_,, = [r,j]?j_:l, 41 for

I=0,1,...,1 < n/2. Recall that these matrices are nested, viz.
* * *
C
Rn72l+2 = | = R;—ZI %
* * *

and inherit the centrosymmetry properties of R,,. Furthermore, the following is obvious.

Proposition 14.3 If R, is centrosymmetric or centro-skewsymmetric and given by (14.2), then
_ 7+ pt - p—
Ri—2 = T, oPn o + Ty oPras

n—21

+ . an—21 - —TId: -
where T, 5 = [cij17 ;2 and T,_y = [di—j1i .

We assume that R, is centro-nonsingular, n is even, n = 2m. Let us restrict ourselves to the cen-
trosymmetric case. (The centro-skewsymmetric case is analogous.) We want to solve the equation
R,f=Db

by centrosymmetric bordering (see Section 10.2).
We observe first that R,f = b is equivalent to the two Toeplitz systems

Trfr =bt, T =17, (14.3)

where b = P+b and f* = PLf.
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Let bt = (bjE ki = (bf)iﬁ7k+] fork=1,2,...,m,and let fkjE be the solutions of

j=1 J

Tzkfk = bk . (14.4)
These solutions exist and are unique. Indeed, since R, is centro-nonsingular, Rif,fE = bkjE is uniquely
solvable, and we have according to (14.2) Rif,fE = T,f[f,f. For centrosymmetric bodering we need the
(unique) solutions xki € ]Fki of

TyX. = Py, (14.5)
Theorem 14.4 The solutions of the equations (14.4) satisfies the recursions

0
+ | et
fa=|fc |+ ( nt+1 ~ P ) Xit2s
0
where
B =lek...alfl, Br =Idi...dilfy .
The recursion starts with an empty foi .
It remains to mention that the solutions xf can be computed using the recursions for w, and w,;

introduced in Section 10. In particular, the double-step split Levinson algorithm looks (in the notation
here) as follows.

Theorem 14.5 Let R, be a centro-nonsingular, centrosymmetric T+H matrix. Then the solutions x,f of the

equations (14.5) (k =1, 2, ..., m) satisfy the recursion
F o T
) X 0 0
+ _ + + + +
X2 = F (] O +] 0 | =2 (rk+l,k - rk—l,k—Z) X | 7 X2 | |-
k +
X 0
- 0 -
where

e =lg-1- gl X’ o= [dor . dii] X

and
1
+ _ + + + + +
% = Teok ~ Tek—2 ~ 2Tkr1k (rk+1,k - rk—],k—z) Ty

Note that a,ﬁc # 0, since otherwise Ry, ., would be singular.

Finally, for the sake of completeness we should mention the following facts. For a
centro-skewsymmetric T+H matrix R, = T,(c)P1 + T,(d)P_, we have that R, is nonsingular if and
only if T,(c) and T,,(d) are nonsingular.

This is different to the centrosymmetric case. In this case R, is nonsingular if T,(c) and T,,(d) are
nonsingular. But the converse is not true. Take, for example,c = (1, 1, 1) andd = (—1, 1, —1).
Then T, (c) and T, (d) are singular, whereas Ry = 2 I is nonsingular.

One might conjecture that for a nonsingular R, there is always such a representation with nonsin-
gular T, (c) and T,(d). For n = 2 this is true. But this fails to be true for n = 3. Take, for example,
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c=(1,0,1,0, 1)andd = (0, 0, 1, 0, 0).Then T,(c) is singular for all representations, but

. 301
R3 = T3(C)P+ + T3(d)P7 = 5 020
103

is nonsingular. Note that it can be shown that surprisingly for n = 4 there is always a representation
with nonsingular T(c) and T(d).

A full understanding of such statements requires a deeper insight into the fascinating structure of
Toeplitz-plus-Hankel matrices. We hope that we have made the reader inquisitive.

Exercises

1

2.

. Show that the symmetric Toeplitz matrix T = [t)i—jj];j—; withto = 0, ¢t =

Show that the set of all nonsingular, upper triangular Toeplitz matrices of order n forms a (mul-
tiplicative) group.

Consider a block Toeplitz matrix T, = [ai,j]gjzl, whereg; i = —n+1,...,n—1) are
matrices of order k < n. Generalize the Levinson algorithm of Theorem 3.1 and the Schur
algorithm of Theorem 4.1 to this case.

. Consider the tridiagonal symmetric Toeplitz matrix

2 —1 0
-1 2
T, = n
2 —1
0 -1 2
Then it is easily verified that, with the notations of Section 3.2,

1 k41 1
+ ok + —
u, = E(l)izl, Pr = & and o =, = s

Show that the Levinson algorithm of Section 3.3 also gives these results.

. Find the unit LU-factorization of the matrix A, = T, — e; e?, where T, is defined in Exercise 3,

as well as the unit UL-factorization of A, '. Compute the vector v so thatA; ! — T, 1 = wv'.

. Consider the n x n Toeplitz matrix T, (a, b) the first column of which is (aj_1)]’7:1 and the first

n
j=1"

the first and last rows of its inverse and the co-unit UL-factorization of T, (a, b) ~!. Conclude that
T,(a, b)~! is, in the nontriangular case ab # 0, the sum of a tridiagonal Toeplitz matrix and a
matrix of rank 2.

row of which is (b~ where ab # 1. Show that T, (a, b) is strongly nonsingular, compute

1

7T is singular

ifand only if n = 1 mod 3.

. In Section 3.1 it was shown that the nonsingularity of Ty and Ty implies the nonsingularity of

I'x. Show that, conversely, the nonsingularity of Ty, and ' implies the nonsingularity of Ty1.

. For a Toeplitz matrix, show the following relations between the polynomials u,f(t) and u;, (t)

introduced in Section 3.2:
k—1 k—1

u O =1-t> yut@©, uo="->y .
i=1 i=1

. Find the matrix of the operator of multiplication by t acting from F"~1(t) to F"(t) in the bases

{u,fE (t)} introduced in Section 3.2.
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10.

(a) Let A be a strongly nonsingular n x n matrixand A~! = UDL, U = U(u;r), LT = U(u, ), the
unit UL-factorization of A~ 1. Show that if the uki satisfy a recursion as in Theorem 3.2, then
A is Toeplitz.

(b) Let A be a symmetric matrix and A~' = UDUT, U = U(uy) the unit UL-factorization of A~ 1.
Show that if the vectors uy, satisfy a recursion as in Theorem 7.2, then A is Hankel.

11. Describe the co-unit LU-factorization of a Hankel matrix H, and the unit UL-factorization of its
inverse H, 1 in terms of the vectors ry and uy that are computed by the algorithms described in
Theorems 7.5 and 7.2, respectively.

12. Let ug, Uy, Sk, Sk be as in Section 5.1.

(a) Find the matrices of the basis change between the bases {uy} and {uy]}.
(b) Find a relationship similar to that of Proposition 5.6 between the vectors s, and sy.
13. Show that inverses of Toeplitz matrices are, in general, not Toeplitz but quasi-Toeplitz matrices.
14. Consider instead of the transformation V defined in (6.1) the transformation
V_(A) = A — S} As, (14.6)
defined for n x n matrices A.

a) Show that rank V_(A) < 2 if and only if J,AJ, is quasi-Toeplitz.

b) Give a general description of matrices A satisfying rank V_(A) < 2.

¢) Find examples for rank V4 (A) # rank V_(A).

d) Find sufficient conditions for rank V4 (A) = rank V_(A) < 2.

15. Prove Proposition 6.2 and its generalization to Toeplitz-like matrices.

16. Show that an n x n matrix A is quasi-Toeplitz if and only if A admits a representation A = LTU
in which L is lower triangular Toeplitz, U is upper triangular Toeplitz and T is Toeplitz.

17. Show that a nonsingular n x n matrix A is quasi-Toeplitz if and only if the matrix J,A~J, is
quasi-Toeplitz.

~ —~— —~

Sp AT
18. Let Hy = [hjyj—1 ]}’szl be a strongly nonsingular Hankel matrix and Ly,—1 the lower triangular

A S
Hint. Write two Schur complement formulas for the matrix [ . } .

Toeplitz matrix Lyp,—1 = [hi,j“]ﬁ;?;f (h = 0ifi < 1).Let (s,-)izif1 be the first column ofL;,f_l.
Show that

s1 O
Hy=1L,| ' I
0 —H

where H' = [s,-+j+1]zj_:ll and L, is the n x n leading principal submatrix of Ly,_1.
19. Let T, be areal symmetric Toeplitz matrix, and let T.- denote the restriction of it, as a linear oper-
ator, to the invariant subspace R",, respectively. Furthermore, let W be the operator defined by
t+1
t—1
mapping R" into R', . Show that T and T_ are related via
TAW — WT_ = 2ea’ (S, — Ip) ",
wherea = [a,...a;],e = [1...1] and S, is the forward shift introduced in (6.2).
20. Find a recursion for the solution of a skewsymmetric Toeplitz system by centrosymmetric bor-
dering as follows. Correct in each step only the last component of the right-hand side by using

x,f of (11.1). After the last step correct the first component by using x,,. Compare the complexity
of the resulting algorithm with the complexity of the algorithms discussed in Section 11.5.

_.]m Im

m m

Wx_)(t) = x-(t) (x- eRY),

21. Let Abe an X n centrosymmetric matrix, n = 2m, and Q, = |:

}. Show that QTAQy is

of the form
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T B_ O
QAQn =
0 By
for some m x m matrices B. Investigate how ZW-factorization of A is related to triangular
factorization of B4 and B_.

22. Let Z be a Z-matrix of even order 2m. Introduce the X-matrix X built from the diagonal and
antidiagonal entries of Z,

m
X = xma o Pr s
Vi Ok .

and show that detZ = detX = H (akdk — Bryk)-
k=

23. Let T, be the tridiagonal symmetrlc Toeplitz matrix T, of Exercise 3. Compute the factors of its
unit LU-factorization, its unit split ZW-factorization, and the unit split WZ-factorization of its
inverse.

24, Find a unit split WZ-factorization for the inverse of a symmetric, centro-nonsingular Toeplitz
matrix T, using the solutions wy of (10.1) and w;, and the double-step Levinson algorithm.

Comments and references

2., 3., and 4. The Levinson algorithm appeared in the famous paper [34] about filter design as an
algorithm for solving a general linear system with a positive definite Toeplitz coefficient matrix. The
algorithm that solves only the Yule-Walker equation is often attributed to Durbin in connection with
his paper [16] on linear prediction problems.

However, it should be pointed out that the recursions of the Levinson algorithm are almost identical
to the recursions for orthogonal polynomials on the unit circle discovered by Szeg6 [41].

The Schur algorithm appeared in the famous paper of Schur [40] as an algorithm in complex function
theory to check whether an analytic function on the unit disk maps the unit disk into itself (see also
[29] and the references therein). As a factorization algorithm for Toeplitz matrices it was designed in
Bareiss’ paper [3] (not mentioning Schur).

Practical experience and theoretical results indicate that, in general, Schur-type algorithms have
better stability behavior than Levinson-type algorithms (see e.g. the contribution of Brent in [32]).

As already mentioned in the Introduction, the Levinson-type algorithms produce the parameters
needed in Bezoutian formulas for the inverses of Toeplitz or Hankel matrices (see e.g. [19]). These
Bezoutian formulas are the basis for constructing superfast algorithms (see [21-23,39]).

Readers who want to learn more about a special case of Toeplitz matrices, the circulants, should
study the nice book of Davis [12].

Anyone who wants to venture into the vast literature on Toeplitz (Hankel and other structured)
matrices could first read the book [19], where e.g. recursions in the not strongly regular case, inversion
formulas, and results on other structured matrices are presented.

We refer the reader who is interested in numerical aspects to the books [17,5,39,32,4] and the

references therein.
5. The concept of displacement structure was first introduced in [30] (see also [31]) using a displace-
ment operator of the form (14.6). In [18] a displacement operator of the form (6.1) was considered
(called there UV-reduction operator), and in [19] it was shown that replacing the shifts by other matri-
ces (e.g. diagonal matrices) allows us to consider also other types of structured matrices (e.g. matrices
which are the sum of a Toeplitz and a Hankel matrix or which are generalizations of Vandermonde or
Cauchy matrices) in a similar way.

In the subsequent years a huge number of papers followed which documents the success in the
field of displacement structured matrices.

6. The Levinson-type and Schur-type algorithms for Hankel matrices show that there are essential
differences between Toeplitz and Hankel matrices. A first algorithm for Hankel matrices was givenin a
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paper of Trench [43]]. The recursions given there are tree-term recursions and at the end of the paper
their connection with orthogonal polynomials on the real axis is discussed.

7. Padé approximation has a very long history. Due to the connection with continued fractions one
can assume that it starts with Euclid’s algorithm for computing the greatest common divisor of two
integers. This was in about the year 300 BC.

In 1892 Padé defended his thesis at the Sorbonne in Paris. It was the first systematic investigation of
what today is called Padé approximant and reveals, in particular, connections with continued fractions
([36,37], see also [38]). Padé’s thesis was very much influenced by his teacher Hermite, who developed
a general theory of interpolation by rational functions. We refer the reader who is interested in more
details of this very exciting history to [8].

In the last decades there is a lot of activities on Padé approximation not only in pure mathematics
and numerical analysis but also in applications to physics. Two important monographs are [11,2]. In
[9] Brezinski and Van Iseghem give an instructive survey concerning relevant aspects of Padé approx-
imation which can also be used as a preliminary tutorial guide.
8.1n 1950 Lanczos [33] proposed a method for computing the eigenvalues of a matrix by reducing this
matrix to a tridiagonal form, from which the eigenvalues can be determined. The interested reader
should study Chapter 9 of [17], which is dedicated to Lanczos methods.

To learn more about the connection between Hankel algorithms and Lanczos methods we refer to
[7] and the references therein. The authors there write: “The resulting recursion formulae to factorize
a strongly nonsingular Hankel matrix have appeared in several papers under different guises, going
all the way back to Tchebycheff [42]".
9.,10.,and 11. The idea to “split" the classical Levinson and Schur algorithms for real symmetric Toeplitz
matrices goes back to Delsarte and Genin [13,14], but the splitting property was utilized before in other
fields, for example in the reduction of the trigonometric moment problem with real data to a moment
problem on the interval [—1, 1] (see [1]), in efficient root location tests (see [6]), and also in signal
processing and seismology (see [10]).

12. The ZW-factorization is closely related to the “quadrant interlocking" or WZ-factorization, which
was originally introduced and studied by Evans and his coworkers for the parallel solution of tridiagonal
systems.

The ZW-factorization for real symmetric Toeplitz matrices was first mentioned by Demeure in
[15]. In our papers [24,26,27] ZW-factorizations for skewsymmetric Toeplitz, centrosymmetric and
centro-skewsymmetric Toeplitz-plus-Hankel, and general Toeplitz-plus-Hankel matrices were de-
scribed, respectively. Note that for skewsymmetric Toeplitz matrices (and thus also for purely imagi-
nary hermitian Toeplitz matrices) the factors of the ZW-factorization have some surprising additional
symmetry properties which are not shared by the symmetric case.

In the paper [28] it is shown that for hermitian Toeplitz matrices the ZW-factorization leads to

more efficient algorithms for the solution of linear systems than LU-factorization and that the ZW-
factorization reflects, in contrast to the LU-factorization, both symmetry properties. This leads to a
computational gain in solving linear systems.
13. First important results on Toeplitz-plus-Hankel matrices were the construction of their inverses
(see [35,19]) and the discovery of the Bezoutian structure of their inverses [20]. Here we deal with the
cases of centrosymmetric or centro-skewsymmetric matrices and offer split algorithms which require
the application of the afore-mentioned algorithms for pure Toeplitz matrices.

If the reader’s interest is piqued in the structure of Toeplitz-plus-Hankel matrices we recommend
to study also [25,26].
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