
Linear Algebra and its Applications 435 (2011) 1–59

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier .com/locate/ laa

Fast algorithms for Toeplitz and Hankel matrices

Georg Heinig1, Karla Rost∗
Dept. of Mathematics, University of Chemnitz, D-09126 Chemnitz, Reichenhainer Str. 39, Germany

A R T I C L E I N F O A B S T R A C T

Article history:

Received 19 November 2010

Accepted 6 December 2010

Available online 18 February 2011

Submitted by A. Böttcher

AMS classification:

65F05

15B05

15A06

15A23

Keywords:

Toeplitz matrix

Hankel matrix

Levinson algorithm

Schur algorithm

LU-factorization

ZW-factorization

The paper gives a self-contained survey of fast algorithms for solving

linear systemsofequationswithToeplitzorHankel coefficientmatri-

ces. It iswritteninthestyleofatextbook.AlgorithmsofLevinson-type

and Schur-type are discussed. Their connectionswith triangular fac-

torizations, Padè recursions and Lanczosmethods aredemonstrated.

In the case inwhich thematrices possess additional symmetry prop-

erties, split algorithms are designed and their relations to butterfly

factorizations are developed.

© 2010 Elsevier Inc. All rights reserved.

Contents

1. Introduction . 03

2. Preliminaries . 04

2.1. Symmetries . 05

2.2. Complexity . 05

3. The Levinson algorithm . 07

3.1. Recursion for columns of the inverses . 07

3.2. Recursion for Yule–Walker solutions . 08

3.3. Symmetric and Hermitian cases . 09

3.4. Bordering method . 09

∗ Corresponding author.

E-mail address: krost@mathematik.tu-chemnitz.de (K. Rost).
1 Died on May 10, 2005.

0024-3795/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2010.12.001

2 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

4. The Schur algorithm . 10

4.1. First version of the Schur algorithm . 10

4.2. Recursion for the Yule–Walker residuals . 12

4.3. Symmetric and Hermitian cases . 13

4.4. Schur-type bordering . 13

5. Triangular factorizations . 13

5.1. General matrices . 13

5.2. Persymmetric matrices . 15

5.3. Toeplitz matrices . 16

5.4. Solving Toeplitz systems with the Schur algorithm . 16

5.5. Inertia computation . 16

6. Displacement structure and quasi-Toeplitz matrices . 17

6.1. Gauss–Schur reduction . 17

6.2. Quasi-Toeplitz matrices . 17

6.3. Schur algorithm for quasi-Toeplitz matrices . 19

6.4. The Toeplitz case . 20

6.5. Outlook to Toeplitz-like matrices . 20

7. Algorithms for Hankel matrices . 20

7.1. Levinson-type algorithm . 21

7.2. Schur-type algorithm . 23

7.3. Solution of Hankel systems and LU-factorization . 24

8. Padé recursions . 24

8.1. Padé approximation at zero . 24

8.2. Padé approximation at ∞ and partial realization . 25

8.3. The Padé table . 25

8.4. Antidiagonal path . 26

8.5. Horizontal path . 27

9. Hankel recursion and the Lanczos algorithm . 28

9.1. Lanczos method . 28

9.2. Hankel matrix factorization . 29

10. Split algorithms for symmetric Toeplitz matrices . 30

10.1. Splitting . 30

10.2. Centrosymmetric bordering . 30

10.3. The split Levinson algorithm . 31

10.4. Double-step split Levinson algorithm . 32

10.5. Relations betweenwk , w
−
k and xk . 33

10.6. Solution of systems by classical bordering . 33

10.7. Solution of systems by centrosymmetric bordering – first version 34

10.8. Solution of systems by centrosymmetric bordering – second version 35

10.9. Split Schur algorithm . 35

11. Split algorithms for skewsymmetric Toeplitz matrices . 36

11.1. Splitting and symmetry property of the nullspaces . 36

11.2. First and last columns of inverses . 37

11.3. Levinson-type algorithm . 37

11.4. Schur-type algorithm . 37

11.5. Solution of systems . 38

12. Split algorithms for Hermitian Toeplitz matrices . 38

12.1. Splitting . 39

12.2. Centro-Hermitian bordering . 39

12.3. Recursion for solutions wk . 41

12.4. Computing a second family of solutions wk . 41

12.5. Solutions for the right-hand side e . 43

12.6. Recursion for the residuals . 43

13. Butterfly factorization . 44

13.1. Z-, W-, and X-matrices . 44

13.2. ZW-factorization and centro-nonsingularity . 45

13.3. Symmetry properties . 45

13.4. Solution of centrosymmetric Z-systems . 46

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 3

13.5. Unit ZW-factorization of skewsymmetric Toeplitz matrices . 46

13.6. Split ZW-factorization of centrosymmetric matrices . 48

13.7. Solution of symmetric Toeplitz systems . 48

13.8. Solution of Z-systems with conjugate symmetries . 49

13.9. Solution of Hermitian Toeplitz systems . 50

14. Split algorithms for centrosymmetric and centro-skewsymmetric Toeplitz-plus-Hankel matrices . . 51

Comments and references . 56

References . 57

1. Introduction

Engineering or scientific computational problems are typically reduced to matrix computations

– eventually, a linear system of equations has to be solved. The structure of the original problem

often leads to a structured coefficient matrix in the resulting linear system. Hence, designing special

algorithms that exploit these structures in order to be faster than standard algorithms is desirable.

We will present principles how to manage this issue. Moreover, if the coefficient matrix possesses

additional symmetry properties we will discuss how to take advantage from both, the structures and

the symmetries. Therefore, we offer not only classical material, but also new results which have been

subject of recent research and discussion.

The presentation is largely elementary. We only assume basic knowledge in linear algebra. This

should make the paper accessible to a wide readership, including graduate students and also re-

searchers who want to enter the field of structured matrices. The exercises aim at gaining deeper

understanding, some of them may be challenging.

The paper at hand is written self-contained and in the style of a textbook. Thus, it is suitable for stu-

dent’s self-study. Beyond that the text could serve as an elaboratedmanuscript for lectures on the topic

and could be integrated into courses on structured matrices and on numerical linear algebra as well.

Now, let us describe the content in more detail. The present paper is dedicated to so-called fast

algorithms for structured matrices. In particular, we consider Toeplitz matrices

Tn = [ai−j]ni,j=1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 a−1 . . .a−n+1

a1 a0
. . .

...
...

. . .
. . . a−1

an−1 . . . a1 a0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and Hankel matrices

Hn = [hi+j−1]ni,j=1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1 h2 . . . hn

h2 h3 . .
.

hn−1

... . .
.

. .
. ...

hn hn−1 . . . h2n−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The entries of the matrices are taken from a given field F. The attribute “fast" indicates that the

complexity of the algorithm isO(n2) comparedwithO(n3) complexity for the corresponding standard

algorithms for unstructured matrices. Algorithms with a complexity less than O(n2) are often called

“superfast". They are based on divide-and-conquer strategies, which, however, are beyond the scope

of our paper. Wewill consider two kinds of fast algorithms: Levinson-type and Schur-type algorithms.

A Levinson-typealgorithm recursivelycomputes solutionsof special equations for submatrices. In the

classical Levinson algorithm these solutions are the last columnsof the inverses of the leading principal

submatrices (ormultiples of them). These solutions can be used in differentways. Firstly, with the help

of such algorithmsToeplitz andHankel systemswith general right-hand sides canbe solved recursively

4 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

using the bordering principle. Secondly, they produce a factorization of the inverse matrix. In the case

of the classical Levinson algorithm this is the UL-factorization of the inverse. The factorization can also

be used to solve a linear system, but its importance goes far beyond that. For example, it plays a crucial

role in the theoryof orthogonal polynomials. Thirdly, thevectors eventually computedby the Levinson-

type algorithm provide the parameters needed in Bezoutian formulas for the inverse matrix. These

Bezoutian formulas represent in particular a basic tool for in the construction of superfast algorithms.

In the same way a Levinson-type algorithm produces a factorization of the inverse matrix, a Schur-

type algorithm produces a factorization of the matrix itself. The quantities which are computed in the

latter case can be interpreted as residuals for the solutions computed by the corresponding Levinson-

type algorithm. A Schur-type algorithm can be combinedwith a corresponding Levinson-type in order

to avoid inner product calculations. Let us point out that the importance of the Schur algorithm, like

that for the Levinson algorithm, goes far beyond solving linear systems. It was originally designed to

solve a problem in complex function theory.

SinceasymmetricToeplitzmatrix isalsocentrosymmetricwecanexploit thesesymmetryproperties

to reduce the number of operations. The resulting algorithms are referred to as split algorithms. There

exist split algorithmsof Levinson-typeandSchur-type. Like the classical LevinsonandSchur algorithms

are related to triangular factorization, the corresponding split algorithms are related to a different kind

of factorization, calledbutterfly factorization. Thesplit Levinsonalgorithmcomputessucha factorization

of the inversematrix whereas the split Schur algorithm computes a factorization of thematrix itself.

In most of the sections of this paper we assume that the Toeplitz or Hankel matrix under con-

sideration is strongly nonsingular. An n × n matrix A = [aij]ni,j=1 is called strongly nonsingular if all

its leading principal sections Ak = [aij]ki,j=1 (k = 1, . . . , n) are nonsingular. In particular, positive

definite matrices are strongly nonsingular. Toeplitz and Hankel matrices without this property can be

treated as well. However, this requires nontrivial generalizations of ideas presented here. Occasion-

ally the condition of strong nonsingularity is replaced by the condition that all central submatrices

[aij]n+1−l
i,j=l

(
1 ≤ l ≤ n+1

2

)
are nonsingular. A matrix with this property is called centro-nonsingular.

Since for a Toeplitz matrix the central submatrices are equal to leading principal submatrices, centro-

nonsingularity means that every second leading principal submatrix is nonsingular.

At the end of the paper references on the history and the genesis of the results under consideration

can be found. We restrict ourselves to the original work of the inventors, but also to books and survey

papers. Moreover, we refer interested readers who want to apply the knowledge of this course or who

want to learn more about further and adjacent research to papers which are understandable on the

basis of the present text. This is a reason for citing a number of papers written by the authors.

We apologize for any omission, which seems to be unavoidable because of the huge and rapidly

growing number of publications on structured matrices.

2. Preliminaries

In this section,wediscuss somegeneral topics thatwill be used afterwards. Throughout thepaper,F

will denote anarbitraryfield. In somesectionswe restrict ourselves to the case thatF is of characteristic

different from 2 or to the case that F = C or R, the fields of complex or real numbers, respectively.

By { e1, . . . , en } the standard basis of F
n is denoted. Furthermore, 0k will stand for the zero vector of

length k. If there is no danger of misunderstanding we will omit the subscript k.

Sometimes we use “polynomial language". For x = (xi)
n
i=1 ∈ F

n, we consider the polynomial

x(t) =
n∑

k=1

xkt
k−1

and call it the generating polynomial of x. Polynomial language for matrices means that we introduce

the generating polynomial of an m × n matrix A = [aij]m n
i=1,j=1 ∈ F

m×n as the bivariate polynomial

A(t, s) =
m∑
i=1

n∑
j=1

aij t
i−1sj−1.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 5

2.1. Symmetries

At several places we will exploit symmetry properties of matrices. Besides symmetry, skewsym-

metry and Hermitian symmetry in the usual sense we deal with persymmetry and centrosymmetry.

We introduce somenotations. Let Jn be thematrix of theflipoperator inF
nmapping (x1, x2, . . . , xn)

to (xn, xn−1, . . . , x1),

Jn =

⎡⎢⎢⎢⎣
0 1

. .
.

1 0

⎤⎥⎥⎥⎦ . (2.1)

For a vector x ∈ F
n we denote by xJ the vector Jnx and, in case F = C, by x# the vector Jnx, where x

is the vector with the conjugate complex entries,

xJ = Jnx and x# = Jnx.

In polynomial language the latter looks like

xJ(t) = x(t−1)tn−1, x#(t) = x(t−1)tn−1.

A vector x is called symmetric if xJ = x, skewsymmetric if xJ = −x, and conjugate symmetric if x# = x.

For an n × n matrix A, we denote

AJ = JnAJn and A# = JnAJn,

where A is the matrix with the conjugate complex entries.

An n×nmatrix A is called persymmetric if AJ = AT . Thematrix A is called centrosymmetric if AJ = A.

It is called centro-skewsymmetric if AJ = −A and centro-Hermitian if A# = A.

The following facts for square matrices are easy to verify:

1. Any Hankel matrix is symmetric.

2. Any Toeplitz matrix is persymmetric.

3. A Toeplitz matrix is centrosymmetric if and only if it is symmetric.

4. A Toeplitz matrix is centro-skewsymmetric if and only if it is skewsymmetric.

5. A Toeplitz matrix is centro-Hermitian if and only if it is Hermitian.

2.2. Complexity

In this paper, we will estimate the quality of an algorithm according to its computational complex-

ity. The reader should be aware that complexity is not the only criterion to judge about an algorithm.

Another important criterion is stability. However, the issue of stability ismuchmore difficult to handle

and is beyond the scope of the present paper. To some extend we will also discuss the parallel com-

plexity of the algorithms. Our approach to parallel processing is a naive one. We assume that we have

as many processors as we wish and we do not take into consideration the amount that is needed for

the information exchange between the processors.

By computational complexity we mean the number of arithmetic operations. We do not count, for

example, permutations,multiplication by−1 and, in the complex case, forming the conjugate complex

number andmultiplication by the imaginary unit. (A) stands for additions or subtractions of elements

of F, and (M) stands for multiplications or divisions.

Our complexity estimations will be of asymptotic nature, which means that we are not interested

in the exact number of operations but in its dependence on the size of the problem, which here is

the length of a vector or the order of a matrix. For example, “the algorithm A has complexity O(n2)"
means that the complexity in dependence on n rises like a quadratic function. We will always neglect

lower order terms. For example, the statement “algorithm A has complexity C(n) = an2 " means

that the complexity is equal to C(n) = an2 + C′(n) where lim
n→∞ C′(n)n−2 = 0. We always have

C′(n) = O(n).
We will mainly have three types of operations:

6 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

1. addition of two vectors,

2. multiplication of a vector by a scalar, and

3. inner products.

By “inner product" we mean the multiplication of a row by a column vector of F
k . Clearly, vector

addition of vectors of length k requires k (A) andmultiplication of a vector by a scalar k (M). These two

operations are completely parallelizable. If k processors are available, then we need only 1 (A) or 1

(M), respectively. For an inner product k (A) plus k (M) are needed. But inner product calculation is not

completelyparallelizable. Themostwhat canbeachieved is aparallel complexityofO(log k). This is one
reason why we are looking, among other things, for algorithms that avoid inner product calculations.

The number of operations reduce if the vectors have some symmetry properties. For example, the

sum of two vectors of length k which are both symmetric or skewsymmetric requires only 1
2
k (A).

The same reduction appears for the multiplication of such a vector by a scalar and for inner products

of such vectors. For an inner product of a general vector and a symmetric or skewsymmetric vector

of length k only 1
2
k (M) but k (A) are needed. In fact, suppose that fTu has to be computed, where

f =
⎡⎣ f1

f2

⎤⎦ and u =
⎡⎣ v

vJ

⎤⎦. Then
fTu =

(
f1 + f

J
2

)T
v.

In the case that F = C it is reasonable to distinguish between complex multiplication (CM) and

addition (CA) and their real counterparts (RM) and (RA). We consider 1 (CA) as equivalent to 2 (RA)

and 1 (CM) as equivalent to 4 (RM) plus 2 (RA), although there are versions of complex multiplication

with only 3 (RM) but more (RA). Thus the inner product of two complex vectors of length k requires

4k (RM) plus 4k (RA). Let us estimate the amount for the inner product of a general by a conjugate

symmetric vector of C
k . Suppose that f =

⎡⎣ g1 + ih1

g2 + ih2

⎤⎦ and u =
⎡⎣ vJ − iwJ

v + iw

⎤⎦, where the vectors g1,

g2, u, and v are real. Then

fTu =
(
g
J
1 + g2

)
v +

(
h
J
1 − h2

)
w + i

[(
h
J
1 + h2

)
v −

(
g
J
1 − g2

)
w
]
.

That means the complexity is 2k (RM) plus 3k (RA).

The algorithmspresentedhere in this paper are of recursive nature. In the Levinson-type algorithms

we will have vectors of length k where k runs from 1 to n. For the Schur-type algorithms we will have

vectors of length n+ 1− k for k running from 1 to n. If the complexity of the operations for vectors of

length k is about ak for some positive a, then in both cases the overall complexity will be a
2
n2, since∑n

k=1k is about 1
2
n2.

The following table lists some complexities for quick reference. Here u, v ∈ F
k denote arbitrary

vectors, α is a scalar, u+, v+ ∈ F
k are symmetric or skewsymmetric vectors in the first two rows. The

special caseF = C is considered in the last tworows.Hereu+ andv+ areconjugate-symmetricvectors.

u + v αu uTv u+ + v+ αu+ uT+v+ uT+v

(M) 0 k k 0 1
2
k 1

2
k 1

2
k

(A) k 0 k 1
2
k 0 1

2
k k

(RM) 0 4k 4k 0 2k 2k 2k

(RA) 2k 2k 4k k k 2k 3k

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 7

3. The Levinson algorithm

Throughout this section, let Tn = [ai−j]ni,j=1 be a strongly nonsingular Toeplitz matrix. Besides Tn
we consider the leading principal submatrices

Tk = [ai−j]ki,j=1 for k = 1, . . . , n − 1.

First we show how to solve some special systems with the coefficient matrix Tk by recursion, then

we describe how general systems Tnz = b can be solved using the bordering method, which will be

described in Section 3.4.

All procedures presented in this section will be referred to as Levinson algorithms, although the

original Levinson algorithmwas designed only for the positive definite case, and the recursion for the

special systems is often referred to as Durbin algorithm.

3.1. Recursion for columns of the inverses

We consider two families of special systems

Tkx
−
k = e1 and Tkx

+
k = ek (k = 1, . . . , n). (3.1)

Obviously, the vector x
−
k is the first and x

+
k is the last column of T

−1
k . Our aim is to find a recursion for

the x
±
k .

The crucial observation is that, due to the Toeplitz structure, the matrix Tk can be found twice as a

submatrix of Tk+1,

Tk+1 =
⎡⎣ Tk ∗

∗ ∗

⎤⎦ =
⎡⎣ ∗ ∗

∗ Tk

⎤⎦ .

Hence we have

Tk+1

⎡⎣ x
−
k 0

0 x
+
k

⎤⎦ =
⎡⎣ e1 γ −

k

γ +
k ek

⎤⎦ , (3.2)

where

γ +
k = [ak . . . a1] x−

k , γ −
k = [a−1 . . . a−k] x+

k . (3.3)

We introduce the 2 × 2 matrix

Γk =
⎡⎣ 1 γ −

k

γ +
k 1

⎤⎦ . (3.4)

Observe that Γk is nonsingular. In fact, otherwise

⎡⎣ x
−
k

0

⎤⎦ would be a multiple of

⎡⎣ 0

x
+
k

⎤⎦ . But this is

a contradiction to eT1x
−
k = det Tk−1

det Tk
�= 0. Multiplying (3.2) from the right by Γ

−1
k we obtain on the

right-hand side [e1 ek+1], which is the image of [x−
k+1 x

+
k+1]. Thus the following is true.

Theorem 3.1. For k = 1, . . . , n − 1, the vectors x
±
k satisfy the recursion

[x−
k+1 x

+
k+1] =

⎡⎣ x
−
k 0

0 x
+
k

⎤⎦ Γ
−1
k ,

where Γk is defined by (3.4) and (3.3).

The recursion can be started with x
±
1 = 1

a0
.

8 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Complexity. In each step of this algorithm one has 2 inner products, 2 vector additions and 4 scalar

times vector multiplications. We conclude that the amount for computing the vectors x
±
k by the re-

cursion in Theorem 3.1 is 3 n2 (M) plus 2 n2 (A). In parallel processing the complexity is dominated by

the inner product calculation, so that the overall complexity is O(n log n). An algorithm with parallel

complexity O(n) will be presented in the next section.

In polynomial language the recursion in Theorem 3.1 can be written as[
x
−
k+1(t) x

+
k+1(t)

]
=
[
x
−
k (t) x

+
k (t)

] ⎡⎣ 1 0

0 t

⎤⎦ Γ
−1
k .

The numbers γ ±
k are called reflection coefficients or Schur–Szegő parameters.

3.2. Recursion for Yule–Walker solutions

From the view point of computational complexity it is convenient to consider instead of the vectors

x
±
k the solutions u

±
k of the equations

Tku
−
k = ρ−

k e1 and Tku
+
k = ρ+

k ek, (3.5)

where ρ±
k ∈ F are so that

eT1u
−
k = 1 and eTku

+
k = 1.

In other words u
+
k (t) is assumed to bemonic and u

−
k (t) comonic, whichmeans that (u+

k)J(t) is monic.

Due to the strong nonsingularity of Tn, the numbers ρ±
k are nonzero, and the vectors u

±
k are uniquely

determined. The equations (3.5) are called Yule–Walker equations.

The vectors x
±
k and u

±
k are related via

x
±
k = 1

ρ±
k

u
±
k and u

±
k = 1

ξ±
k

x
±
k ,

where ξ−
k is the first component of x

−
k and ξ+

k the last component of x
+
k . Note that, by Cramer’s rule,

ξ±
k = det Tk−1

det Tk
. Thus, ξ+

k = ξ−
k �= 0. This implies

ρ+
k = ρ−

k =: ρk.

Theorem 3.1 leads to a recursion formula for the vectors u
±
k (t) which can also be deduced imme-

diately from the relation

Tk+1

⎡⎣ u
−
k 0

0 u
+
k

⎤⎦ =
⎡⎣ ρke1 α+

k

α−
k ρkek

⎤⎦ , (3.6)

where α−
k = [ak . . . a1] u−

k , α+
k = [a−1 . . . a−k] u+

k . Note that the reflection coefficients γ ±
k intro-

duced in the previous subsection are given by

γ ±
k = α∓

k

ρk

.

We state the emerging recursion in polynomial language.

Theorem 3.2. For k = 1, . . . , n − 1, the polynomials u
±
k (t) and the numbers ρk satisfy the recursions

[u−
k+1(t) u

+
k+1(t)] = [u−

k (t) u
+
k (t)]

⎡⎣ 1 0

0 t

⎤⎦ Φk

and

ρk+1 = ρk

(
1 − γ +

k γ −
k

)
,

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 9

where

Φk =
⎡⎣ 1 −γ −

k

−γ +
k 1

⎤⎦ . (3.7)

The recursion can be started with u
+
1 = u

−
1 = 1 and ρ1 = a0.

Complexity. Like for the computation of the vectors x
±
k , in each step of this algorithm one has 2 inner

products and 2 vector additions. But we have only 2 scalar times vector multiplications, compared

with 4 for the x
±
k . Hence the amount for computing the vectors u

±
k by the recursion in Theorem 3.2 is

2 n2 (M) plus 2 n2 (A).

It is worth to mention that the reflection coefficients γ ±
k coincide with some components of the

vectors u
±
k . In fact, the following can be concluded from Theorem 3.2.

Corollary 3.3. Let ν−
k denote the last component of u

−
k and ν+

k the first component of u
+
k . Then, for

k = 1, . . . , n − 1,

ν±
k+1 = −γ ∓

k .

3.3. Symmetric and Hermitian cases

We discuss the simplifications of the Levinson algorithm that we have if Tn has some symmetry

properties.

Let Tn be symmetric. Then Tn is also centrosymmetric. Thus we have Tk(x
−
k)J = e

J
1 = ek , which

means that x
+
k = (x−

k)J =: xk . Analogously u
+
k = (u−

k)J =: uk and γ +
k = γ −

k =: γk . Hence the

recursions in Theorems 3.1 and 3.2 can be written as

xk+1(t) = 1

1 − γ 2
k

(
t xk(t) − γk(x

J
k)(t)

)
and uk+1(t) = t uk(t) − γk (u

J
k)(t).

Complexity. In the case of a symmetric Toeplitz matrix, the amount for computing the vectors uk by

the recursion in Theorem 3.2 is n2 (M) plus n2 (A).

Let now F = C and Tn be Hermitian. Then Tn is also centro-Hermitian. Thus we have Tk(x
−
k)# =

e#1 = ek , which means that x
+
k = (x−

k)# =: xk . Similarly, u
+
k = (u−

k)# =: uk , γ
−
k = γ +

k =: γk .

Hence the recursions in Theorems 3.1 and 3.2 can be written as

xk+1(t) = 1

1 − |γk|2
(
t xk(t) − γkx

#
k (t)

)
and uk+1(t) = t uk(t) − γk u

#
k (t).

Complexity. InthecaseofacomplexHermitianToeplitzmatrixwecountthenumberofrealoperations.

Thus the amount for computing the vectors uk by the recursion in Theorem 3.2 is 4 n2 (RM) plus 4 n2

(RA).

3.4. Bordering method

ThesolutionscomputedbyaLevinson-typealgorithmcanbeused tosolveageneral systemTnz = b,

b = (bi)
n
i=1. The corresponding procedure is called bordering method. It is not restricted to Toeplitz

matrices. Therefore, we explain it for a system Az = bwith a general strongly nonsingular coefficient

matrix A = [aij]ni,j=1.

Let xk be the solution of Akxk = ek and zk be the solution of Akzk = bk , where bk = (bi)
k
i=1, k =

1, . . . , n, A = An. Then

10 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Ak+1

⎡⎣ zk

0

⎤⎦ =
⎡⎣ bk

βk

⎤⎦ ,

where

βk =
[
ak+1,1 . . . ak+1,k

]
zk.

We conclude that

zk+1 =
⎡⎣ zk

0

⎤⎦+ (bk+1 − βk)xk+1. (3.8)

We start the recursion with z1 = b1

a11
.

Similar relations exist that involve the monic solutions uk of Akuk = ρkek .

Complexity. The application of the bordering formula (3.8) requires in each step 1 inner product, 1

vector addition and 1 scalar times vectormultiplication. This results in an overall amount for bordering

of n2 (M) plus n2 (A). Thus the amount for solving a Toeplitz system (using the vectors u
±
k) is 3 n2 (M)

plus 3 n2 (A). This reduces to 2 n2 (M) plus 2 n2 (A) for solving a symmetric Toeplitz system. The cost

for an Hermitian Toeplitz system is 8 n2 (RM) plus 8 n2 (RA). In the case of a symmetric or Hermitian

Toeplitz matrix the cost for bordering can be reduced utilizing the symmetry properties. This will be

explained in Sections 10 and 12.

4. The Schur algorithm

We now present another algorithm, which is named after I. Schur. Originally the Schur algorithm

was designed to answer a question in complex function theory. Later it turned out that this algorithm

has a wide range of applications. In particular, it can be used to solve Toeplitz systems, since it pro-

duces the LU-factorization of the matrix (see Section 5.2). It can also be combined with the Levinson

algorithm replacing the inner product calculations there. The resulting method has a slightly higher

complexity than the pure Levinson algorithm in sequential but a significantly lower complexity in

parallel computing.

4.1. First version of the Schur algorithm

Besides the submatrix Tk of Tn we consider the two (n − k + 1) × k Toeplitz matrices

T
−
k =

⎡⎢⎢⎢⎢⎣
ak−n . . . a1−n

...
...

a0 . . . a1−k

⎤⎥⎥⎥⎥⎦ and T
+
k =

⎡⎢⎢⎢⎢⎣
ak−1 . . . a0

...
...

an−1 . . . an−k

⎤⎥⎥⎥⎥⎦ . (4.1)

Note that the last row of T
−
k is the first row of Tk and the first row of T

+
k is the last row of Tk .

As in Section 3.4, x
±
k will denote the first and the last column of T

−1
k , respectively. Then, for k =

1, . . . , n,⎡⎣ T
−
k

T
+
k

⎤⎦ [x−
k x

+
k] =

⎡⎣ s
−−
k s

−+
k

s
+−
k s

++
k

⎤⎦ ,

where the vectors s
±±
k = (s±±

i,k)n−k+1
i=1 ∈ F

n−k+1 are given by

s
+±
i,k =

[
ak+i−2 . . . ai−1

]
x
±
k , s

−±
i,k =

[
ak+i−1−n . . . ai−n

]
x
±
k .

In particular,

s
+−
1,k = 0, s

++
1,k = 1, s

−−
n−k+1,k = 1, s

−+
n−k+1,k = 0,

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 11

and the reflection coefficients (3.3) are

γ +
k = s

+−
2,k and γ −

k = s
−+
n−k,k. (4.2)

The vectors s
±±
k will be called residual vectors.

Let us explain briefly the importance of the residual vectors for an LU-factorization of the matrix

Tn. More details are discussed in Section 5. Let V denote the upper triangular matrix the kth column

of which is

⎡⎣ x
+
k

0

⎤⎦. Then L = TnV is lower triangular and the kth column of L equals

⎡⎣ 0

s
++
k

⎤⎦. Hence
Tn = LV−1 is a triangular factorization of Tn. That means that the matrix L formed by the residual

vectors s
++
k is just the L-factor of an LU-factorization of Tn.

The Schur algorithms computes the residual vectors recursively. To derive it we utilize the Toeplitz

structure, as in the derivation of the Levinson algorithm. Let us adapt somenotation. Foru = (uj)
m
j=1 ∈

F
m, we denote by I+u, I−u the vectors

I+u = (uj)
m
j=2, I−u = (uj)

m−1
j=1 , (4.3)

respectively. That means that I+ cuts off the first and I− cuts off the last component of the vector.

Moreover,

I±±u = I±(I±u). (4.4)

Note that⎡⎢⎢⎢⎣
T

−
k

I±Tk

T
+
k

⎤⎥⎥⎥⎦ x
±
k =

⎡⎢⎢⎢⎣
s
−±
k

0k−2

s
+±
k

⎤⎥⎥⎥⎦ ∈ F
2n−k (k > 1),

and the step k → k + 1 means to extend the zero vector in the middle of the right hand side by one

zero above and below. We have⎡⎣ T
−
k+1

T
+
k+1

⎤⎦ ⎡⎣ x
−
k 0

0 x
+
k

⎤⎦ =
⎡⎣ I+s

−−
k I−s

−+
k

I+s
+−
k I−s

++
k

⎤⎦ .

Theorem 3.1 leads to the following.

Theorem 4.1. For k = 1, . . . , n − 1, the residual vectors s
±±
k satisfy the recursion⎡⎣ s

−−
k+1 s

−+
k+1

s
+−
k+1 s

++
k+1

⎤⎦ =
⎡⎣ I+s

−−
k I−s

−+
k

I+s
+−
k I−s

++
k

⎤⎦ Γ
−1
k ,

where

Γk =
⎡⎣ 1 s

−+
n−k,k

s
+−
2,k 1

⎤⎦ .

The recursion starts with

s
++
1 = s

+−
1 = 1

a0
(ai−1)

n
i=1, s

−+
1 = s

−−
1 = 1

a0
(ai−n)

n
i=1.

To write the Schur recursion in polynomial language, we introduce the projection Pm defined for

Laurent polynomials by

Pm

(∑N

k=−M
ukt

k−1

)
= ∑m

k=1
ukt

k−1. (4.5)

12 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

That means Pm cuts off all negative powers of t and all powers greater than m − 1. In particular, for

u = (ui)
m
i=1,

(I+u)(t) = (u(t) − u1)t
−1 = Pm−1t

−1u(t), (I−u)(t) = u(t) − umt
m−1 = Pm−1u(t).

Now the recursion of Theorem 4.1 can be written in the form⎡⎣ s
−−
k+1(t) s

−+
k+1(t)

s
+−
k+1(t) s

++
k+1(t)

⎤⎦ = Pn−k

⎡⎣ s
−−
k (t) s

−+
k (t)

s
+−
k (t) s

++
k (t)

⎤⎦⎡⎣ t−1 0

0 1

⎤⎦ Γ
−1
k .

Here the projection Pn−k has to be applied entrywise to the matrix polynomial.

In view of (4.2), the recursion in Theorem 4.1 can be used to compute the vectors x
±
k without inner

product calculations. As for the Levinson algorithm, the number of multiplications can be reduced if

another normalization of the residual vectors is used.

4.2. Recursion for the Yule–Walker residuals

Let, for k = 1, . . . , n, the vectors r
±±
k = (r±±

i,k)n−k+1
i=1 ∈ F

n−k+1 be given by⎡⎣ T
−
k

T
+
k

⎤⎦ [u−
k u

+
k] =

⎡⎣ r
−−
k r

−+
k

r
+−
k r

++
k

⎤⎦ ,

where u
±
k are the solutions of the Yule–Walker equations (3.5). In particular,

r
+−
1,k = r

−+
n−k+1,k = 0, r

++
1,k = r

−−
n−k+1,k = ρk, γ +

k = r
+−
2,k

ρk

, γ −
k = r

−+
n−k,k

ρk

.

We state the theorem that is analogous to Theorem 4.1 in polynomial language.

Theorem 4.2. The polynomials r
±±
k (t) satisfy the recursion⎡⎣ r

−−
k+1(t) r

−+
k+1(t)

r
+−
k+1(t) r

++
k+1(t)

⎤⎦ = Pn−k

⎡⎣ r
−−
k (t) r

−+
k (t)

r
+−
k (t) r

++
k (t)

⎤⎦⎡⎣ t−1 0

0 1

⎤⎦ Φk,

where

Φk =
⎡⎣ 1 −γ −

k

−γ +
k 1

⎤⎦ , γ +
k = r

+−
2,k

r
++
1,k

, γ −
k = r

−+
n−k,k

r
−−
n−k+1,k

.

The initialization of the recursion is given by

r
++
1 (t) = r

+−
1 (t) =

n−1∑
k=0

ak t
k, r

−+
1 (t) = r

−−
1 (t) =

n−1∑
k=0

ak−n+1 t
k.

Complexity. In each step of the recursion we have 4 vector additions and 4 scalar times vector mul-

tiplications. The lengths of the vectors are n − k + 1. Thus the overall complexity is 2 n2 (M) plus 2 n2

(A), which is the same as for the Levinson algorithm. If the Schur algorithm is only used to replace

the inner product calculations in the Levinson algorithm, then the amount for computing the vectors

u±
n will be 3 n2 (M) plus 3 n2 (A). In parallel processing we have 2 vector additions and 2 scalar times

vector multiplications, so that the parallel complexity is 2 n (M) plus 2 n (A).

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 13

4.3. Symmetric and Hermitian cases

In the case of a symmetric Toeplitz matrix Tn we have T
−
k = Jn−k+1T

+
k Jk . Since in this case u

−
k =

(u+
k)J , we obtain

I−r
−−
k = T

−
k u

−
k = Jn−kT

+
k u

+
k = (I+r

++
k)J .

Together with r
++
1,k = r

−−
n−k+1,k this leads to r

−−
k = (r++

k)J . Analogously, r−+
k = (r+−

k)J .

Similarly, in the case of an Hermitian Toeplitz matrix Tn we have r
−−
k = (r++

k)# and r
−+
k =

(r+−
k)#.

Thus, in both cases it is sufficient to describe the recursion of the vectors r
±
k = r

+±
k ,

[r−k+1(t) r
+
k+1(t)] = Pn−k

[
r
−
k (t) r

+
k (t)

] ⎡⎣ t−1 0

0 1

⎤⎦ Φk.

Analogously, the recursion for the residual vectors s
±±
k collapses to

[s−k+1(t) s
+
k+1(t)] = Pn−k

[
s
−
k (t) s

+
k (t)

] ⎡⎣ t−1 0

0 1

⎤⎦ Γ
−1
k ,

where s
±
k = s

+±
k . In all cases the amount reduces by 50% comparedwith the general case in sequential

processing. In parallel processing the amount remains the same.

4.4. Schur-type bordering

The bordering method explained in Section 3.4 involves inner product calculations that could be

avoided as shown next.

We use the notation of Section 3.4 and introduce the (n − k) × k matrix A′
k = [aij]n k

i=k+1, j=1 and

residual vectors b′
k = A′

kzk and sk = A′
kxk . Note thatβk is the first component of b′

k . Then the recursion

for zk implies a recursion for the residual vector b′
k

b′
k+1 = I+b′

k + (bk+1 − βk)sk+1. (4.6)

In the case of a Toeplitz matrix A = Tn the matrix A′
k is obtained after the first row in T

+
k is deleted

and sk = I+s
++
k , where s

++
k is defined in Section 4.1.

In the next section, we show how to solve Toeplitz systems exclusively with the Schur algorithm.

5. Triangular factorizations

In this section, we show how the algorithms discussed before can be used to find triangular factor-

izations of Toeplitz matrices and their inverses.

5.1. General matrices

To begin with we recall some standard material and present it in a form which is convenient for

our purposes.

A representation of a nonsingular n×nmatrix A in the form A = LDU inwhich L is lower triangular,

U is upper triangular andD is diagonal is called LU-factorization. Clearly, the LU-factorizationof amatrix

is, if it exists, not unique. We will consider three kinds of normalizations:

• In the unit LU-factorization L and U are assumed to be unit triangular. A triangular matrix is called

unit if it has ones on the main diagonal.

14 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

• If A = LDU is the unit LU-factorization, then A = (LD)D−1(DU) will be called co-unit LU-

factorization. The reason why we consider this factorization is that in some cases the amount

to compute the co-unit LU-factorization is less than the amount for the computation of the unit

LU-factorization.
• IfF = C and A is Hermitian positive definite, then there exists an LU-factorizationwithD = In and

U = L∗. This is the Cholesky factorization. Moreover, the middle factor D in the unit factorization is

a real diagonal matrix.

Proposition 5.1. If a matrix A admits an LU-factorization, then it is strongly nonsingular. Conversely, any

strongly nonsingular matrix admits a unique unit, a unique co-unit and, in case A is Hermitian positive

definite, a unique Cholesky LU-factorization.

Analogously to LU-factorization a UL-factorization is defined. The n × n matrix A admits a UL-

factorization if and only if the matrix JnAJn is strongly nonsingular. Speaking about triangular factor-

ization we mean an LU- or a UL-factorization.

If A = LDU is the unit LU-factorization of A, then AT = UTDLT is the unit LU-factorization of

the transpose of A. Furthermore, A−1 = U−1D−1L−1 is the unit UL-factorization of A−1. Let us also

mention the obvious fact that the LU-factorization of A includes an LU-factorization of all its leading

principal submatrices Ak , and the UL-factorization of A−1 a UL-factorization of all A
−1
k .

The following is a straightforward consequence of the uniqueness of the factorizations introduced

above.

Proposition 5.2. Let A = LDU be the unit or co-unit LU-factorization of A. If A is symmetric, then U = LT .
If F = C and A is Hermitian, then U = L∗.

Now we show how the factors of the unit (or co-unit) LU-factorization of A and the co-unit (unit)

UL-factorization of A−1 can be characterized. For this let us adapt a notation. Let (vj)
n
j=1 be a sequence

of vectors such that vj ∈ F
j . Then U(vj)

n
j=1 denotes the n × n upper triangular matrix the kth column

of which is equal to

U(vj)
n
j=1ek =

⎡⎣ vk

0n−k

⎤⎦ .

For a sequence (wj)
n
j=1 with wj ∈ F

n+1−j , by L(wj)
n
j=1 is denoted the lower triangular matrix the

kth column of which is equal to

L(wj)
n
j=1ek =

⎡⎣ 0k−1

wk

⎤⎦ .

If (dj)
n
j=1, then D(dj)

n
j=1 will denote the diagonal matrix diag (d1, . . . , dn).

Let A = [aij]ni,j=1 and Ak = [aij]ki,j=1 (k = 1, . . . , n), and let xk and x̃k be the solutions of

Akxk = ek and AT
k x̃k = ek,

ξk = eTkxk = eTk x̃k. Then

A

⎡⎣ xk

0k−1

⎤⎦ =
⎡⎣ 0k−1

sk

⎤⎦ and AT

⎡⎣ x̃k

0k−1

⎤⎦ =
⎡⎣ 0k−1

s̃k

⎤⎦
for some vectors sk, s̃k ∈ F

n−k+1 the first component of which equals 1. Then the following is true.

Proposition 5.3

1. The factors of the unit LU-factorization of A, A = LDU, are given by L = L(sk)
n
k=1, U

T = L(̃sk)
n
k=1,

and D = (D(ξk)
n
k=1)

−1.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 15

2. The factors of the co-unit UL-factorization of A−1, A−1 = U1D1L1, are given by U1 = U(xk)
n
k=1,

LT1 = U(̃xk)
n
k=1, and D = (D(ξk)

n
k=1)

−1.

For the co-unit factorization of Awe consider the solutions uk and ũk of the equations Akuk = ρkek
and AT

k ũk = ρ̃kek satisfying eTkuk = eTk ũk = 1. It can be checked that ρ̃k = ρk . Let

A

⎡⎣ uk

0k−1

⎤⎦ =
⎡⎣ 0k−1

rk

⎤⎦ and AT

⎡⎣ ũk

0k−1

⎤⎦ =
⎡⎣ 0k−1

r̃k

⎤⎦ .

Then the following is true.

Proposition 5.4

1. The factors of the co-unit LU-factorization of A, A = LDU, are given by L = L(rk)
n
k=1, U

T =
L(̃rk)

n
k=1, and D = (D(ρk)

n
k=1)

−1.

2. The factors of the unit UL-factorization of A−1, A−1 = U1D1L1 are given by U1 = U(uk)
n
k=1,

LT1 = U(ũk)
n
k=1, and D1 = (D(ρk)

n
k=1)

−1 .

In the theory of orthogonal polynomials the unit UL-factorization of A−1 appears in polynomial

language. In this language UL-factorization means the representation of the generating polynomial of

A−1 in the form

A−1(t, s) =
n∑

k=1

1

ρk

uk(t)ũk(s).

Analogously, the unit LU-factorization of Ameans to represent A(t, s) in the form

A(t, s) =
n∑

k=1

1

ξk
sk(t)t

k−1s̃k(s)s
k−1.

5.2. Persymmetric matrices

Recall that an n × nmatrix A is called persymmetric if AJ := JnAJn = AT and that Toeplitz matrices

have this property. Obviously, A is persymmetric if and only if AJn is symmetric.

Proposition 5.5 If A is strongly nonsingular and persymmetric, and A = LDU is its (unit or co-unit) LU-
factorization, then the (unit or co-unit) UL-factorization of A is given by A = U1D1L1, where U1 = (UT)J ,
D1 = DJ and L1 = (LT)J . Conversely, a UL-factorization can be transformed into an LU-factorization.

ForasymmetricmatrixA theupper triangular factorof theunitUL-factorizationofA−1 (orof theunit

LU-factorization of A) can be immediately obtained from the lower triangular factor by transposition,

L = UT . This is not the case for a persymmetric matrix. For the construction of the triangular factors

we need both the vectors uk and ũk (or sk and s̃k). However, due to the close relationship between

symmetric and persymmetric matrices, there should be some hidden relation between these vectors.

Let us describe such a relation between the vectors uk and ũk in the following proposition.

Proposition 5.6 If A is persymmetric, then the vectors ũk and uk are related via

Jkũk = ρk

k∑
j=1

ν̃j

ρj

uj,

where ν̃j denotes the first component of ũj .

16 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Proof. Due to the persymmetry we have

Akũ
J
k = ρke1.

Hence

Jkũk = ρkA
−1
k e1 = ρkU(uj)

k
j=1

(
D(ρj)

k
j=1

)−1 (
U(ũj)

k
j=1

)T
e1.

The assertion is now immediate. �

Proposition 5.6 can be interpreted in the following way. Both systems { uk(t) } and { ũJ
k(t) } are

bases of F
n(t). Proposition 5.6 describes the matrix of basis change. The inverse of this matrix has a

similar form. We leave it to the reader to find it. We also leave to reader to find a relation between the

vectors sk and s̃k that generate the triangular factors of the LU-factorization of A.

5.3. Toeplitz matrices

Comparing the discussion above with the content of the previous sections we see that in the case

of a strongly nonsingular Toeplitz matrix Tn the Levinson algorithm just computes a UL-factorization

of T−1
n and the Schur algorithm computes an LU-factorization of Tn. In fact we have with the notations

of Sections 3.1 and 3.2

xk = x
+
k , x̃k = (x−

k)J, uk = u
+
k , ũk = (u−

k)J

and with the notations of Sections 4.1 and 4.2

sk = s
++
k , s̃k = (s−−

k)J, rk = r
++
k , r̃k = (r−−

k)J .

Recall that, since Tn is persymmetric, the LU-factorization of Tn can be transformed into a UL-

factorization of Tn, and the UL-factorization of T−1
n into a LU-factorization of T−1

n . Furthermore, we

recall from Corollary 3.3 that the numbers ν̃j appearing in Proposition 5.6 can be expressed in terms

of the reflection coefficients.

Note that apparently there is a close relationship between bordering and UL-factorization of T−1
n .

5.4. Solving Toeplitz systems with the Schur algorithm

We just have shown that the Schur algorithm produces the LU-factorization Tn = LDU of a strongly

nonsingular Toeplitz matrix. This factorization can be used to solve a system Tnz = b by back substi-

tution. That means we first solve the lower triangular system LDy = b and then the upper triangular

system Uz = y.

The complexity for solving a triangular system is 1
2
n2 (M) plus 1

2
n2 (A). Thus the overall complexity

for solving a Toeplitz systemexclusively by applying the Schur algorithm is 3 n2 (M) plus 3 n2 (A)which

is the same as for the Levinson algorithm combined with bordering.

5.5. Inertia computation

First of all let us recall from the basic course in Linear Algebra what is meant by the inertia of a

matrix. Assume that F = C, and let A be an Hermitian n × n matrix. The triple of integers

In A = (p+, p−, p0)

in which p+ is the number of positive, p− is the number of negative, and p0 is the number of zero

eigenvalues, counting multiplicities, is called the inertia of A. Clearly p+ + p− + p0 = n. The integer

sgn A = p+ − p−
is called the signature of A. Note that p−+p+ is the rank ofA, so that rank and signature of anHermitian

matrix determine its inertia.

Two Hermitian n × n matrices A and B are called congruent if there is a nonsingular matrix C

such that B = C∗AC, where C∗ denotes the conjugate transpose of C. It follows Sylvester’s inertia law:

Congruent matrices have the same inertia.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 17

Both the Levinson and the Schur algorithm can be used for the computation of the inertia of a

Toeplitz matrix. In fact, let F = C and Tn be Hermitian, and let Tn = LDL∗ be an LU-factorization of

Tn. Then, by Sylvester’s inertia law we have sgn Tn = sgnD = sgnD−1. Hence we have

sgn Tn =
n∑

k=1

sgn ρk =
n∑

k=1

sgn ξk. (5.1)

The numbers ξk and ρk are computed by the Levinson algorithm, the numbers ρk also by the Schur

algorithm.

6. Displacement structure and quasi-Toeplitz matrices

In this section, we present an alternative derivation of the Schur algorithm for the unit or co-unit

LU-factorization of a strongly nonsingular Toeplitz matrix not relying on the Levinson recursion. The

advantage of this approach is that it can easily be generalized to more general structured matrices.

6.1. Gauss–Schur reduction

To begin with let us recall a version of Gaussian elimination that is called Gauss–Schur reduction

or Schur reduction. The Gauss–Schur reduction produces an LU-factorization of a strongly nonsingular

matrix A = [aij]ni,j=1. We show this for the co-unit LU-factorization. The procedure for the unit LU-

factorization is similar. We use the notation of the previous section.

Put A1 = A, and let A1 = LDU be the co-unit LU-factorization of A1. The first column l1 of L, the

first row uT
1 of U, and the first diagonal element d1 of D are given by

l1 = A1e1, uT
1 = eT1A1, d1 = a

−1
11 .

Furthermore, the matrix Ã2 = A − d1l1u
T
1 is of the form

Ã2 =
⎡⎣ 0 0T

0 A2

⎤⎦
for some (n− 1) × (n− 1) matrix A2. Note that A2 is the Schur complement of the element a11 in the

matrix A1. Indeed, the representation of A1 in the form

A1 =
⎡⎣ a11 (I+u1)

T

I+l1 A11

⎤⎦ ,

where I+ is defined in (4.3), and A11 is the matrix in the upper right corner of A1, makes clear that

A2 = A11 − (I+l1)
1
a11

(I+u1)
T .

From the first column and row of A2 one can get now the second column of L, the second row of U

and the second diagonal element of D. Proceeding in this way one obtains the co-unit LU-factorization

of A. Let us summarize.

Proposition 6.1 Let A be a strongly nonsingular matrix of order n. Then the co-unit LU-factorization of A

is given by

D = D(dk)
n
k=1, L = L(lk)

n
k=1, UT = L(uk)

n
k=1,

where A1 = A, dk = (eT1Ake1)
−1, lk = Ake1, uk = AT

ke1, and Ak+1 is the Schur complement of the

(1, 1)-entry in the matrix Ak.

6.2. Quasi-Toeplitz matrices

If A = Tn is a Toeplitz matrix one would like to exploit the structure of the matrix. Unfortunately,

the matrix A2 is not Toeplitz anymore. Nevertheless some structure is preserved, as we are going to

show now.

18 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

We consider the transformation ∇+(A) in the space of n × nmatrices defined by

∇+(A) = A − SnAS
T
n , (6.1)

where Sn is the matrix of the forward shift operator,

Sn =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0

1 0 0

. . .
. . .

0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (6.2)

It can easily be checked that this transformation is one-to-one. The transformation ∇+ is called shift

displacement operator. Note that there are modifications of this transformations that will be discussed

in the exercises.

For a Toeplitz matrix Tn = [ai−j]ni,j=1 we have, obviously,

∇+(Tn) =

⎡⎢⎢⎢⎢⎢⎢⎣
a0 a−1 . . . a1−n

a1 0 . . . 0

...
...

...

an−1 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a′
0 1

a1 0

...
...

an−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎣ 0 1

1 0

⎤⎦⎡⎣ a′
0 a−1 . . . a1−n

1 0 . . . 0

⎤⎦ ,

where a′
0 = 1

2
a0. Another rank decomposition of ∇+(Tn), which is more convenient for us, is

∇+(Tn) = 1

a0

⎡⎢⎢⎢⎢⎢⎢⎣
a0 0

a1 a1
...

...

an−1 an−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎣ a0 a−1 . . . a1−n

0 a−1 . . . a1−n

⎤⎦ , (6.3)

where

 =
⎡⎣ 1 0

0 −1

⎤⎦ .

In particular, the rank of ∇+(Tn) equals 2, unless Tn is triangular. In the latter case the rank of

∇+(Tn) equals 1, unless Tn = O.

Notice that if Tn is Hermitian, then ∇+(Tn) is also Hermitian, and the signature of ∇+(Tn) equals

zero, unless Tn is diagonal. (Obviously, Tn diagonal means Tn = a0In and sign(∇+(Tn)) equals the

signum of a0.)

Definition An n × nmatrix A is called quasi-Toeplitz if rank∇+(A) ≤ 2.

Clearly, Toeplitzmatrices are also quasi-Toeplitz, but not vice versa. The following proposition gives

a completedescriptionofquasi-Toeplitzmatrices. Since theproof is anelementary calculation,we leave

it to the reader.

Proposition 6.2 Suppose that ∇+(A) = g+gT− − h+hT−, g± = (g±
i)ni=1, h± = (h±

i)ni=1. Then A can be

represented as the sum of 2 products of triangular Toeplitz matrices,

A =

⎡⎢⎢⎢⎣
g
+
1 0

...
. . .

g+
n . . . g

+
1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
g
−
1 . . . g−

n

. . .
...

0 g
−
1

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
h
+
1 0

...
. . .

h+
n . . . h

+
1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
h
−
1 . . . h−

n

. . .
...

0 h
−
1

⎤⎥⎥⎥⎦ . (6.4)

Conversely, if A is given by (6.4), then ∇+(A) = g+gT− − h+hT−.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 19

For a quasi-Toeplitz matrix A, ∇+(A) admits a representation

∇+(A) = G+
 (G−)T

for n × 2 matrices G±. The middle factor
 is introduced for convenience. In particular, if A is a

symmetric Toeplitz matrix, then G− = G+, and if A is an Hermitian Toeplitz matrix, then G− = G+.

The matrices G± are called generators of A. The generators are not unique. In fact, if G̃± = G±Θ± for

some nonsingular 2 × 2 matrices Θ±, then G̃+
G̃T− = G+
GT− if

Θ− =
Θ−T+
.

We now show that the property of being a quasi-Toeplitz matrix is preserved during the process of

Gauss–Schur reduction. First we consider a special case.

Suppose that G± =
[
g± h±

]
, g± = (g±

i)ni=1, h± = (h±
i)ni=1, are the generators of the matrix

A = [aij].
We say that the generators are in proper form if h

+
1 = h

−
1 = 0. For example the generators in (6.3)

are in proper form.

If the generators are in proper form, then a11 = g
−
1 g

+
1 �= 0,

Ae1 = ∇+(A)e1 = g
−
1 g+, eT1A = eT1∇+(A) = g

+
1 gT−.

Hence

l1 = g
−
1 g+, u1 = g

+
1 g−, d1 = (g+

1 g
−
1)−1.

Proposition 6.3 Let A be a quasi-Toeplitz matrix, G± its generators in proper form, and let A2 be the Schur

complement of a11 in A. Then A2 is quasi-Toeplitz and

∇+(A2) =
[
I−g+ I+h+

]

[
I−g− I+h−

]T
where I± are defined in (4.3).

Proof. Let Ã2 be defined as above. Then

∇+(̃A2) = ∇+(A) − ∇+(g+gT−)

= g+gT− − h+hT− − g+gT− + Sng+(Sng−)T .

This implies

∇+(A2) = (I−g+)(I−g−)T − (I+h+)(I+h−)T ,

which is the assertion. �
It remains to show how generators can be transformed into proper form. For this we observe first

that, in view of a11 �= 0, we have g
+
1 g

−
1 − h

+
1 h

−
1 �= 0. In particular, g

+
1 g

−
1 �= 0 or h

+
1 h

−
1 �= 0. Assume,

without loss of generality, that we have the first case. We define

Φ =
⎡⎣ 1 −γ−

−γ+ 1

⎤⎦
with γ± = h

±
1

g
±
1

. In view of g
+
1 g

−
1 − h

+
1 h

−
1 �= 0, this matrix is nonsingular. Furthermore, we set

G̃+ = G+ΦT and G̃− = G−Φ . Then

G̃+
G̃T− = G+ΦT
ΦTGT− = (1 − γ−γ+)∇+(A),

and G̃± are in proper form.

6.3. Schur algorithm for quasi-Toeplitz matrices

We now describe an algorithm for LU-factorization of a strongly nonsingular quasi-Toeplitz matrix

A. As in Proposition 6.1, let A1 = A and Ak+1 the Schur complement of the (1, 1)-entry in Ak . We

20 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

represent ∇+(Ak) in the form

∇+(Ak) = 1

ρk

G
(k)
+
(G

(k)
−)T ,

where G
(k)
± =

[
g
(k)
± h

(k)
±
]
, g

(k)
± = (g±

ik)n−k
i=1 , h

(k)
± = (h±

ik)
n−k
i=1 are in proper form, i.e. h

±
1k = 0. In the

Toeplitz case G
(1)
± are given by (6.3) and ρ1 = a0 �= 0. Our discussion yields the following.

Proposition 6.4 The generators G
(k+1)
± =

[
g
(k+1)
± h

(k+1)
±

]
and the number ρk+1 are recursively given

by

G
(k+1)
+ =

[
I−g

(k)
+ I+h

(k)
+
]
ΦT

k , G
(k+1)
− =

[
I−g

(k)
− I+h

(k)
−
]
Φk

and

ρk+1 = (1 − γ −
k γ +

k)ρk,

where

Φk =
⎡⎣ 1 −γ −

k

−γ +
k 1

⎤⎦ , γ ±
k = h

±
2k

g
±
1k

.

The factors of the co-unit factorization A = LDU are then given by

L = L(lk)
n
k=1, UT = L(uk)

n
k=1, D = D(dk)

n
k=1,

where lk = g
(k)
+ , uk = g

(k)
− and dk = ρ−1

k .

6.4. The Toeplitz case

We show that in the case of a Toeplitz matrix A = Tn the algorithm described by Proposition 6.4

coincides with the Schur algorithm described in Section 4.2.

Comparing the initial data of both algorithms we see that

g
(1)
+ = r

++
1 h

(1)
+ = r

+−
1 − a0e1 g

(1)
− = Jnr

−−
1 , h

(1)
− = Jn

(
r
−+
1 − a0en

)
.

Hence

I−g
(1)
+ = I−r

++
1 , I+h

(1)
+ = I+r

+−
1 , I−g

(1)
− = Jn−1I+r

−−
1 , I+h

(1)
− = Jn−1I−r

−+
1 .

That means after the first step we have the same data. Consequently, for k = 2, . . . , n,

g
(k)
+ = r

++
k h

(k)
+ = r

+−
k g

(k)
− = Jn+1−kr

−−
k , h

(1)
− = Jn+1−kr

−+
k .

This justifies to say that the algorithm described in Proposition 6.4 is in the Toeplitz case just the Schur

algorithm presented in Theorem 4.2.

6.5. Outlook to Toeplitz-like matrices

The algorithm described in Proposition 6.4 can easily be generalized to a wider class of matrices

called Toeplitz-like matrices. A matrix A is called Toeplitz-like if the rank r of ∇+(A) is small compared

with the order of the matrix. Using a rank decomposition of ∇+(A) a representation of the form (6.4)

can be derived, where a sum of r products of lower and upper triangular Toeplitz matrices occurs. It is

quite clear how the Schur algorithm can be generalized from quasi-Toeplitz to Toeplitz-like matrices.

This is however beyond the scope of the considerations here.

7. Algorithms for Hankel matrices

In this section, we consider strongly nonsingular Hankel matrices Hn = [hi+j−1]ni,j=1 and present

algorithms for the solution of Hankel systems and for triangular factorizations of Hn and H−1
n . Recall

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 21

that a Hankel system can immediately transferred into a Toeplitz system by multiplying the system

by Jn. However, the property of strong nonsingularity might be gotten lost after the transformation.

Furthermore, the algorithms for Hankel matrices are of independent interest.

As for Toeplitz matrices, there are two types of algorithms. We call them Levinson-type and Schur-

type, although in the literature different names are used.

7.1. Levinson-type algorithm

As in the Toeplitz case, the basic tool is a recursion for the solution of special systems. However, in

the Hankel case we consider only one family of equations. But similar to the Toeplitz case, we discuss

two versions of special systems, namely

Hkxk = ek

and

Hkuk = ρkek, eTkuk = 1.

In contrast to the Toeplitz case, the Hankel algorithms are based on 3-term recursions. To deduce

these recursions for the vectors xk we observe that

Hk+1

⎡⎣ 0 xk

xk 0

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0

1 0

σk 1

σ ′
k σk

⎤⎥⎥⎥⎥⎥⎥⎦ , Hk+1

⎡⎢⎢⎢⎣
xk−1

0

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
0

1

σk−1

σ ′
k−1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where

σk = [hk+1 . . . h2k] xk, σ ′
k = [hk+2 . . . h2k+1] xk.

These observations lead directly to the following recursion.

Theorem 7.1 For k = 2, . . . , n − 1, the vectors xk satisfy the recursion

xk+1 = 1

τk

⎛⎜⎜⎜⎝
⎡⎣ 0

xk

⎤⎦− (σk − σk−1)

⎡⎣ xk

0

⎤⎦−

⎡⎢⎢⎢⎣
xk−1

0

0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ,

where τk is the nonzero constant

τk = σ ′
k − σ ′

k−1 − (σk − σk−1)σk.

Proof. We check that the vector of the last three components of

Hk+1

⎛⎜⎜⎜⎝
⎡⎣ 0

xk

⎤⎦− (σk − σk−1)

⎡⎣ xk

0

⎤⎦−

⎡⎢⎢⎢⎣
xk−1

0

0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

is equal to τke3. This proves the recursion. �

Obviously, x1 = 1
h1

, σ1 = h2
h1

and σ ′
1 = h3

h1
. We can start the recursion with k = 1 if we set x0

empty and σ0 = σ ′
0 = 0 .

22 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

In polynomial language the recursion of Theorem 7.1 can be written as

xk+1(t) = 1

τk
(t − σk + σk−1)xk(t) − xk−1(t).

For evaluating the monic vectors uk recursively, we compute in each step

ρ′
k = [hk+1 . . . h2k] uk and ρ′′

k = [hk+2 . . . h2k+1] uk.

Theorem 7.2 For k = 2, . . . , n − 1, the vectors uk satisfy the recursion

uk+1 =
⎡⎣ 0

uk

⎤⎦− αk

⎡⎣ uk

0

⎤⎦− βk

⎡⎢⎢⎢⎣
uk−1

0

0

⎤⎥⎥⎥⎦ ,

where

βk = ρk

ρk−1

, αk = ρ′
k

ρk

− ρ′
k−1

ρk−1

.

Furthermore,

ρk+1 = ρ′′
k − αkρ

′
k − βkρ

′′
k−1.

Proof. The recursion formula immediately follows from the relation⎡⎢⎢⎢⎣
ρk 0 ρk−1

ρ′
k ρk ρ′

k−1

ρ′′
k ρ′

k ρ′′
k−1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

1

−αk

−βk

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
0

0

ρk+1

⎤⎥⎥⎥⎦ . �

In polynomial language the recursion can be written in the form

uk+1(t) = (t − αk)uk(t) − βkuk−1(t).

We put u0 empty, ρ0 = 1, ρ′
0 = ρ′′

0 = 0 and start with u1 = 1, ρ1 = h1, ρ
′
1 = h2, ρ

′′
1 = h3.

Complexity Comparing the number of operations in the computation of the vectors xk and uk we

observe that, in contrast to the Toeplitz case, the overall complexity is about the same. In each step we

have 2 inner products, 2 vector additions and 2 scalar times vector multiplications. The vectors have

length k, and k runs from 2 to n. This leads to an overall complexity of 2 n2 (M) plus 2 n2 (A), which is

the same as for the second version of the Levinson algorithm for Toeplitz matrices (see Section 3.2).

Theorem 7.2 can be interpreted in the following way.

Corollary 7.3 The matrix D of the operator of multiplication by t with respect to the bases {uk(t)}n−1
k=1 and

{uk(t)}nk=1 is the n × (n − 1) tridiagonal matrix

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β2

1 α2

. . .

1
. . . βn−1

. . . αn−1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 23

7.2. Schur-type algorithm

Besides the submatrices Hk of Hn we consider the (2(n − k) + 1) × k Hankel matrices

H′
k =

⎡⎢⎢⎢⎢⎣
hk . . . h2k−1

...
...

h2n−k . . . h2n−1

⎤⎥⎥⎥⎥⎦ .

Let us point out that the first row of H′
k is the last row of Hk . The residual vectors sk = (si,k)

2(n−k)+1
i=1

are defined as

sk = H′
kxk.

In particular, s1,k = 1, s2,k = σk, and s3,k = σ ′
k .

Then we have

H′
k+1

⎡⎣ 0 xk xk−1

xk 0 02

⎤⎦ =
[
I++sk I+−sk I++sk−1

]
,

where I±± are defined in (4.4). From Theorem 7.1 we now conclude the following.

Theorem 7.4 For k = 2, . . . , n, the residual vectors sk satisfy the recursion

sk+1 = 1

τk
(I++sk − (s2,k − s2,k−1)I+−sk − I++sk−1),

where

τk = s3,k − s3,k−1 − (s2,k − s2,k−1)s2,k.

The recursion can be started with s1 = 1
h1

(hi)
2n−1
i=1 and an empty s0.

In polynomial language this can be written as

sk+1(t) = 1

τk
P2(n−k)−1

(
(1 − s2,kt − s2,k−1t)sk(t) − sk−1(t)t

−2
)
.

Now we introduce the residual vectors rk = H′
kuk = (ri,k)

2(n−k)+1
i=1 of the monic vectors uk. From

Theorem 7.2 we obtain the following.

Theorem 7.5 The polynomials rk(t) satisfy the recursion

rk+1(t) = P2(n−k)−1

(
(1 − αkt)rk(t) − βkrk−1(t)t

−2
)
,

where

βk = r1,k

r1,k−1

, αk = r2,k

r1,k
− r2,k−1

r1,k−1

.

The recursion can be started with r1 = (hi)
2n−1
i=1 and an empty r0.

Complexity In each step of the algorithm described in the previous two theorems we have 2 vector

additions and 2 scalar times vector multiplications. The lengths of the vectors are 2(n − k) + 1, so

24 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

that the overall complexity is 2 n2 (RM) plus 2 n2 (RA), which is the same as for the Schur algorithm

for Toeplitz matrices.

As for Toeplitz matrices, the Schur-type algorithm for Hankel matrices can be used in two ways.

First it can replace the inner product calculations in the Levinson-type algorithm. In thiswaywe obtain

a mixed Levinson–Schur-type algorithm. Secondly, it provides an LU-factorization of a Hankel matrix,

which is, due to symmetry, of the form Hn = LDLT .

7.3. Solution of Hankel systems and LU-factorization

For the solutionof generalHankel systemswecan repeat everything thatwas said about the solution

of Toeplitz systems. There is a pure Levinson-type algorithm based on Theorem 7.2 and the bordering

method described in Section 3.4. There is a mixed Levinson–Schur-type algorithm based on Theorems

7.2 and 7.4 and the Schur-type bordering described in Section 4.4. Finally there is a pure Schur-type

algorithm based on the (unit or co-unit) LU-factorization of the Hankel matrix and back substitution.

In all cases the complexity is the same as for Toeplitz matrices.

8. Padé recursions

8.1. Padé approximation at zero

Let f(t) = ∑∞
i=1ait

i−1 be a formal power series, ai ∈ F. In case F = C one may think of f(t)
as a function that is analytic at t = 0 and the series is its Maclaurin (Taylor) series expansion. Padé

approximation at t0 = 0 means the local approximation at 0 of f(t) by a rational function

f[m/n](t) = p(t)

u(t)
,

where p ∈ F
m, u ∈ F

n andm, n are given. Since u(0)must be different from zero wemay assume that

u(0) = 1 to make the fraction representation of the rational function unique. Note that this is only

one possibility of normalization. Here we will assume for convenience that u(t) is monic.

Since f[m/n](t) has m + n − 1 degrees of freedoms we can expect that in the generic case the first

m + n − 1 coefficients of the Maclaurin series expansion of f(t) and f[m/n](t) coincide, i.e.

f(t) − f[m/n](t) = tm+n−1g(t)

for some formal power series g(t). If this relation holds, then

f(t)u(t) = p(t) + tm+n−1h(t) (8.1)

for some formal power series h(t). This is the linearized form of the Padé approximation problem.

Speaking about Padé approximation we always have this problem in mind.

We translate (8.1) into matrix language. For this we introduce the n × n Toeplitz matrix Tm,n =
[ai−j+m] n

i,j=1 and the m × n Toeplitz matrix Um,n = [ai−j+1]m n
i=1 j=1. Here we set ai = 0 for i ≤ 0.

Note that the last row of Um,n equals the first row of Tm,n. Comparing coefficients in (8.1) we see that

(8.1) is equivalent to⎡⎣ Um,n

Tm,n

⎤⎦ u =
⎡⎣ p

ρ e1

⎤⎦ ,

where ρ is the last component of p. That means, in order to find the Padé approximation f[m/n](t) of
f(t) one has to solve first the Toeplitz system

Tm,nu = ρ e1, u(0) = 1

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 25

to obtain u. Then the vector p is obtained via

p = Um,nu.

8.2. Padé approximation at ∞ and partial realization

Padé approximation at t0 = ∞ means the following. Let an infinite series in powers of t−1, f(t) =∑∞
i=1sit

−i, be given. The problem is to find, for given n, a proper rational function f[n](t) = pn−1(t)

un(t)
,

where un(t) ∈ F
n(t) is monic and pn−1(t) ∈ F

n−1(t) such that

f(t)un(t) = pn−1(t) + t−nh(t−1). (8.2)

Here h(t) is a formal power series. We introduce the n × n Hankel matrix Hn = [si+j−1]ni,j=1 and the

upper triangular n × n Toeplitz matrix Tn = [sj−i]ni,j=1, where we set si = 0 for i ≤ 0 . Comparing the

coefficients in (8.2) we find that then

Hnun = ρ en, eTnun = 1 and Tnun =
⎡⎣ pn−1

0

⎤⎦ .

Here ρ = h(0). Consequently, a solution of the Padé approximation problem at t0 = ∞ is provided

by solving the Hankel system to get un and then by multiplying this vector by the triangular Toeplitz

matrix Tn to get pn−1.

Let us nowdiscuss the connectionwith partial realization. The partial realization problem in systems

theory consists, in its simplest form, in finding a linear time-invariant discrete-time system
 =
(A, B, C),

xk+1 = Axk + Buk,

yk = Cxk (k = 0, 1, . . .)

from the first components of the impulse response. Here uk is the input, yk is the output and xk is

the state of the system at the time k, A is an m × m matrix, B is a column and C is a row matrix.

This problem splits into two. First one has to find a proper rational function fm(t) (called the transfer

function) withm as the degree of the (monic) denominator such that

fm(t) = s1t
−1 + · · · + s2mt

−(2m) + O(t−(2m+1)),

where the numbers si (called Markov parameters) are given by the impulse response. Then one has to

find (A, B, C) such that

fm(t) = C(tIm − A)−1B.

The solution of the first part is, obviously, closely related to Padé approximation at t0 = ∞ pre-

sented above for n = m + 1.

8.3. The Padé table

Now we are going to show how the algorithms in Sections 7 and 3 can be applied to find Padé

approximants f[m/n] of a power series f(t) = ∑∞
i=1ait

i−1. We know from (8.1) that the Padé ap-

proximation problem (in its linearized form) consists in finding, for given positive integers m and n,

polynomials p(t) = pm,n(t) ∈ F
m(t) and u(t) = um,n(t) ∈ F

n(t) such that

f(t)um,n(t) = pm,n(t) + tm+n−1h(t)

26 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

for some power series h(t). Both the pair (pm,n(t), um,n(t)) and the rational function

f[m/n](t) = pm,n(t)

um,n(t)

will be called [m/n]-Padé approximant of f .

The Padé approximants can be arranged in a Padé table in which m is the row and n the column

index. The first column of the Padé table is given by the partial sums of f(t) and the first row by the

partial sums of f(t)−1. The latter can be computed recursively in an obvious way.

The Padé table is said to be normal if all Padé approximants exist. In this section, we assume that

the table of f is normal.

There are many possibilities to describe recursions between the entries of the Padé table. Here we

restrict ourselves to two of them, namely those which are directly related to the algorithms for Hankel

and Toeplitz matrices presented before. More relations can be found in the literature.

Recall from the end of Section 8.1 that um,n is the solution of the Toeplitz system

Tm,num,n = ρm,ne1,

and pm,n is given by pm,n = Um,num,n, where

Tm,n = [ai−j+m]ni,j=1 and Um,n = [ai−j+1]m n
i=1 j=1,

in which we set ai = 0 for i ≤ 0. In order to apply the algorithms presented earlier in this paper

directly we normalize um,n by assuming that the last component of um,n equals 1, i.e. um,n(t) is monic.

8.4. Antidiagonal path

First we show that the algorithms for Hankel matrices presented in Section 7 correspond to a

recursion along an antidiagonal m + n = N in the Padé table. Let us illustrate this by a picture, in

which empty circles denote elements in the Padé table that are known and full circles elements that

will be computed.

n − 1 n n + 1

m − 1 •
↗

m ◦
↗

m + 1 ◦
For fixed N, we set un = um,n, pn = pm,n and ρn = ρm,n, and we introduce the Hankel matrices

Hn = JnTm,n (n = 1, . . . ,N). It is easy to see that thematricesHn are the leading principal submatrices

of the Hankel matrix HN = JNT1,N , and un is the monic solution of the Hankel system Hnun = ρn en.

Furthermore, we have pn = Jmrn, where rn is the residual vector of un in the sense of Section 7. In

particular, ρn is the leading coefficient of pn(t). That means we can apply Theorems 7.2 and 7.5, which

results in the following.

Theorem 8.1 For n = 1, . . . , n − 1 the polynomials un(t) and pn(t) satisfy the recursions

un+1(t) = (t − αn)un(t) − βnun−1(t),

pn+1(t) = (t − αn)pn(t) − βnpn−1(t),

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 27

where

βn = ρn

ρn−1

, αn = ρ′
n

ρn

− ρ′
n−1

ρn−1

,

and ρn, ρ
′
n are the last two coefficients of pn(t).

8.5. Horizontal path

We show that the Toeplitz algorithms correspond, in principle, to a horizontal path in the Padé

table,

n n + 1

m ◦ −→ •

m + 1 ◦ −→ •
The crucial observation is that

Tm+1,num,n = αm,nen,

where

αm,n =
[
am+n . . . am+1

]
um,n.

Since

Tm+1,n+1 =

⎡⎢⎢⎢⎢⎣
Tm+1,n am+1−n

...

am+1+n . . . am+1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
am+1 Tm,n

...

am+1+n . . . am+1

⎤⎥⎥⎥⎥⎦
we have

Tm+1,n+1

⎡⎣ um+1,n 0

0 um,n

⎤⎦ =

⎡⎢⎢⎢⎣
ρm+1,n ρm,n

0 0

αm+1,n αm,n

⎤⎥⎥⎥⎦
and

Tm,n+1

⎡⎣ um+1,n 0

0 um,n

⎤⎦ =

⎡⎢⎢⎢⎣
ρ′
m+1,n ρ′

m,n

ρm+1,n ρm,n

0 0

⎤⎥⎥⎥⎦ .

This yields the following.

Theorem 8.2 For fixed m and n = 1, 2, . . . ,

[
um+1,n+1(t) um,n+1(t)

]
=
[
um+1,n(t) um,n(t)

] ⎡⎣ 1 0

0 t

⎤⎦ Φm,n,

[
pm+1,n+1(t) pm,n+1(t)

]
=
[
pm+1,n(t) pm,n(t)

]
Φm,n,

28 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

where

Φm,n =
⎡⎢⎣− αm,n

αm+1,n

− ρm,n

ρm+1,n

1 1

⎤⎥⎦ .

Furthermore,

αm,n+1 = αm,nρm+1,n − αm+1,nρm,n

ρm+1,n

.

9. Hankel recursion and the Lanczos algorithm

9.1. Lanczos method

Let A be a real symmetric n × n matrix and b ∈ R
n. In numerical linear algebra, in particular in

connection with iterative methods for solving linear systems, one has to deal with subspaces of the

form

Kk = span {b, Ab, . . . , Ak−1b}.
These subspaces are called Krylov subspaces. Clearly, Kk is the range of the matrix

Kk =
[
b Ab · · · Ak−1b

]
,

which is called Krylov matrix.

If the vectors b, Ab, . . . , An−1b are linearly independent, then they form a basis of Kn. However,

for increasing k the vectors Akb become more and more parallel, so this basis is not convenient for

calculations. Therefore one is looking for an orthonormal basis of Kn. The Lanczos algorithm is a

procedure for constructing such a basis. In this section, we show that this algorithm is closely related

to the Hankel matrix recursion described in Section 7.

To begin with let us state the problem. We want to find numbers qij such that the vectors

wj =
j∑

i=1

qijA
i−1b

form an orthonormal system. Introducing thematrix Un = [qij]ni,j=1, qij = 0 for i > j, the latter means

that Qn = KnUn is a matrix with orthonormal columns wj (j = 1, . . . , n), i.e. QT
n Qn = In. This shows

that Kn = QnRn with Rn = U−1
n is the QR-factorization of Kn.

There is the following remarkable interpretation of the left factor of the QR-factorization of Kn.

Proposition 9.1 If Kn = QnRn is the QR-factorization of Kn, then M := QT
n AQn is tridiagonal.

That means the matrix Qn generates an orthogonal similarity transform that maps A into a tridiag-

onal matrix.

To prove this proposition we introduce the operator of multiplication by t modulo a monic poly-

nomial

a(t) =
n∑

j=0

ajt
j, an = 1. (9.1)

This operator maps tj−1 to tj for j = 1, . . . , n − 2 and tn−1 is mapped to tn − a(t). Thus the matrix

of the operator is given by

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 29

C(a) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −a0

1
...

. . .
...

0 1 −an−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
and is called the companion (matrix) of the polynomial a(t).

First we observe that AKn = KnC(a), where a(t) is the characteristic polynomial of A. Hence

K−1
n AKn =

(
R−1
n QT

n

)
A(QnRn) = C(a).

Consequently,

M = QT
n AQn = RnC(a)R−1

n . (9.2)

SinceRn andR−1
n are triangular,C(a) is upperHessenbergweconclude thatM is alsoupperHessenberg.

Since M is moreover symmetric,M must be tridiagonal.

Let

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1

β1

. . .
. . .

. . .
. . . βn−1

βn−1 αn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Taking (9.2) into account we see that βj is a product of diagonal entries of Rn and R−1
n , thus βj �= 0 for

j = 1, . . . , n − 1. From AQn = QnM we see that

Awj = βj−1wj−1 + αjwj + βjwj+1.

From the orthogonality of the vectors wj , we conclude that αj = wT
j Awj . Furthermore, we have

βj = ‖Awj − βj−1wj−1 − αjwj‖2. That means that the vectorswj can be computed via the recursion

wj+1 = 1

βj

(A − αjIn)wj − βj−1

βj

wj−1. (9.3)

The corresponding algorithm is named after C. Lanczos.

9.2. Hankel matrix factorization

Nowwe explainwhat the Lanczos algorithmhas to dowith Hankelmatrix factorization algorithms.

For this we observe that the matrix

Hn = KT
n Kn = [bTAi+j−2b]ni,j=1

is Hankel. Furthermore,Hn = RTnRn. Thus Rn is the upper triangular factor of the Cholesky factorization

ofHn (cf. Section5.1).Whatweactuallyneed tofind isUn = R−1
n . Thecolumnsqj ofUn are thecoefficient

vectors of orthogonal polynomials that satisfy a 3-term recursion

qj+1(t) = 1

βj

(t − αj)qj(t) − βj−1

βj

qj−1(t) (9.4)

which has the same structure as the Lanczos recursion (9.3).

Theconclusion is that theLanczosalgorithmcomputes recursively theQ-factorof theQR-factorization

of Kn, and the Levinson-type algorithm for Hankel matrices computes recursively the inverse of the

R-factor via the same formulas.

30 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

10. Split algorithms for symmetric Toeplitz matrices

This section is dedicated to the special case of symmetric Toeplitz matrices Tn = [a|i−j|]ni,j=1. We

assume that the characteristic of the underlying fieldF is not equal to 2. The reason for this assumption

is that in the case of characteristic 2 we have 1 = −1, so that symmetric and skewsymmetric vectors

cannot be distinguished. This has the consequence that not every vector can be represented as the

sum of a symmetric and a skewsymmetric vector.

We also assume throughout the section that the order of the matrix Tn is even, n = 2m. This

assumption is not essential. It is only to avoid considering different cases and to simplify notation. The

case of odd n can be treated analogously.

10.1. Splitting

A natural question is to ask whether the property of Tn to be symmetric can further be exploited to

reduce the number of operations. The answer is “yes", but the reduction comes from the centrosym-

metry of Tn rather than from the symmetry. Remember from Section 2.1 that Tn is symmetric if and

only if it is centrosymmetric.

Let F
n+ denote the subspace of all symmetric and F

n− the subspace of all skewsymmetric vectors in

F
n. Obviously, Fn is the direct sum of F

n+ and F
n−, and P± := 1

2
(In ± Jn) are the projections onto F

n±
along F

n∓.

For a centrosymmetric matrix, the subspaces F
n± are invariant subspaces. Hence a general system

Tnz = b can be split into the two systems Tnz± = P±b, where z± = P±z, i.e. z = z+ + z−.

10.2. Centrosymmetric bordering

If a system Tnz+ = b+ with a symmetric right-hand side b+ = (bi)
n
i=1 has to be solved, then it is

reasonable to use the following centrosymmetric version of the bordering method.

For An = [aij]ni,j=1, let A
c
k (k = 1, . . . ,m) denote the 2k × 2k central submatrix

Ac
k = [aij]m+k

i,j=m−k+1.

Recall that a matrix is called centro-nonsingular if all central submatrices Ac
k (k = 1, . . . ,m) are

nonsingular.

Note that in the case of a Toeplitz matrix A = Tn we have Ac
k = T2k . Hence any strongly nonsingular

Toeplitz matrix is also centro-nonsingular.

Assume now that A is centrosymmetric and centro-nonsingular. Suppose that the solutionsw2k of

Ac
kw2k = 2P+e2k = e2k +e1 are known. Then the solutions zck of A

c
kz

c
k = bc

k , where bc
k = (bi)

m+k
i=m−k+1,

can be computed recursively by

zck+1 =

⎡⎢⎢⎢⎣
0

zck

0

⎤⎥⎥⎥⎦+ (bm−k − βk)w2k+2,

where βk = gT
k

⎡⎢⎢⎢⎣
0

zck

0

⎤⎥⎥⎥⎦ and gT
k is the last row of Ac

k+1. (Start with zc1 = bmw2.)

Analogously, centrosymmetric bordering works for skewsymmetric right-hand sides.

Complexity Let us compare the complexity of centrosymmetric bordering with usual bordering. In

each step we have to evaluate 1 inner product of a general vector and a symmetric vector of length 2k.

As mentioned in Section 2.2 such an inner product requires only half of the number of multiplications

and the same number of additions. Thus, for the inner product k (M) plus 2k (A) are required. Besides

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 31

this we have 1 addition of 2 symmetric vectors and 1multiplication of symmetric vector by a scalar for

which k (M) plus k (A) are needed. Since k runs from 1 to m = n/2 the overall complexity is 1
4
n2 (M)

plus 3
8
n2 (A). Recall that the complexity for ordinary bordering is n2 (M) plus n2 (A), so that even if we

have to run centrosymmetric bordering twice (to compute z±)wewill save 50% of themultiplications

and 25% of the additions.

10.3. The split Levinson algorithm

In view of the splitting idea, it is reasonable to consider, for k = 1, . . . , n, the equations

Tkwk = 2P+ek =

⎡⎢⎢⎢⎣
1

0

1

⎤⎥⎥⎥⎦ (10.1)

the solutions of which are symmetric vectors. We are looking for a recursion of the vectors wk . We

will obtain a 3-term recursion which is more similar to the recursion for Hankel matrices than to the

2-term Levinson recursion for Toeplitz matrices.

We have, for k = 1, . . . , n − 1,

Tk+1

⎡⎣wk 0

0 wk

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 γk

0 1

0 0

1 0

γk 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Tk+1

⎡⎢⎢⎢⎣
0

wk−1

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γk−1

1

0

1

γk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with

γk = [ak . . . a1]wk.

From these relationswe conclude that 1+γk−γk−1 �= 0, since otherwise Tk+1 would have a nontrivial

nullspace. We obtain the following.

Theorem 10.1 For k = 2, . . . , n − 1, the vectors wk satisfy the recursion

wk+1 = 1

τk

⎛⎜⎜⎜⎝
⎡⎣wk

0

⎤⎦+
⎡⎣ 0

wk

⎤⎦−

⎡⎢⎢⎢⎣
0

wk−1

0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ , (10.2)

where τk = 1 + γk − γk−1.

The recursion can be started with w1 = 2
a0

and w2 = 1
a1+a0

⎡⎣ 1

1

⎤⎦ . The emerging algorithm is

called split Levinson algorithm.

In polynomial language the recursion in Theorem 10.1 can be written as

wk+1(t) = 1

τk
((1 + t)wk(t) − twk−1(t)) .

Clearly, there is an analogous recursion for the solutionsw
−
k of the equations

Tkw
−
k = 2P−ek =

⎡⎢⎢⎢⎣
−1

0

1

⎤⎥⎥⎥⎦ .

32 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Instead of the equations (10.1) the symmetric Yule–Walker equations could be considered. How-

ever, unlike in the classical Levinson algorithm, we will not get any computational gain from this

normalization.

Complexity In the kth step we have to compute 1 inner product of a general vector and a symmetric

vector of length k. This requires 1
2
k (M) plus k (A). Then we have 2 vector additions and 1 scalar times

vector multiplication of symmetric vectors for which 1
2
k (M) plus k (A) are needed. We have to run

the algorithm twice which results in 1
2
n2 (M) plus n2 (A) compared with n2 (M) plus n2 (A) for the

classical Levinson algorithm.

10.4. Double-step split Levinson algorithm

Since incentrosymmetricborderingweneedonlyevery secondvectorwk it isnatural toaskwhether

we can obtain some computational gain if we consider double steps in the split Levinson algorithm.

We are looking for a recursion of the form

w2k+2 = 1

σk

⎛⎜⎜⎜⎝
⎡⎣w2k

02

⎤⎦+
⎡⎣ 02

w2k

⎤⎦−

⎡⎢⎢⎢⎣
02

w2k−2

02

⎤⎥⎥⎥⎦+ αk

⎡⎢⎢⎢⎣
0

w2k

0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ . (10.3)

If we multiply the right-hand side by T2k+2 from the left we obtain a symmetric vector with all com-

ponents equal to zero, except for the last 3 and the first 3 components. The vector of the last three

components is given by

1

σk

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣

1

γ2k

γ ′
2k

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0

0

1

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
1

γ2k−2

γ ′
2k−2

⎤⎥⎥⎥⎦+ αk

⎡⎢⎢⎢⎣
0

1

γ2k

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ,

where γ2k is defined as above and

γ ′
2k =

[
a2k+1 . . . a2

]
w2k.

We have to find αk and σk such that this linear combination is equal to [0 0 1]T . (Note that σk �= 0

since otherwise T2k+2 would be singular.) An easy calculation leads to the following.

Theorem10.2 For k = 2, . . . ,m−1, the vectorsw2k satisfy the recursion (10.3),whereαk = γ2k−2−γ2k

and

σk = 1 + γ ′
2k − γ ′

2k−2 + γ2k(γ2k−2 − γ2k).

We can start the recursion with an emptyw0 andw2 = 1
a0+a1

⎡⎣ 1

1

⎤⎦.
Complexity Let us compare the complexity of the double-stepwith the single-step algorithm. For the

recursion from k to k + 2, in the double-step algorithm 2 inner products and 2 scalar times vector

multiplications have to be computed, which is the same as for the single-step algorithm. That means

the number of multiplications is unchanged. However, we have only 3 vector additions for the double-

step algorithm compared with 4 for the single-step algorithm, so the number of additions is slightly

smaller. We have 7
8
n2 (A) for the double-step algorithm compared with n2 (A) for the single-step

algorithm.

An advantage of the double-step algorithm in comparison with the single-step algorithm is that

instead of strong nonsingularity we need only that every second leading principal submatrix is non-

singular.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 33

10.5. Relations between wk, w
−
k and xk

To solve a general Toeplitz system Tnz = b we use the splitting idea of Section 10.1. The naive

approach is to solve both Tnz+ = P+b and Tnz− = P−b by centrosymmetric bordering. However,

then we have to run the split Levinson algorithm for both wk and w
−
k , and we will have no gain

compared with the classical algorithm. Therefore, it is desirable to know some relation between the

vectors w
−
k andwk .

Proposition 10.3 For k = 2, . . . , n − 1,

w
−
k (t) = twk−1(t) − ckwk+1(t)

1 − t
, (10.4)

where wk+1(1) �= 0 and ck = wk−1(1)
wk+1(1)

.

Proof. We have

Tk+1

⎛⎝⎡⎣w
−
k

0

⎤⎦−
⎡⎣ 0

w
−
k

⎤⎦⎞⎠ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

1

0

1

a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Tk+1

⎡⎢⎢⎢⎣
0

wk−1

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b

1

0

1

b

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
for some a, b ∈ F. Hence (1 − t)w−

k (t) = twk−1 − ckwk+1(t), for some ck ∈ F. Taking t = 1 we

obtain ckwk+1(1) = wk−1(1). We have wk+1(1) �= 0, since wk+1(1) = 0 would imply wk−1(1) = 0

and so on, which finally leads tow1(1) = 0 orw2(1) = 0, which is not true. Hencewk+1(1) �= 0 and

ck = wk−1(1)
wk+1(1)

. �

Note that polynomial division by a linear factor can be carried out by the Horner scheme and

requires k (M) and k (A). In the present case the factor is 1 − t, and hence we have only additions.

Since the solution xk of Tkxk = ek is given by xk = 1
2
(wk + w

−
k) , we conclude the following from

(10.4).

Corollary 10.4 For k = 2, . . . , n − 1,

xk(t) = 1

2

(
wk(t) + twk−1(t) − ckwk+1(t)

1 − t

)
, (10.5)

where ck = wk−1(1)
wk+1(1)

.

If we consider a nonsingular symmetric Toeplitz extension Tn+1 of Tn (one can show that almost

all such extensions are nonsingular), then this corollary is also true for k = n, so that the vector xn can

be computed from wn, wn+1 and wn−1.

10.6. Solution of systems by classical bordering

The relation between the vectorsw
−
k andwk is quite remarkable but it is not convenient to compute

thew
−
k from thewk at each step, since this would add another O(n2) complexity term.We are looking

for possibilities to solve a general system using only the vectors wk .

The first idea is to apply the classical bordering (3.8) with xk replaced by wk . Doing this we obtain

vectors z′
k for which Tkz

′
k equals bk except for the first component. Finally we end up with a vector z′

satisfying Tnz
′ = b + c e1 for some c. Now we compute xn by (10.5) and obtain z by

z = z′ − c xJ
n.

The complexity for this method is n2 (M) plus n2 (A).

34 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

10.7. Solution of systems by centrosymmetric bordering – first version

The first method to solve a general system by the split Levinson algorithm and centrosymmetric

bordering is based on the following fact.

Lemma 10.5 Any vector b ∈ F
n can be represented in the form

b = c +
⎡⎣ d

0

⎤⎦ , (10.6)

where c ∈ F
n+ and d ∈ F

n−1+ .

Weshow this lemma for the casen = 4. The generalization to arbitraryn is obvious. Letb = (bi)
4
i=1,

c = (ci)
4
i=1 and d = (di)

3
i=1, c1 = c4, c2 = c3, d1 = d3. Then (10.6) is equivalent to the system⎡⎢⎢⎢⎢⎢⎢⎣

1

1 1

1 1

1 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
c1

d1

c2

d2

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
b4

b1

b3

b2

⎤⎥⎥⎥⎥⎥⎥⎦ .

This system has a unique solution which can be found with n additions.

We solve the systems Tny = c and Tn−1v = d with symmetric right-hand sides c, d using cen-

trosymmetric bordering. Then

Tn

⎛⎝y +
⎡⎣ v

0

⎤⎦⎞⎠ = b + c ek.

Hence the solution z is of the form

z = y +
⎡⎣ v

0

⎤⎦− c xn,

where xn is computed by (10.5). In order to compute the coefficient c wemultiply this equality by the

last row of Tn. From this we obtain

c = −bn + cn +
[
an−1 . . . a1

]
v.

As explained in Section 10.2 this method requires, in addition to the amount for the split Levinson

algorithm, only 1
2
n2 (M) plus 3

4
n2 (A) compared with n2 (M) plus n2 (A) for the classical bordering.

We will have a problem in solving Tn−1v = d by centrosymmetric bordering if we run the double-

step Levinson algorithm because only every second vector wk is computed. In this case we consider

the equation Tnṽ = d̃, where d̃(t) = (t + 1)d(t), d̃ ∈ F
n+. We show how ṽ is related to v.

We have

Tn

⎛⎝⎡⎣ v

0

⎤⎦+
⎡⎣ 0

v

⎤⎦⎞⎠ =
⎡⎣ d

∗

⎤⎦+
⎡⎣ ∗
d

⎤⎦ = d̃ + c(en + e1) (10.7)

for some c ∈ F. Hence (1 + t)v(t) = ṽ(t) + cwn(t), so v is given by

v(t) = ṽ(t) + cwn(t)

t + 1
.

The number c cannot be computed from this, since wn(−1) = 0 for even n, but it can be found by

applying a “test functional", for example by left multiplication with any row of Tn−1.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 35

10.8. Solution of systems by centrosymmetric bordering – second version

Nowwe show that the solution of the system Tnz = b can be expressed in terms of the solutions of

the two symmetric systems Tnz+ = P+b and Tn−1z
′ = P+b′, where b′ is the vector of the first n − 1

components of b. This leads to an algorithm with the same complexity as that in Section 10.7. Besides

z+ and z′ we need the solution vector wn+1 for a (n + 1) × (n + 1) nonsingular symmetric Toeplitz

extension Tn+1 of Tn.

It is sufficient to find the solution z− of Tnz− = P−b, since z = z+ + z−.

Proposition 10.6 The solution z− can be computed from z+ and z′ via

z−(t) = (t + 1)z+(t) − 2tz′(t) + cwn+1(t)

t − 1
, (10.8)

where

c = 2

wn+1(1)
(z′(1) − z+(1)).

Proof. Note thatwn+1(1) �= 0 according to Proposition 10.3. We have

Tn+1

⎛⎝⎡⎣ 0

z−

⎤⎦−
⎡⎣ z−

0

⎤⎦⎞⎠ =
⎡⎣ ∗
P−b

⎤⎦−
⎡⎣ P−b

∗

⎤⎦ =: (c−i)n+1
i=1

and

Tn+1

⎛⎜⎜⎜⎝
⎡⎣ 0

z+

⎤⎦+
⎡⎣ z+

0

⎤⎦− 2

⎡⎢⎢⎢⎣
0

z′

0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ =

⎡⎣ ∗
P+b

⎤⎦+
⎡⎣ P+b

∗

⎤⎦− 2

⎡⎢⎢⎢⎣
∗

P+b′

∗

⎤⎥⎥⎥⎦ =: (c+i)n+1
i=1 .

Now, for i = 2, . . . , n,

c
−
i = bi − bn+1−i − bi−1 + bn+2−i

and

c
+
i = bi + bn+1−i + bi−1 + bn+2−i − 2(bi−1 + bn+1−i),

so that c
−
i = c

+
i . Consequently,

(t − 1)z−(t) = (t + 1)z+(t) − 2tz′(t) + cwn+1(t)

for some c ∈ F. This implies (10.8). �

10.9. Split Schur algorithm

The Schur counterpart of the split Levinson is designed in the sameway as the classical Schur from

the classical Levinson algorithm. Let T
+
k be defined by (4.1) and

T
+
k wk = tk.

If tk = (tik)
n−k+1
i=1 , then, in particular, t1k = 1 and t2k = γk . FromTheorem10.1we immediately obtain

the following.

Theorem 10.7 For k = 2, . . . , n − 1, the residual vectors tk satisfy the recursion

tk+1 = 1

τk
((I+ + I−)tk − I+−tk−1),

where τk = 1 + t2,k − t2,k−1, and I±, I+− are defined in (4.3), (4.4), respectively.

By Theorem 10.2 we also have a double-step recursion as follows.

36 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Theorem 10.8 For k = 2, . . . ,m − 1, the residual vectors t2k satisfy the recursion

t2k+2 = 1

σk

((I++ + I−− + αkI+−)t2k − I++−−t2k−2),

where

αk = t2,2k−2 − t2,2k, σk = 1 + t3,2k − t3,2k−2 + t2,2k(t2,2k−2 − t2,2k).

Similar recursions hold for the residuals t
−
k = T

+
k w

−
k of the solutions w

−
k of Tkw

−
k = 2 P−ek .

11. Split algorithms for skewsymmetric Toeplitz matrices

This section is dedicated to nonsingular skewsymmetric Toeplitz matrices Tn = [ai−j]ni,j=1, a−j =
−aj . Like in the previous two sections we assume that the entries of the matrix belong to a field with

a characteristic not equal to 2. Since skewsymmetric matrices of odd order are always singular, nmust

be even. Suppose that n = 2m. For the same reason, a skewsymmetric matrix cannot be strongly

nonsingular, which means that the classical Schur and Levinson algorithms cannot be applied. We

show that, however, the double-step split algorithms for symmetric Toeplitz matrices of the previous

section have skewsymmetric counterparts.

Instead of strong nonsingularity we assume, throughout this section, that all leading principal

submatrices of even order T2k are nonsingular. This is equivalent to the centro-nonsingularity of Tn. In

this case the nullspaces of T2k−1 (k = 1, . . . ,m) are one-dimensional. Let xk be a vector spanning this

subspace,

ker T2k−1 = span {xk}.
We can normalize xk in different ways, for example we could assume that xk is monic, since the last

component must be different from zero. However, for convenience we use another normalization by

assuming that[
a2k−1 . . . a1

]
xk = 1.

This can be done, since the inner product on the left-hand side is nonzero. Otherwise T2k would be

singular. Clearly, with this normalization the vector xk is unique.

11.1. Splitting and symmetry property of the nullspaces

Recall from Section 2.1 that a skewsymmetric Toeplitzmatrix is also centro-skewsymmetric, which

means that T
J
n = −Tn. A centro-skewsymmetric matrix maps F

n+ to F
n− and F

n− to F
n+. So a general

system Tnz = b splits into the two systems Tnz∓ = P±b, where z± = P±z, i.e. z = z+ + z−.

Furthermore, we conclude from this property that with the vector xk also the vector x
J
k belongs to

the nullspace of T2k−1. Thus xk is either symmetric or skewsymmetric. We show that the latter is not

possible.

Lemma 11.1 The vector xk is symmetric.

Proof. Letw ∈ F
2k be the vector defined by w(t) = (t + 1)xk(t). Then

T2kw =

⎡⎢⎢⎢⎣
−1

0

1

⎤⎥⎥⎥⎦ .

Since the right-hand side is skewsymmetric, w must be symmetric. This implies that xk is symmet-

ric. �

This lemma has the following consequence.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 37

Corollary 11.2 For any skewsymmetric b− ∈ F
2k−1 the system T2k−1z+ = b− is solvable.

11.2. First and last columns of inverses

The following is a peculiar property of skewsymmetric Toeplitz matrices. Define

x
+
k =

⎡⎣ xk

0

⎤⎦ and x
−
k =

⎡⎣ 0

xk

⎤⎦ . (11.1)

Then we have

T2kx
+
k = e2k and T2kx

−
k = −e1.

11.3. Levinson-type algorithm

We have

T2k+1

⎡⎢⎢⎢⎣
xk 0 0

0 xk 0

0 0 xk

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 −rk

0 0 −1

0 0 0

1 0 0

rk 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and T2k+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

xk−1

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−rk−1

−1

0

1

rk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where

rk =
[
a2k . . . a2

]
xk.

From this we conclude the following.

Theorem 11.3 For k = 2, . . . , n − 1, the vectors xk satisfy the recursion

xk+1 = 1

αk

⎛⎜⎜⎜⎝
⎡⎣ 02

xk

⎤⎦+
⎡⎣ xk

02

⎤⎦− (rk − rk−1)

⎡⎢⎢⎢⎣
0

xk

0

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
02

xk−1

02

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ,

where

αk = r′k − r′k−1 − rk(rk − rk−1)

with

r′k =
[
a2k+1 . . . a3

]
xk.

In polynomial language this recursion can be written as

xk+1(t) = 1

αk

(t2 − (rk − rk−1)t + 1)xk(t) − t2xk−1(t).

The recursion can be started with an empty x0, r0 = 0 and x1 = 1
a1

.

11.4. Schur-type algorithm

We define residual vectors rk ∈ F
n−2k+1 of xk as

rk = (rj,k)
n−2k+1
j=1 , rj,k =

[
a2k+j−2 . . . aj

]
xk.

In particular we have r1,k = 1 and r2,k = rk . From Theorem 11.3 we conclude the following.

38 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Theorem 11.4 For k = 2, . . . , n − 1, the vectors rk satisfy the recursion

rk+1 = 1

αk

(
(I++ + I−− − (r2,k − r2,k−1)I+−)rk − I++−−rk−1

)
.

With the projections Pk introduced in (4.5) this can be written in polynomial language,

rk+1(t) = 1

αk

Pn−2k−1

(
(1 + t−2 − (r2,k − r2,k−1)t

−1)rk(t) − t−2rk−1(t)
)
.

Complexity Since the Levinson-type and Schur-type algorithms for skewsymmetric Toeplitzmatrices

have the same structure as the double-step algorithms for symmetric Toeplitz matrices, they have the

same complexity which is 1
2
n2 (M) plus 7

8
n2 (A).

11.5. Solution of systems

For solving a system with a skewsymmetric Toeplitz coefficient matrix, it is recommendable, like

for a symmetric Toeplitz system, to split the right-hand side into its symmetric and skewsymmetric

parts and then to apply centrosymmetric bordering, as it was explained in Section 10.2. For correction

we need the solution of equations

T2kw
∓
2k = ρk(e2k ± e1).

These solutions are given by the vectors x
±
k of (11.1),

w
∓
2k = x

+
k ± x

−
k .

The structure of this method is in principle the same as for the symmetric case, so we expect the

same complexity. However, we have in addition the amount for computing the vectors w
∓
2k which

consists in two vector additions. This adds the term 1
4
n2 (A) to the overall complexity.

This additional term can be avoided if we find a bordering that uses the vectors xk directly. For this

we need solutions of systems of odd order. Let us introduce skewsymmetric vectors c− ∈ F
n+1− and

d− ∈ F
n+1− by c−(t) = (t − 1)b+(t), and d−(t) = (t + 1)b−(t), where b± = P±b. We consider the

equations

Tn+1p = c− and Tn+1q = d−,

where Tn+1 is any (n + 1) × (n + 1) skewsymmetric Toeplitz extension of Tn. These two systems can

be solved using centro-skewsymmetric bordering in which the vectors xk are used for correction. We

have to show how the (symmetric) solutions p and q are related to the solutions z∓ of Tnz∓ = b±.

We have

Tn+1

⎛⎝⎡⎣ z+
0

⎤⎦+
⎡⎣ 0

z+

⎤⎦⎞⎠ =
⎡⎣ b−

∗

⎤⎦+
⎡⎣ ∗
b−

⎤⎦ .

Since the nullspace of Tn+1 is spanned by xm+1, we conclude from this that

(t + 1)z+(t) = (t + 1)q(t) + α1 xm+1(t) + β1 t xm(t).

Analogously,

(t − 1)z−(t) = (t − 1)p(t) + α2 xm+1(t) + β2 t xm(t).

It remains to find the coefficients αi and βi, (i = 1, 2). For this we can put t = 1 and t = −1 or apply

test functionals.

12. Split algorithms for Hermitian Toeplitz matrices

In this section, we consider Hermitian Toeplitz matrices Tn = [ai−j]ni,j=1, a−j = aj . Such matrices

can be represented as Tn = T r
n + i T i

n , where T r
n is a real symmetric and T i

n a real skewsymmetric

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 39

Toeplitz matrix. Thus real symmetric and real skewsymmetric Toeplitz matrices can be considered as

special cases. Our aim is to design algorithms for strongly nonsingularHermitian Toeplitzmatrices that

exploit the additional symmetry property of the matrix, like it was done in the previous sections for

symmetric and skewsymmetric Toeplitz matrices. However, it turns out that a direct generalization

is not possible, due to the different nature of splitting, which will be discussed next. Nevertheless

algorithms with about the same gain in complexity as in the symmetric and skewsymmetric cases do

exist. Applying them to the real symmetric or skewsymmetric cases wewill obtain algorithms that are

different from those presented in the previous sections.

Like in the symmetric case, we assume for the sake of simple notation that n is even, n = 2m. The

case of odd n can be treated analogously.

12.1. Splitting

To begin with, let us explain the nature of splitting for a general centro-Hermitian matrix A. Re-

member that an n×nmatrix A is said to be centro-Hermitian if A# = JnAJn = A. LetC
n∗ denote the set

of conjugate-symmetric vectors in C
n. The set C

n∗ is not a subspace of C
n if this space is considered

as a complex vector space, but it is a subspace if Cn is considered as a vector space over the reals. Fur-

thermore, Cn = C
n∗ ⊕ iCn∗. The subspaces C

n∗ and iCn∗ are invariant under a centro-Hermitian matrix

A. Thus the system Az = b is equivalent to the two systems Az± = b± with conjugate-symmetric

right-hand sides b+ = 1
2
(b + b#) and b− = 1

2i
(b − b#) and z = z+ + iz−.

All what was just said applies to an Hermitian Toeplitz matrix Tn, because any Hermitian Toeplitz

matrix is also centro-Hermitian (see Section 2.1).

12.2. Centro-Hermitian bordering

We know from Section 10.2 that for the solution of a system with a centrosymmetric coefficient

matrix A symmetric bordering is more efficient than usual bordering. Thus it can be expected that for

a centro-Hermitan coefficient matrix centro-Hermitian bordering leads to a reduction of complexity.

This turns out to be true. However, the situation is somehow different here. The reason for this is that

multiplication of a conjugate-symmetric vector by a number is conjugate-symmetric again only if the

number is real.

Suppose that A is a centro-nonsingular, centro-Hermitian matrix, and a system Az = b with a

conjugate-symmetric right-hand side b ∈ C
n∗ has to be solved. Let Ac

k , z
c
k , and bc

k be defined as in

Section 10.2. Then Ac
k+1

⎡⎢⎢⎢⎣
0

zck

0

⎤⎥⎥⎥⎦ is equal to bc
k+1, except for the first and last components. For correction

we now need solutions w
(l)
2k ∈ C

2k∗ (l = 1, 2) of equations

Ac
kw

(l)
2k =

⎡⎢⎢⎢⎣
α2k

0

α2k

⎤⎥⎥⎥⎦
for two values α2k = α

(1)
k and α2k = α

(2)
k which are linearly independent over the reals. With these

solutions one can find zck+1 via

zck+1 =

⎡⎢⎢⎢⎣
0

zck

0

⎤⎥⎥⎥⎦+ ξ
(1)
k w

(1)
2k+2 + ξ

(2)
k w

(2)
2k+2

40 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

with real ξ
(1)
k and ξ

(2)
k . Applying Ac

k+1 to both sides we obtain that the latter equality holds if and only

if

ξ
(1)
k α

(1)
k+1 + ξ

(2)
k α

(2)
k+1 = bm−k − βk,

where βk = gT
k

⎡⎢⎢⎣ 0

zck
0

⎤⎥⎥⎦with gT
k being the last row Ac

k+1.

This is equivalent to the following 2 × 2 system with a nonsingular coefficient matrix⎡⎣ Reα
(1)
k+1 Reα

(2)
k+1

Imα
(1)
k+1 Imα

(2)
k+1

⎤⎦⎡⎣ ξ
(1)
k

ξ
(2)
k

⎤⎦ =
⎡⎣ Re (bm−k − βk)

Im (bm−k − βk)

⎤⎦ .

Complexity Let us compare the amount of centro-Hermitian borderingwith ordinary bordering. First

we have to compute 1 inner product of a general vector and a conjugate-symmetric vector of length

2k. This costs 4k (RM) plus 6k (RA). To form the correction vector we have to evaluate 1 real linear

combination of two conjugate-symmetric vectors, which costs 4k (RM) plus 2k (RA). Finally we have

1 addition of conjugate-symmetric vectors for the amount of 2k (RA). Since k runs from 1 tom = n/2

the total amount is n2 (RM) plus 5
4
n2 (RA). Recall that a general system is reduced to two systemswith

conjugate-symmetric right-hand sides. Hence solving a system with a nonsingular centro-Hermitian

coefficient matrix costs 2 n2 (RM) plus 5
2
n2 (RA), compared with 4 n2 (RM) plus 4 n2 (RA) for ordinary

bordering.

Theproblemwith this approach is that for its applicationonehas tocompute two familiesof solution

w2k , which seems to be too costly. We now show that in the case of a strongly nonsingular Hermitian

Toeplitz matrix Tn one family of solutions is sufficient to carry out centro-Hermitian bordering.

Suppose we have one family of solutions of

Tkwk =
⎡⎢⎢⎣ αk

0

αk

⎤⎥⎥⎦ (12.1)

for the leading principal submatrices Tk (k = 1, . . . , n). The idea is that we first solve recursively

systems of the form

T2kz̃
c
k = bc

k +
⎡⎢⎢⎣ γ k

0

γk

⎤⎥⎥⎦ ,

with arbitrary γk . For this we are looking for a recursion of the form

z̃ck+1 =
⎡⎢⎢⎣ 0

z̃ck
0

⎤⎥⎥⎦+ ck

⎡⎣w2k+1

0

⎤⎦+ ck

⎡⎣ 0

w2k+1

⎤⎦ . (12.2)

Applying T2k+2 to both sides we see that the recursion is satisfied if we choose ck as

ck = bm−k+1 − β ′
k

α2k+1

,

where β ′
k = g′

k
T

⎡⎢⎢⎣ 0

z̃ck
0

⎤⎥⎥⎦ and g′
k
T
is the last but one row of T2k+2. Finally we correct the first and last

components with the help of two linearly independent solutions of (12.1) once, for k = n. That means

we need a second solution of (12.1) only at the very last step.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 41

Complexity The amount for centro-Hermitian Toeplitz bordering, which was just explained, is ap-

proximately the same as for general centro-Hermitian bordering, since multiplication of a conjugate-

symmetric vector by a complex number and its conjugate complex costs as much as multiplication of

two conjugate-symmetric vectors by real numbers.

12.3. Recursion for solutions wk

We now show how solutions of equations (12.1) can be recursively found .

Theorem 12.1 For k = 2, . . . , n − 1 the recursion

wk+1(t) = (μk + μkt)wk(t) − twk−1(t),

with μk = αk−1

αk
produces solutions of equation (12.1). Furthermore,

αk+1 = μkβk + αk−1 − βk−1,

where

βk =
[
ak . . . a1

]
wk.

Proof. The assertion follows from the relations

Tk+1

⎡⎣wk 0

0 wk

⎤⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αk βk

0 αk

0 0

αk 0

βk αk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and Tk+1

⎡⎢⎢⎢⎣
0

wk−1

0

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

βk−1

αk−1

0

αk−1

βk−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. �

For a reason that will be clear at once, it is reasonable to compute also a vector wn+1 and to start

the recursion with an empty w1 and w2 =
⎡⎣−i

i

⎤⎦. If we choose μ2 = (a0 − a1)
−1, then w3 defined

by w3(t) = (μ2t + μ2)w2(t) is a solution of an equation (12.1) for k = 3. With this initialization all

wk(t) will have the propertywk(1) = 0.

12.4. Computing a second family of solutions wk

We show how a second family of solutions of (12.1) can be constructed that is linearly independent

of the first one. Recall that for bordering according to (12.2) we need a second solution only for k = n.

However, the whole family will be needed to build factorizations, as discussed in the next section.

Since wk(1) = 0 we can define vectors qk−1 for k = 2, . . . , n + 1 by

qk−1(t) = i

t − 1
wk(t). (12.3)

Obviously, these vectors are conjugate-symmetric and

wk = i

⎛⎝⎡⎣ qk−1

0

⎤⎦−
⎡⎣ 0

qk−1

⎤⎦⎞⎠ .

The following can easily be checked.

Lemma 12.2 For k = 1, . . . , n, the vectors qk satisfy the equations

Tkqk = θke, (12.4)

where θk are nonzero real numbers and e = (1, 1, . . . , 1).

42 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Proposition 12.3 For k = 2, . . . , n + 1, let wk be a solution of (12.1), qk−1 be given by (12.3), and

θk =
[
ak−1 . . . a0

]
qk.

Then the vector w̃k defined by

w̃k(t) = (1 + t)qk−1(t) − 2θk−1

θk
qk(t)

is a solution of

Tkw̃k =

⎡⎢⎢⎢⎣
αki

0

−αki

⎤⎥⎥⎥⎦ .

Proof. We have

Tk

⎡⎣ qk−1 0

0 qk−1

⎤⎦ =

⎡⎢⎢⎢⎣
θk−1 sk−1

θk−1e θk−1e

sk−1 θk−1

⎤⎥⎥⎥⎦ ,

where

sk =
[
ak . . . a1

]
qk. (12.5)

Combining these relations and taking (12.3) and(12.4) into account we obtain

Tkwk =

⎡⎢⎢⎢⎣
−i(sk−1 − θk−1)

0

i(sk−1 − θk−1)

⎤⎥⎥⎥⎦ and Tkw̃k =

⎡⎢⎢⎢⎣
sk−1 − θk−1

0

sk−1 − θk−1

⎤⎥⎥⎥⎦ ,

which is just the assertion. �

Clearly, the vectors wk and w̃k are linearly independent, since the right-hand sides of the corre-

sponding equations have this property.

Now we have all ingredients for a Levinson-type algorithm that computes the solution of an

Hermitian Toeplitz system with conjugate-symmetric right-hand side. First we compute the family

of solutions wk by Theorem 12.1, then we apply the Toeplitz centro-Hermitian bordering, and finally

we compute w̃n (use (12.3) for k = n, n + 1) to correct the first and last components.

Complexity Let us compare the complexity of this with the classical Levinson algorithm. In each step

of the recursion according to Theorem 12.1 we have first 1 inner product of a general vector and a

conjugate-symmetric vector, which requires 2k (RM) plus 3k (RA) (see Section 2.2). Then we have to

multiply a conjugate-symmetric vector by a complex number and by its conjugate complex. This is

equivalent to 4 real number times vectormultiplications and 4 real vector additions, where the vectors

are symmetric or skewsymmetric, which requires 2k (RM) plus 2k (RA). In additionwe have 2 complex

vector additions with conjugate-symmetric sumswhich costs 2k (RA). This results in a total amount of

2 n2 (RM) plus 7
2
n2 (RA), compared with 4 n2 (RM) plus 4 n2 (RA) for the classical Levinson recursion.

If an Hermitian Toeplitz system is solved with the help of Theorem 12.1 and Toeplitz centro-

Hermitian bordering, then the amount will be 4 n2 (RM) and 6 n2 (RA). The amount for computing

the vector w̃n is O(n) and can be neglected. Solving a system by the classical Levinson algorithm and

bordering costs 8 n2 (RM) and 8 n2 (RA). Thus we have 50% savings in multiplications and 25% savings

in additions.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 43

12.5. Solutions for the right-hand side e

If we want to find two linearly independent families of solutions of (12.1), then it is reasonable to

compute the solutionsqk of (12.4) insteadof thewk recursively. The following theorem is an immediate

consequence of (12.3) and Theorem 12.1.

Theorem 12.4 For k = 1, . . . , n − 1, the polynomials qk(t) satisfy the recursion

qk+1(t) = (νk + νkt)qk(t) − tqk−1(t),

where

νk = sk−1 − θk−1

sk − θk
and sk is given by (12.5). Furthermore,

θk+1 = (νk + νk)θk − θk−1.

The recursion can be started with an empty q0, q1 = 1 and ν1 = a0 − a1.

The vectors qk provide two families of solutions of (12.1) as the following proposition shows. It

follows from the discussion above, but can also be verified directly.

Proposition 12.5 Let the vectorsw
(l)
k , l = 1, 2, be defined by the solutions qk via

w
(1)
k (t) = i(1 − t)qk−1(t),

w
(2)
k (t) = (1 + t)qk−1(t) − 2θk−1

θk
qk(t).

Then w
(l)
k are (linearly independent over the reals) solutions of (12.1) with αk = αl

k and

α1
k = i(sk−1 − θk−1), α2

k = sk−1 − θk−1,

where sk is defined by (12.5).

Instead of the vector w
(2)
k the vector w

(3)
k defined by

w
(3)
k (t) = tqk−2(t) − θk−2

θk
qk(t)

can be used. In fact, this vector solves also the equation (12.1) with αk = α3
k and

α3
k = sk−2 − θk−1.

The advantage to takew
(3)
k instead ofw

(2)
k is that its computation requires less additions. However, the

vectors w
(1)
k andw

(3)
k are only linearly independent if the number

sk−2−θk−2

sk−1−θk−1
is not purely imaginary.

12.6. Recursion for the residuals

All Levinson-type recursions described in this section have Schur counterparts. We here describe

only the Schur counterpart of the recursion of the solutions qk .

Let T
+
k be defined by (4.1) and

T
+
k qk = sk. (12.6)

If sk = (sik)
n−k+1
i=1 , then, in particular, s1,k = θk and s2,k = sk . From Theorem 12.4 we immediately

obtain the following.

44 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Theorem 12.6 For k = 2, . . . , n − 1, the residual vectors sk satisfy the recursion

sk+1 = (νkI+ + νkI−)sk − I+−sk−1,

where

νk = s2,k−1 − s1,k−1

s2,k − s1,k
,

with I± being defined in (4.3).

Complexity In each step of the algorithmwe have tomultiply a complex vector by a complex number

and by its conjugate complex number. This is equivalent to 4 real number times vector multiplications

and 4 real vector additions and requires 4k (RM) plus 4k (RA). In addition we have 2 complex vector

additions requiring 4k (RA). This results in a total amount of 2 n2 (RM) plus 4 n2 (RA).

Corollary 12.7 With the help of the residuals sk we can find the residuals t
(l)
k of the solutions w

(l)
k (l =

1, 2, 3) given by

T
+
k w

(l)
k = t

(l)
k

via the relations

t
(1)
k = i(I+sk−1 − I−sk−1),

t
(2)
k = I+sk−1 + I−sk−1 − 2s1,k−1

s1,k
sk,

t
(3)
k = I+−sk−2 − s1,k−2

s1,k
sk.

Note that these vectors are needed only for even k.

13. Butterfly factorization

The triangular factorization of a matrix has the disadvantage that properties like centrosymmetry

are not inherited in the factors. But there is another type of factorization which has this property. We

call it butterfly factorization in view of the shape of the factors. This kind of factorization is the subject

of this section. It turns out that butterfly factorization is the background for the split Levinson-type

and the split Schur-type algorithms, like triangular factorization is for the classical Levinson and Schur

algorithms.

13.1. Z-, W-, and X-matrices

A matrix A = [aij]ni,j=1 is called a W-matrix (or a bow tie matrix) if aij = 0 for all (i, j) for which

i > j and i + j > n + 1 or i < j and i + j ≤ n. The matrix A will be called a unit W-matrix if in

addition aii = 1 and ai,n+1−i = 0 for i = 1, . . . , n. The transpose of a W-matrix is called a Z-matrix

(or hourglass matrix). A matrix which is both a Z- and aW-matrix will be called an X-matrix. A matrix

which is either a Z-matrix or a W-matrix will be called butterfly matrix.

These names are suggested by the shapes of the set of all possible positions for nonzero entries,

which are as follows:

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• •
• ◦ ◦ •
• ◦ ◦ ◦ ◦ •
• ◦ • • ◦ •
• • • •
• •

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Z =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• • • • • •
◦ ◦ ◦ •

◦ •
• ◦

• ◦ ◦ ◦
• • • • • •

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 45

X =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

• •
• •

• •
• •

• •
• •

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For an n × nmatrix A, the following facts are easily verified.

• If A is a Z-, W- or X-matrix, then AJ is a Z-, W- or X-matrix again, respectively.
• The inverse of a nonsingular Z-, W- or X-matrix is again a Z-, W- or X-matrix, respectively.
• If Z is a Z- and X is an X-matrix of the same order, then ZX and XZ are Z-matrices.
• If Z is a nonsingular Z-matrix, then there exist unique nonsingular X-matrices X1 and X2 such that

ZX1 and X2Z are unit Z-matrices.

From now on we assume again, for simplicity of notation, that the order n of the matrices is even,

n = 2m.

In order to describe X-matrices we introduce a notation that is motivated by the “diag" notation for

diagonal matrices. IfMk =
⎡⎣ αk βk

γk δk

⎤⎦ (k = 1, . . . ,m), then we set

xma(Mk)
m
k=1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

αm βm

.
.

α1 β1

γ1 δ1

. .
. . . .

γm δm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Clearly, xma(Mk)
m
k=1 is nonsingular if and only if allMk are nonsingular and(

xma (Mk)
m
k=1

)−1 = xma(M−1
k)mk=1.

13.2. ZW-factorization and centro-nonsingularity

Arepresentationof thenonsingularmatrixA in the formA = ZXW inwhichZ is a Z-,X is anX- andW

is aW-matrix is called ZW-factorization. If Z andW are unit, then the factorization is referred to as unit.

Analogously, a WZ-factorization is defined. A factorization which is either a ZW- or WZ-factorization

is called butterfly factorization. The following is the analogue of Proposition 5.1.

Proposition 13.1 A necessary and sufficient condition for a matrix A to admit a ZW-factorization is that

A is centro-nonsingular. Among all ZW-factorization there is a unique unit one.

If A is nonsingular and A = ZXW a ZW-factorization, then A−1 = W−1X−1Z−1 isWZ-factorization

of A−1. Conversely, any WZ-factorization of A−1 produces a ZW-factorization of A.

13.3. Symmetry properties

LetA = ZXW be theunit ZW-factorizationofA. Thenwe immediately obtain aunit ZW-factorization

of AJ as AJ = ZJXJWJ . Taking the uniqueness of the unit ZW-factorization into account we conclude

the following.

46 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

1. If A is centrosymmetric, then Z , X , andW are also centrosymmetric.

2. IfA is centro-skewsymmetric, thenZ andW arecentrosymmetricandX is centro-skewsymmetric.

The later means that X is a skewsymmetric antidiagonal matrix.

3. If A is centro-Hermitian, then Z , X , andW are also centro-Hermitian.

In addition, the unit ZW-factorization has similar properties as the unit LU-factorization.

1. If A is symmetric, then W = ZT and X is symmetric.

2. If A is skewsymmetric, thenW = ZT and X is a skewsymmetric antidiagonal matrix.

3. If A is Hermitian, then W = Z∗ and X is Hermitian.

13.4. Solution of centrosymmetric Z-systems

The advantage of the ZW-factorization over the LU-factorization is that in the former symmetry

properties are inherited in the factors. Now we show how this symmetry properties can be exploited.

We describe this for a centrosymmetric Z-system. For a W-system the situation is analogous.

Let Z be a centrosymmetric Z-matrix. Then Z is of the form

Z =
⎡⎣ L

J
0 JmL1

L1Jm L0

⎤⎦ , (13.1)

where L0 and L1 arem × m lower triangular matrices. The following is now easily checked.

Proposition 13.2 For Z of the form (13.1), the solution of a system Zu = bwith a symmetric or skewsym-

metric right-hand side b =
⎡⎣±cJ

c

⎤⎦ is given by u =
⎡⎣±vJ

v

⎤⎦, where v is the solution of the triangular

system

(L0 ± L1)v = c. (13.2)

Thus solving a centrosymmetric Z-system requires to solve 2 triangular systems of half size. This

reduces the number of operations from 1
2
n2 (M) plus 1

2
n2 (A) (needed for an unstructured Z-system)

to 1
4
n2 (M) plus 1

4
n2 (A). However, we have the additional amount of forming the matrices L0 ± L1,

which is 1
4
n2(A). We will see that in all cases we are interested in this additional amount can be

avoided.

13.5. Unit ZW-factorization of skewsymmetric Toeplitz matrices

We startwith the case of a skewsymmetric Toeplitzmatrix, since only for this casewewill compute

the unit ZW-factorization. In the cases of symmetric and Hermitian Toeplitz matrices wewill consider

some modifications.

WeshowhowtheSchur-typealgorithmdescribed inTheorem11.4provides theunitZW-factorization

of a skewsymmetric Toeplitz matrix Tn. For simplification of notation, let us agree upon identifying

any symmetric vector u ∈ F
n−2k with the vector

⎡⎢⎢⎢⎣
0k

u

0k

⎤⎥⎥⎥⎦ ∈ F
n. From the vectors (11.1) we form the

matrix

V =
[
x+
m . . . x

+
1 x

−
1 . . . x−

m

]
.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 47

Obviously, V is a centrosymmetric W-matrix. We investigate now the matrix TnV . For n = 6 we have

TnV =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 −r21 −r31 −r22 −1

0 0 −1 −r21 −1 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 1 r21 1 0 0

1 r22 r31 r21 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We see that Z = T6VJ6 diag (−I3, I3) is a unit centrosymmetric Z-matrix and conclude that thismatrix

is just the Z-factor of the unit ZW-factorization of T6. This generalizes to arbitrary n = 2m. In particular,

the Z-factor of the unit ZW-factorization of Tn is given by

Z = TnVJn diag (−Im, Im).

The middle factor X can be extracted from V . We obtain

X = xma

⎛⎝⎡⎣ 0 −ξ−1
k

ξ−1
k 0

⎤⎦⎞⎠m

k=1

, (13.3)

where ξk is the last componentofxk.Recall fromTheorem11.3 that thenumbers ξk satisfy the recursion

ξk+1 = α−1
k ξk .

Theorem 13.3 The Z-factor of the unit ZW-factorization Tn = ZXZT is of the form (13.1), where L0 and L1
are given by

L0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r1,1

r2,1 r1,2
...

...
. . .

rm,1 rm,2 . . . r1,m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, L1 = SmL0.

Here the ri,k are the residuals defined in Section 11.4, and Sm is the forward shift in F
m introduced in (6.2).

The X-factor is given by (13.3).

Note that the factors of the unit WZ-factorization of T−1
n , T−1

n = WX̃WT are given by W =
VJndiag(−Im, Im)X and X̃ = X−1.

Complexity The ZW-factorization can be used to solve a system Tnz = b. Of course, we first split

the right-hand side into its symmetric and skewsymmetric parts. For each part we have to solve

a centrosymmetric Z-system. This reduces to two systems (13.2) of size m, which in our case turn

into

(Im ± Sm)L0v = c.

We first solve (Im ± Sm)d = c and then L0v = d. Since the system with the coefficient matrix

Im ± Sm can be solved with m additions there is no additional amount for forming L0 ± L1. So

the complexity for solving both the Z- and the corresponding W-system is 1
2
n2 (M) plus 1

2
n2 (A).

If we add this to the amount for the Schur-type algorithm we obtain a complexity of n2 (M) plus
11
8
n2 (A).

48 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

13.6. Split ZW-factorization of centrosymmetric matrices

Thesplit Schuralgorithmfor symmetricToeplitzmatricesdoesnotproduce theunitZW-factorization

but a version of it which we call split factorization.

We say that a matrix A of order n = 2m is split if the first m columns of A are skewsymmetric and

the last m columns are symmetric. Split and centrosymmetric matrices are closely related. In fact, let

Λ denote the matrix

Λ = xma

⎛⎝⎡⎣−1 1

1 1

⎤⎦ , . . . ,

⎡⎣−1 1

1 1

⎤⎦⎞⎠ .

Then it is easy to check that A is centrosymmetric if and only AΛ is split. A split Z-matrix is called unit

split Z-matrix if the last nonzero element in each row is equal to 1, i.e.

ai,n+1−i = am+i,m+i = 1 for i = 1, 2, . . . ,m.

A ZW-factorization of A of the form A = ZsXsZ
T
s in which Zs is unit split will be called unit split

ZW-factorization. The unit ZW-factorization is easily transformed into the unit split ZW-factorization,

and vice versa. In fact, let A = ZXZT be the unit ZW-factorization, then the factors of the unit split

factorization are given by

Zs = ZΛ Xs = 1

4
ΛXΛ.

The X-factor Xs of the split factorization is diagonal. This follows from the fact that the X-factor of the

unit ZW-factorization is built from blocks of the form

⎡⎣ a b

b a

⎤⎦ and that

⎡⎣−1 1

1 1

⎤⎦⎡⎣ a b

b a

⎤⎦⎡⎣−1 1

1 1

⎤⎦
is diagonal.

We show how a system with a split Z-coefficient matrix can be solved. A split Z-matrix Zs is of the

form

Zs =
⎡⎣−L

J
− JmL+

L−Jm L+

⎤⎦ , (13.4)

where L± are m × m lower triangular matrices.

Proposition13.4 Let Zs be the split Z-matrix (13.4). The systemZsu = bwith symmetric or skewsymmetric

right-hand sideb =
⎡⎣±cJ

c

⎤⎦ is equivalent to L+v+ = c or L−v− = c, whereu =
⎡⎣ 0

v+

⎤⎦ oru =
⎡⎣ v

J
−
0

⎤⎦,
respectively.

Thus the amount for solving a split Z-system reduces by 50% compared with an unstructured Z-

system.

13.7. Solution of symmetric Toeplitz systems

It is obvious that the Schur-type algorithms for a symmetric Toeplitz matrix Tn described in Theo-

rems 10.7 and 10.8 and their counterparts for the residuals of the vectors w
−
k produce the Z-factor of

the unit split factorization Tn = ZsXsZ
T
s . This Z-factor is given by (13.4), where

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 49

L+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

t1,2

t2,2 t1,4
...

...
. . .

tm,2 tm−1,4 . . . t1,2m

⎤⎥⎥⎥⎥⎥⎥⎥⎦
and L− is analogously defined. The X-factor is the diagonal matrix

Xs = diag
(
ω−

2m, . . . , ω−
2 , ω2, . . . , ω2m

)
,

where ω2k is the last component of w2k and ω−
2k the last component of w

−
2k . The ω2k can be found

recursively by ω2k+2 = 1
σk

ω2k , where σk is given in Theorem 10.8.

In Sections 10.7 and 10.8 it was shown that the solution of a symmetric Toeplitz system with a

general right-hand side can be reduced to two systems with symmetric right-hand sides. Since for a

symmetric right-hand side we obtain a symmetric solution z+, the first m components of ZTs z+ are

zero. Hence for the product ZsXsZ
T
s z+ only them×mmatrices L+ and diag (ω2, . . . , ω2m) are relevant.

That means we have to compute only the matrix L+ and the numbers ω2k .

Complexity The solution of Tnz = b reduces to 2 systems with coefficient matrix L+ and 2 systems

with coefficient matrix LT+. Thus the amount is 1
2
n2 (M) plus 1

2
n2 (A). Together with the double-step

Schur-type algorithm this results in n2 (M) plus 11
8
n2 (A), compared with 2 n2 (M) plus 2 n2 (A) for the

classical Schur algorithm and LU-factorization (cf. Sections 4.3 and 5.4).

13.8. Solution of Z-systems with conjugate symmetries

For centro-Hermitian Z-systems the situation is similar to that for centrosymmetric Z-systems.

These systems can be reduced to triangular systems. Also in this case it is convenient to consider the

systems in their split form.

A squarematrix will be called column conjugate-symmetric if all columns are conjugate-symmetric.

We introduce the matrix

 = xma

⎛⎝⎡⎣−i 1

i 1

⎤⎦ , . . . ,

⎡⎣−i 1

i 1

⎤⎦⎞⎠ .

Then it is easy to check that A is centro-Hermitian if and only if A
 is column conjugate-symmetric.

A column conjugate-symmetric Z-matrix is called unit column conjugate-symmetric Z-matrix if the

X-matrix built from its diagonal and antidiagonal is equal to
. A centro-Hermitian ZW-factorization

A = ZXZ∗ can be transformed into a ZW-factorization A = ZhXhZ
∗
h in which Zh is unit column

conjugate-symmetric.Wewill call this factorization unit column conjugate-symmetric ZW-factorization.

Concerning the factor Xh we obtain Xh = 1
4

∗X
. For X is Hermitian, Xh is Hermitian. Moreover, Xh

is real. In fact, we have

Xh = 1

4

∗
X
 = 1

4

∗
JnXJn
 = 1

4

∗X
 = Xh.

Obviously, a column conjugate-symmetric Z-matrix Zh has the form

Zh =
⎡⎣ JmL1Jm JmL0

L1Jm L0

⎤⎦ , (13.5)

where L0 = L0,r + iL0,i, L1 = L1,r + iL1,i are lower triangular matrices with Lj,r, Lj,i (j = 1, 2) being

real matrices. In the case where Zh is unit column conjugate-symmetric L0,r and L1,i are unit, and L0,i
and L1,r have zeros on their main diagonal.

Fromthe representation (13.5) it canbe seen that Zh transforms real vectors to conjugate-symmetric

vectors, so that the solution of Zhu = b+ with conjugate-symmetric b+ is real.

50 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Suppose that b+ =
⎡⎣ c#

c

⎤⎦, c = cr + ici with cr, ci ∈ R
m, and let u =

⎡⎣ v

w

⎤⎦with v, w ∈ R
m be

the solution of Zhu = b+. Then we have

Zh

⎡⎣ v

w

⎤⎦ =
⎡⎣ c

J
r

cr

⎤⎦+ i

⎡⎣−c
J
i

ci

⎤⎦ ,

which is equivalent to

L1,iJmv + L0,iw = ci,

L1,r Jmv + L0,rw = cr .

This system can be written as a real Z-system

Z′
h

⎡⎣ v

w

⎤⎦ =
⎡⎣ c

J
i

cr

⎤⎦ ,

where

Z′
h =

⎡⎣ JmL1,iJm JmL0,i

L1,r Jm L0,r

⎤⎦ .

If Zh is unit column conjugate-symmetric then Z′
h is a real unit Z-matrix.

Complexity We just have shown that the solution of systemwith a unit column conjugate-symmetric

Z-coefficient matrix reduces, after splitting the right-hand side as explained in Section 12.1, to 2 real

unit Z-systems. That means that the solution requires n2 (RM) plus n2 (RA). The same is true for a

system with the adjoint coefficient matrix.

13.9. Solution of Hermitian Toeplitz systems

The Schur-type algorithm for an Hermitian Toeplitz matrix Tn described by Theorem 12.6 produces

the Z-factor of a column conjugate-symmetric factorization Tn = ZhXhZ
∗
h . Indeed, we find the residual

vectors t
(1)
k and t

(2)
k of the solutions w

(1)
k and w

(2)
k defined in Proposition 12.5 via the relations of

Corollary 12.7 from the residual vectors of the solutions qk .

Now the factor Zh is given by (13.5), where L0, L1 are the lower triangular matrices the kth columns

(k = 1, . . . ,m) of which are⎡⎣ 0k−1

t
(1)
k

⎤⎦ ,

⎡⎣ 0k−1

t
(2)
k

⎤⎦ ,

respectively.

It remains to describe the middle factor Xh. Let ν
1
k , ν

2
k , denote the last components ofw

(1)
k ,w

(2)
k ,

ν
j
k = eTkw

(j)
k for j = 1, 2.

We take advantage of the relation⎡⎣ z1 z2

z1 z2

⎤⎦ =
⎡⎣−i 1

i 1

⎤⎦⎡⎣ Im z1 Im z2

Re z1 Re z2

⎤⎦ (13.6)

for complex numbers z1, z2, and observe that ZhXα with

Xα = xma

⎛⎜⎝
⎡⎣ Imα1

k Imα2
k

Reα1
k Reα2

k

⎤⎦−1
⎞⎟⎠

m

k=1

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 51

is a unit column conjugate-symmetric Z-matrix. From the uniqueness of the unit column conjugate-

symmetric ZW-factorization we now conclude

Xh = 1

2
xma

⎛⎜⎝
⎡⎣ Im ν1

k Im ν2
k

Re ν1
k Re ν2

k

⎤⎦−1 ⎡⎣ Imα1
k Imα2

k

Reα1
k Reα2

k

⎤⎦−T
⎞⎟⎠

m

k=1

.

(The factor 1
2
appears in view of this factor in
−1 = 1

2

∗.)

From Proposition 12.5 we know

α1
k = i(s2,k−1 − s1,k−1), α2

k = s2,k−1 − s1,k−1,

where sk is defined by (12.6). For the last components ofw
(j)
k we obtain

ν1
k = −i ηk−1, ν2

k = ηk−1 − 2ηk

s1,k−1

s1,k
,

where ηk are the last components of the vectors qk , a recursion of which is given in Theorems 12.4 and

12.6.

14. Split algorithms for centrosymmetric and centro-skewsymmetric Toeplitz-plus-Hankel ma-

trices

In this section,weconsidern×nmatricesRnwhichare the sumofaToeplitzmatrixTn = Tn(a), a =
(ai)

n−1
i=1−n and a Hankel matrix Hn = Tn(b)Jn, b = (bi)

n−1
i=1−n,

Rn = Tn(a) + Tn(b)Jn =

⎡⎢⎢⎢⎢⎣
a0 . . . a1−n

...
. . .

...

an−1 . . . a0

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
b1−n . . . b0

... . .
. ...

b0 . . . bn−1

⎤⎥⎥⎥⎥⎦ . (14.1)

Note that the chess-board matrices,

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c d c · · ·
d c d · · ·
c d c · · ·
...

...
...

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(c, d ∈ F)

are both Toeplitz and Hankel matrices. Thus the representation (14.1) is not unique.

Hereafter, we also use a representation of Rn which involves the projections P± = 1
2
(In ± Jn) onto

F
n± and the vectors

c = (cj)
n−1
j=1−n = a + b, d = (dj)

n−1
j=1−n = a − b,

namely

Rn = Tn(c)P+ + Tn(d)P−. (14.2)

Fromnowonwerestrictourselves to thecasewhereRn is a centrosymmetricor centro-skewsymmetric

matrix. (The general case is beyond the scope of the present paper.)

Proposition 14.1 An n × n T + H matrix Rn is centrosymmetric or centro-skewsymmetric if and only if

it admits a representation (14.2) (or, equivalently, (14.1)) in which c and d (a and b) are symmetric or

skewsymmetric, respectively.

52 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

Proof. It is easily checked that JnTn(a)Jn = Tn(a
J), with aJ = J2n−1a . Hence

JnRnJn = (JnTn(c)Jn)(JnP+Jn) + (JnTn(d)Jn)(JnP−Jn)

= Tn(c
J)P+ + Tn(d

J)P−.

If now Rn is centrosymmetric or centro-skewsymmetric, then

Rn = ±JnRnJn = Tn

(
c ± cJ

2

)
P+ + Tn

(
d ± dJ

2

)
P−,

respectively. It remains to mention that c±cJ

2
and d±dJ

2
are symmetric or skewsymmetric, respectively.

Representation (14.1) can be considered in an analogous way. The other direction of the assertion is

obvious. �

Corollary 14.2 An n × n T+H matrix Rn is centrosymmetric or centro-skewsymmetric if and only if there

is a representation (14.2) such that the Toeplitz matrices Tn(c), Tn(d) (or Tn(a), Tn(b) in (14.1)) are both
symmetric or both skewsymmetric, respectively.

Remark It follows from Corollary 14.2 and can also be shown directly that a centrosymmetric n × n

T+H matrix is also symmetric. On the contrary, a centro-skewsymmetric n × n T+H matrix need not

to be neither symmetric nor skewsymmetric. In particular, a skewsymmetric T+H matrix is always a

pure Toeplitz matrix.

Obviously, a centrosymmetric T+H matrix can be written in the form

Rn = P+Tn(c)P+ + P−Tn(d)P−
and a centro-skewsymmetric T+H matrix in the form

Rn = P−Tn(c)P+ + P+Tn(d)P−.

Besides the matrix Rn = [rij]ni,j=1 we also consider the central submatrices Rcn−2l = [rij]n−l
i,j=l+1 for

l = 0, 1, . . . , l < n/2. Recall that these matrices are nested, viz.

Rcn−2l+2 =

⎡⎢⎢⎢⎣
∗ ∗ ∗
∗ Rcn−2l ∗
∗ ∗ ∗

⎤⎥⎥⎥⎦
and inherit the centrosymmetry properties of Rn. Furthermore, the following is obvious.

Proposition 14.3 If Rn is centrosymmetric or centro-skewsymmetric and given by (14.2), then

Rcn−2l = T
+
n−2lP

+
n−2l + T

−
n−2lP

−
n−2l,

where T
+
n−2l = [ci−j]n−2l

i,j=l and T
−
n−2l = [di−j]n−2l

i,j=l .

We assume that Rn is centro-nonsingular, n is even, n = 2m. Let us restrict ourselves to the cen-

trosymmetric case. (The centro-skewsymmetric case is analogous.) We want to solve the equation

Rnf = b

by centrosymmetric bordering (see Section 10.2).

We observe first that Rnf = b is equivalent to the two Toeplitz systems

T+
n f+ = b+, T+

n f− = b−, (14.3)

where b± = P±b and f± = P±f .

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 53

Let b± = (b±
j)nj=1, b

±
k = (b±

j)m+k
j=m−k+1 for k = 1, 2, . . . ,m, and let f

±
k be the solutions of

T
±
2kf

±
k = b

±
k . (14.4)

These solutions exist and are unique. Indeed, since Rn is centro-nonsingular, Rckf
±
k = b

±
k is uniquely

solvable, and we have according to (14.2) Rckf
±
k = T

±
k f

±
k . For centrosymmetric bodering we need the

(unique) solutions x
±
k ∈ F

k± of

T
±
2kx

±
k = P±ek, (14.5)

Theorem 14.4 The solutions of the equations (14.4) satisfies the recursions

f
±
k+2 =

⎡⎢⎢⎢⎣
0

f
±
k

0

⎤⎥⎥⎥⎦+
(
b
±
n−l+1 − β±

k

)
x
±
k+2,

where

β+
k = [ck . . . c1] f+k , β−

k = [dk . . . d1] f−k .

The recursion starts with an empty f
±
0 .

It remains to mention that the solutions x±
n can be computed using the recursions for wn and w−

n
introduced in Section 10. In particular, the double-step split Levinson algorithm looks (in the notation

here) as follows.

Theorem 14.5 Let Rn be a centro-nonsingular, centrosymmetric T+H matrix. Then the solutions x
±
k of the

equations (14.5) (k = 1, 2, . . . ,m) satisfy the recursion

x
±
k+2 = 1

2α±
k

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎣
0

0

x
±
k

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
x
±
k

0

0

⎤⎥⎥⎥⎦− 2
(
r
±
k+1,k − r

±
k−1,k−2

) ⎡⎢⎢⎢⎣
0

x
±
k

0

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

x
±
k−2

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where

r
+
jk = [

cj−1 . . . cj−k

]
x
+
k , r

−
jk = [

dj−1 . . . dj−k

]
x
−
k ,

and

α±
k = r

±
k+2,k − r

±
k,k−2 − 2r

±
k+1,k

(
r
±
k+1,k − r

±
k−1,k−2

)
+ 1

2
.

Note that α±
k �= 0, since otherwise Rck+2 would be singular.

Finally, for the sake of completeness we should mention the following facts. For a

centro-skewsymmetric T+H matrix Rn = Tn(c)P+ + Tn(d)P−, we have that Rn is nonsingular if and

only if Tn(c) and Tn(d) are nonsingular.

This is different to the centrosymmetric case. In this case Rn is nonsingular if Tn(c) and Tn(d) are

nonsingular. But the converse is not true. Take, for example, c = (1, 1, 1) and d = (−1, 1, −1).
Then Tn(c) and Tn(d) are singular, whereas R2 = 2 I2 is nonsingular.

One might conjecture that for a nonsingular Rn there is always such a representation with nonsin-

gular Tn(c) and Tn(d). For n = 2 this is true. But this fails to be true for n = 3. Take, for example,

54 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

c = (1, 0, 1, 0, 1) and d = (0, 0, 1, 0, 0). Then Tn(c) is singular for all representations, but

R3 = T3(c)P+ + T3(d)P− = 1

2

⎡⎢⎢⎢⎣
3 0 1

0 2 0

1 0 3

⎤⎥⎥⎥⎦
is nonsingular. Note that it can be shown that surprisingly for n = 4 there is always a representation

with nonsingular T(c) and T(d).
A full understanding of such statements requires a deeper insight into the fascinating structure of

Toeplitz-plus-Hankel matrices. We hope that we have made the reader inquisitive.

Exercises

1. Show that the set of all nonsingular, upper triangular Toeplitz matrices of order n forms a (mul-

tiplicative) group.

2. Consider a block Toeplitz matrix Tn = [ai−j]ni,j=1, where ai (i = −n + 1, . . . , n − 1) are

matrices of order k � n. Generalize the Levinson algorithm of Theorem 3.1 and the Schur

algorithm of Theorem 4.1 to this case.

3. Consider the tridiagonal symmetric Toeplitz matrix

Tn =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0

−1 2
. . .

. . . 2 −1

0 −1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
n.

Then it is easily verified that, with the notations of Section 3.2,

u
+
k = 1

k
(i)ki=1, ρk = k + 1

k
, and α+

k = α−
k = −1

k
.

Show that the Levinson algorithm of Section 3.3 also gives these results.

4. Find the unit LU-factorization of the matrix An = Tn − e1e
T
1, where Tn is defined in Exercise 3,

as well as the unit UL-factorization of A−1
n . Compute the vector v so that A−1

n − T−1
n = vvT .

5. Consider the n × n Toeplitz matrix Tn(a, b) the first column of which is (aj−1)nj=1 and the first

row of which is (bj−1)nj=1 , where ab �= 1. Show that Tn(a, b) is strongly nonsingular, compute

the first and last rows of its inverse and the co-unit UL-factorization of Tn(a, b)
−1. Conclude that

Tn(a, b)
−1 is, in the nontriangular case ab �= 0, the sum of a tridiagonal Toeplitz matrix and a

matrix of rank 2.

6. Show that the symmetric Toeplitz matrix Tn = [t|i−j|] n
i,j=1 with t0 = 0, tj = 1

2j−1 is singular

if and only if n ≡ 1 mod 3.

7. In Section 3.1 it was shown that the nonsingularity of Tk and Tk+1 implies the nonsingularity of

Γk . Show that, conversely, the nonsingularity of Tk and Γk implies the nonsingularity of Tk+1.

8. For a Toeplitz matrix, show the following relations between the polynomials u
+
k (t) and u

−
k (t)

introduced in Section 3.2:

u
−
k (t) = 1 − t

k−1∑
i=1

γ −
i u

+
i (t), u

+
k (t) = tk−1 −

k−1∑
i=1

γ +
i tk−1−iu

−
i (t).

9. Find the matrix of the operator of multiplication by t acting from F
n−1(t) to F

n(t) in the bases

{u±
k (t)} introduced in Section 3.2.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 55

10.

(a) Let A be a strongly nonsingular n × n matrix and A−1 = UDL, U = U(u+
k), LT = U(u−

k), the

unit UL-factorization of A−1. Show that if the u
±
k satisfy a recursion as in Theorem 3.2, then

A is Toeplitz.

(b) Let A be a symmetric matrix and A−1 = UDUT , U = U(uk) the unit UL-factorization of A−1.

Show that if the vectors uk satisfy a recursion as in Theorem 7.2, then A is Hankel.

11. Describe the co-unit LU-factorization of a Hankel matrix Hn and the unit UL-factorization of its

inverse H−1
n in terms of the vectors rk and uk that are computed by the algorithms described in

Theorems 7.5 and 7.2, respectively.

12. Let uk, ũk, sk, s̃k be as in Section 5.1.

(a) Find the matrices of the basis change between the bases {uk} and {ũk}.
(b) Find a relationship similar to that of Proposition 5.6 between the vectors sk and s̃k.

13. Show that inverses of Toeplitz matrices are, in general, not Toeplitz but quasi-Toeplitz matrices.

14. Consider instead of the transformation ∇+ defined in (6.1) the transformation

∇−(A) = A − STnASn (14.6)

defined for n × nmatrices A.

(a) Show that rank∇−(A) ≤ 2 if and only if JnAJn is quasi-Toeplitz.

(b) Give a general description of matrices A satisfying rank∇−(A) ≤ 2.

(c) Find examples for rank∇+(A) �= rank∇−(A).
(d) Find sufficient conditions for rank∇+(A) = rank∇−(A) ≤ 2.

15. Prove Proposition 6.2 and its generalization to Toeplitz-like matrices.

16. Show that an n × n matrix A is quasi-Toeplitz if and only if A admits a representation A = LTU

in which L is lower triangular Toeplitz, U is upper triangular Toeplitz and T is Toeplitz.

17. Show that a nonsingular n × n matrix A is quasi-Toeplitz if and only if the matrix JnA
−1Jn is

quasi-Toeplitz.

Hint.Write two Schur complement formulas for the matrix

⎡⎣ A Sn

STn A−1

⎤⎦ .

18. Let Hn = [hi+j−1]ni,j=1 be a strongly nonsingular Hankel matrix and L2n−1 the lower triangular

Toeplitz matrix L2n−1 = [hi−j+1]2n−1
i,j=1 (hi = 0 if i < 1). Let (si)

2n−1
i=1 be the first column of L

−1
2n−1.

Show that

Hn = Ln

⎡⎣ s1 0

0 −H′

⎤⎦ LTn,

where H′ = [si+j+1]n−1
i,j=1 and Ln is the n × n leading principal submatrix of L2n−1.

19. Let Tn be a real symmetric Toeplitzmatrix, and let T± denote the restriction of it, as a linear oper-

ator, to the invariant subspace R
n±, respectively. Furthermore, letW be the operator defined by

(Wx−)(t) = t + 1

t − 1
x−(t) (x− ∈ R

n−),

mapping R
n− into R

n+. Show that T+ and T− are related via

T+W − WT− = 2e aT (Sn − In)
−1,

where a = [an . . . a1], e = [1 . . . 1] and Sn is the forward shift introduced in (6.2).

20. Find a recursion for the solution of a skewsymmetric Toeplitz system by centrosymmetric bor-

dering as follows. Correct in each step only the last component of the right-hand side by using

x
+
k of (11.1). After the last step correct the first component by using x−

m . Compare the complexity

of the resulting algorithm with the complexity of the algorithms discussed in Section 11.5.

21. Let A be a n × n centrosymmetric matrix, n = 2m, and Qn =
⎡⎣−Jm Im

Jm Im

⎤⎦. Show that QT
n AQn is

of the form

56 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

QT
n AQn =

⎡⎣ B− O

O B+

⎤⎦
for some m × m matrices B±. Investigate how ZW-factorization of A is related to triangular

factorization of B+ and B−.

22. Let Z be a Z-matrix of even order 2m. Introduce the X-matrix X built from the diagonal and

antidiagonal entries of Z ,

X = xma

⎛⎝⎡⎣ αk βk

γk δk

⎤⎦⎞⎠m

k=1

,

and show that det Z = det X = m∏
k=1

(αkδk − βkγk).

23. Let Tn be the tridiagonal symmetric Toeplitz matrix Tn of Exercise 3. Compute the factors of its

unit LU-factorization, its unit split ZW-factorization, and the unit split WZ-factorization of its

inverse.

24. Find a unit split WZ-factorization for the inverse of a symmetric, centro-nonsingular Toeplitz

matrix Tn using the solutions wk of (10.1) and w
−
k and the double-step Levinson algorithm.

Comments and references

2., 3., and 4. The Levinson algorithm appeared in the famous paper [34] about filter design as an

algorithm for solving a general linear system with a positive definite Toeplitz coefficient matrix. The

algorithm that solves only the Yule–Walker equation is often attributed to Durbin in connection with

his paper [16] on linear prediction problems.

However, it should be pointed out that the recursions of the Levinson algorithmare almost identical

to the recursions for orthogonal polynomials on the unit circle discovered by Szegő [41].

TheSchur algorithmappeared in the famouspaperof Schur [40] as analgorithm incomplex function

theory to check whether an analytic function on the unit disk maps the unit disk into itself (see also

[29] and the references therein). As a factorization algorithm for Toeplitz matrices it was designed in

Bareiss’ paper [3] (not mentioning Schur).

Practical experience and theoretical results indicate that, in general, Schur-type algorithms have

better stability behavior than Levinson-type algorithms (see e.g. the contribution of Brent in [32]).

As already mentioned in the Introduction, the Levinson-type algorithms produce the parameters

needed in Bezoutian formulas for the inverses of Toeplitz or Hankel matrices (see e.g. [19]). These

Bezoutian formulas are the basis for constructing superfast algorithms (see [21–23,39]).

Readers who want to learn more about a special case of Toeplitz matrices, the circulants, should

study the nice book of Davis [12].

Anyone who wants to venture into the vast literature on Toeplitz (Hankel and other structured)

matrices could first read the book [19], where e.g. recursions in the not strongly regular case, inversion

formulas, and results on other structured matrices are presented.

We refer the reader who is interested in numerical aspects to the books [17,5,39,32,4] and the

references therein.

5. The concept of displacement structure was first introduced in [30] (see also [31]) using a displace-

ment operator of the form (14.6). In [18] a displacement operator of the form (6.1) was considered

(called there UV-reduction operator), and in [19] it was shown that replacing the shifts by othermatri-

ces (e.g. diagonal matrices) allows us to consider also other types of structuredmatrices (e.g. matrices

which are the sum of a Toeplitz and a Hankel matrix or which are generalizations of Vandermonde or

Cauchy matrices) in a similar way.

In the subsequent years a huge number of papers followed which documents the success in the

field of displacement structured matrices.

6. The Levinson-type and Schur-type algorithms for Hankel matrices show that there are essential

differences between Toeplitz and Hankelmatrices. A first algorithm for Hankelmatrices was given in a

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 57

paper of Trench [43]]. The recursions given there are tree-term recursions and at the end of the paper

their connection with orthogonal polynomials on the real axis is discussed.

7. Padé approximation has a very long history. Due to the connection with continued fractions one

can assume that it starts with Euclid’s algorithm for computing the greatest common divisor of two

integers. This was in about the year 300 BC.

In 1892 Padé defended his thesis at the Sorbonne in Paris. It was the first systematic investigation of

what today is called Padé approximant and reveals, in particular, connectionswith continued fractions

([36,37], see also [38]). Padé’s thesiswas verymuch influenced by his teacher Hermite, who developed

a general theory of interpolation by rational functions. We refer the reader who is interested in more

details of this very exciting history to [8].

In the last decades there is a lot of activities on Padé approximation not only in pure mathematics

and numerical analysis but also in applications to physics. Two important monographs are [11,2]. In

[9] Brezinski and Van Iseghem give an instructive survey concerning relevant aspects of Padé approx-

imation which can also be used as a preliminary tutorial guide.

8. In 1950 Lanczos [33] proposed amethod for computing the eigenvalues of a matrix by reducing this

matrix to a tridiagonal form, from which the eigenvalues can be determined. The interested reader

should study Chapter 9 of [17], which is dedicated to Lanczos methods.

To learn more about the connection between Hankel algorithms and Lanczos methods we refer to

[7] and the references therein. The authors there write: “The resulting recursion formulae to factorize

a strongly nonsingular Hankel matrix have appeared in several papers under different guises, going

all the way back to Tchebycheff [42]".

9., 10., and11.The idea to “split" the classical LevinsonandSchur algorithms for real symmetric Toeplitz

matrices goes back toDelsarte andGenin [13,14], but the splitting propertywas utilized before in other

fields, for example in the reduction of the trigonometric moment problemwith real data to a moment

problem on the interval [−1, 1] (see [1]), in efficient root location tests (see [6]), and also in signal

processing and seismology (see [10]).

12. The ZW-factorization is closely related to the “quadrant interlocking" or WZ-factorization, which

wasoriginally introducedandstudiedbyEvansandhis coworkers for theparallel solutionof tridiagonal

systems.

The ZW-factorization for real symmetric Toeplitz matrices was first mentioned by Demeure in

[15]. In our papers [24,26,27] ZW-factorizations for skewsymmetric Toeplitz, centrosymmetric and

centro-skewsymmetric Toeplitz–plus–Hankel, and general Toeplitz-plus-Hankel matrices were de-

scribed, respectively. Note that for skewsymmetric Toeplitz matrices (and thus also for purely imagi-

nary hermitian Toeplitz matrices) the factors of the ZW-factorization have some surprising additional

symmetry properties which are not shared by the symmetric case.

In the paper [28] it is shown that for hermitian Toeplitz matrices the ZW-factorization leads to

more efficient algorithms for the solution of linear systems than LU-factorization and that the ZW-

factorization reflects, in contrast to the LU-factorization, both symmetry properties. This leads to a

computational gain in solving linear systems.

13. First important results on Toeplitz-plus-Hankel matrices were the construction of their inverses

(see [35,19]) and the discovery of the Bezoutian structure of their inverses [20]. Here we deal with the

cases of centrosymmetric or centro-skewsymmetric matrices and offer split algorithmswhich require

the application of the afore-mentioned algorithms for pure Toeplitz matrices.

If the reader’s interest is piqued in the structure of Toeplitz-plus-Hankel matrices we recommend

to study also [25,26].

References

[1] N.I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis (N. Kemmer, Trans.), Hafner Publishing

Co., New York, 1965.
[2] G.A. Baker Jr., P. Graves-Morris, Padé approximants, in: Encyclopedia of Mathematics and its Applications, vol. 59, Cambridge

University Press, Cambridge, 1996.
[3] E.H. Bareiss, Numerical solution of linear equationswith Toeplitz and vector Toeplitzmatrices, Numer.Math. 13 (1969) 404–424.

58 G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59

[4] D. Bini, V. Mehrmann, V. Olshevsky, E. Tyrtyshnikov, M. van Barel (Eds.), Numerical methods for structured matrices and appli-

cations, in: Operator Theory: Advances and Applications, vol. 199, Birkhäuser Verlag, Basel, 2010. The Georg Heinig memorial
volume.

[5] D. Bini, V.Y. Pan, Polynomial and matrix computations, in: Progress in Theoretical Computer Science, vol. 1, Birkhäuser Boston
Inc., Boston, MA, 1994. Fundamental algorithms.

[6] Y. Bistritz, Zero location of polynomials wit respect to the unit circle of discrete-time linear system polynomials, Proc. IEEE 72

(1984) 1131–1142.
[7] D.L. Boley, T.J. Lee, F.T. Luk, The Lanczos algorithm and Hankel matrix factorization, Linear Algebra Appl. 172 (1992) 109–133.

Second NIU Conference on Linear Algebra, Numerical Linear Algebra and Applications, DeKalb, IL, 1991.
[8] C. Brezinski, History of continued fractions and Padé approximants, in: Springer Series in Computational Mathematics, vol. 12,

Springer-Verlag, Berlin, 1991.
[9] C. Brezinski, J. Van Iseghem, A taste of Padé approximation, in: Acta Numerica 1995, Acta Numer., Cambridge University Press,

Cambridge, 1995, pp. 53–103.
[10] K.P. Bube, R. Burridge, The one-dimensional inverse problem of reflection seismology, SIAM Rev. 25 (4) (1983) 497–559.

[11] A. Bultheel, Laurent series and their Padé approximations, in: Operator Theory: Advances and Applications, vol. 27, Birkhäuser

Verlag, Basel, 1987.
[12] P.J. Davis, Circulant Matrices, John Wiley & Sons, New York–Chichester–Brisbane, 1979. A Wiley-Interscience Publication, Pure

and Applied Mathematics.
[13] P. Delsarte, Y.V. Genin, The split Levinson algorithm, IEEE Trans. Acoust. Speech Signal Process. 34 (3) (1986) 470–478.

[14] P. Delsarte, Y.V. Genin, On the splitting of classical algorithm, IEEE Trans. Acoust. Speech Signal Process. 35 (1987) 645–653.
[15] C.J. Demeure, Bowtie factors of Toeplitz matrices by means of splitz algorithms, IEEE Trans. Acoust. Speech Signal Process. 37

(10) (1989) 1601–1603.

[16] J. Durbin, The fitting of time-series models, Revue Inst. Int. De Stat. 28 (1960) 233–244.
[17] G.H. Golub, C.F. Van Loan,Matrix computations, in: JohnsHopkins Studies in theMathematical Sciences, third ed., JohnsHopkins

University Press, Baltimore, MD, 1996.
[18] G. Heinig, K. Rost, Invertierung einiger Klassen von Matrizen und Operatoren. I. Endliche Toeplitzmatrizen und ihre Verallge-

meinerungen, Wissenschaftliche Informationen [Scientific Information], vol. 12, Technische Hochschule Karl-Marx-Stadt Sek-
tion Mathematik, Karl-Marx-Stadt, 1979.

[19] G. Heinig, K. Rost, Algebraic methods for Toeplitz-like matrices and operators, in: Operator Theory: Advances and Applications,

vol. 13, Birkhäuser Verlag, Basel, 1984.
[20] G. Heinig, K. Rost, On the inverses of Toeplitz-plus-Hankel matrices, Linear Algebra Appl. 106 (1988) 39–52.

[21] G. Heinig, K. Rost, DFT representations of Toeplitz-plus-Hankel Bezoutianswith application to fastmatrix-vectormultiplication,
Linear Algebra Appl. 284 (1–3) (1998) 157–175. ILAS Symposium on Fast Algorithms for Control, Signals and Image Processing,

Winnipeg, MB, 1997.
[22] G.Heinig, K. Rost,Hartley transformrepresentationsof symmetric Toeplitzmatrix inverseswith application to fastmatrix-vector

multiplication, SIAM J. Matrix Anal. Appl. 22 (1) (2000) 86–105 (Electronic).

[23] G. Heinig, K. Rost, Efficient inversion formulas for Toeplitz-plus-Hankelmatrices using trigonometric transformations, in: Struc-
turedMatrices inMathematics, Computer Science, and Engineering, II (Boulder, CO, 1999), Contemp.Math., vol. 281, Amer.Math.

Soc., Providence, RI, 2001, pp. 247–264.
[24] G. Heinig, K. Rost, Fast algorithms for skewsymmetric Toeplitz matrices, in: Toeplitz matrices and singular integral equations

(Pobershau, 2001), Oper. Theory Adv. Appl., vol. 135, Birkhäuser, Basel, 2002, pp. 193–208.
[25] G. Heinig, K. Rost, Centrosymmetric and centro-skewsymmetric Toeplitz-plus-Hankel matrices and Bezoutians, Linear Algebra

Appl. 366 (2003) 257–281. Special issue on structured matrices: analysis, algorithms and applications, Cortona, 2000.

[26] G. Heinig, K. Rost, Fast algorithms for centro-symmetric and centro-skewsymmetric Toeplitz-plus-Hankel matrices, Numer.
Algorithms 33 (2003) 305–317. International Conference on Numerical Algorithms, vol. I, Marrakesh, 2001.

[27] G. Heinig, K. Rost, New fast algorithms for Toeplitz-plus-Hankel matrices, SIAM J. Matrix Anal. Appl. 25 (3) (2003) 842–857
(Electronic).

[28] G. Heinig, K. Rost, Schur-type algorithms for the solution of Hermitian Toeplitz systems via factorization, in: Recent Advances
in Operator Theory and its Applications, Oper. Theory Adv. Appl., vol. 160, Birkhäuser, Basel, 2005, pp.233–252.

[29] T. Kailath, A theorem of I. Schur and its impact onmodern signal processing, in: I. Schur Methods in Operator Theory and Signal

Processing, Oper. Theory Adv. Appl., vol. 18, Birkhäuser, Basel, 1986, pp. 9–30.
[30] T. Kailath, S.Y. Kung, M. Morf, Displacement ranks of matrices and linear equations, J. Math. Anal. Appl. 68 (2) (1979)

395–407.
[31] T. Kailath, A.H. Sayed, Displacement structure: theory and applications, SIAM Rev. 37 (3) (1995) 297–386.

[32] T. Kailath, A.H. Sayed (Eds.), Fast Reliable Algorithms forMatriceswith Structure, Society for Industrial and AppliedMathematics
(SIAM), Philadelphia, PA, 1999

[33] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res.
Nat. Bur. Standards 45 (1950) 255–282.

[34] N. Levinson, The Wiener RMS (root mean square) error criterion in filter design and prediction, J. Math. Phys. Mass. Inst. Tech.

25 (1947) 261–278.
[35] A.B. Nersesyan, A.A. Papoyan, Construction of a matrix inverse to the sum of Toeplitz and Hankel matrices, Izv. Akad. Nauk

Armyan. SSR Ser. Mat. 18 (2) (1983) 150–160.
[36] H. Padé, Sur la représentation approchée d’une fonction par des fractions rationnelles, Ann. Sci. École Norm. Sup. (3) (1892)

3–93.
[37] H. Padé, Sur les séries entières convergentes ou divergentes et les fractions continues rationnelles, Acta Math. 18 (1) (1894)

97–111.

[38] H. Padé, Œuvres, Bibliothèque Scientifique Albert Blanchard (Albert Blanchard Scientific Library), in: Claude Brezinski (Ed.),
Librairie Scientifique et Technique Albert Blanchard, Paris, 1984.

[39] V.Y. Pan, Structured Matrices and Polynomials, Birkhäuser Boston Inc., Boston, MA, 2001. Unified Superfast Algorithms.
[40] I. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. Reine Angew. Math. 147 (1917) 205–232.

G. Heinig, K. Rost / Linear Algebra and its Applications 435 (2011) 1–59 59

[41] G. Szegő, Orthogonal Polynomials, AmericanMathematical Society,NewYork, 1939. AmericanMathematical Society Colloquium

Publications, vol. 23.
[42] P. Tchebycheff, Sur l’interpolation par laméthode desmoindres carrés,Mém. Acad. Impér. Sci. St. Pétersbourg 1 (15) (1859) 1–24.

[43] W.F. Trench, An algorithm for the inversion of finite Hankel matrices, J. Soc. Indust. Appl. Math. 13 (1965) 1102–1107.

