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Abstract

Split Levinson-type and Schur-type algorithms for the solutions of linear systems with a non-
singular skewsymmetric Toeplitz matrix are designed. In contrast to previous ones, the algorithms
work for any nonsingular skewsymmetric Toeplitz matrix. Moreover, generalizations of ZW - and
WZ-factorizations of skewsymmetric Toeplitz matrices related to the new split algorithms are
presented.
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1. Introduction

This paper is dedicated to fast algorithms for nonsingular skewsymmetric Toeplitz
matrices, i.e. matrices of the form TN = [ai−j]Ni;j=1 with a−j = − aj. We assume that
the entries are from a 'eld F of characteristic di>erent from two.

A general linear system TN f = b with a nonsingular Toeplitz coe?cient matrix can
be solved “fast” with complexity O(N 2) using Levinson-type or Schur-type algorithms.
A problem is that the classical Levinson and Schur algorithms work only if the ma-
trix TN is strongly nonsingular, which means that all leading principal submatrices
Tk = [ai−j]ki;j=1 are nonsingular for k = 1; : : : ; N . This condition is never satis'ed for a
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skewsymmetric Toeplitz matrix, since skewsymmetric matrices of odd order are always
singular.

The problem of fast solving skewsymmetric Toeplitz systems was addressed in our
recent paper [14]. In this paper fast algorithms were designed for skewsymmetric
Toeplitz matrices which work under the condition that every leading principal sub-
matrix of even order is nonsingular, which means the same as the nonsingularity of all
central submatrices TN−2‘ = [ai−j]N−‘

i;j=‘+1, ‘= 0; 1; : : : ; N=2− 1. Matrices with the latter
property are called centro-nonsingular. The algorithms in [14] are, in principle, split
algorithms in the sense of Delsarte-Genin in [3,4]. Some algorithms in [14] are the
skewsymmetric counterparts of double-steps split algorithms for symmetric Toeplitz
matrices proposed in [16] and [8]. However, surprisingly, there are also algorithms
for skewsymmetric Toeplitz matrices that do not have an obvious symmetric counter-
part, which is due to some additional symmetry properties of skewsymmetric Toeplitz
matrices.

An algorithm for Toeplitz matrices working without additional conditions was 'rst
proposed in [7]. A discussion of algorithms of this kind can also be found in [19]. But
these algorithms are for general Toeplitz matrices and do not fully utilize additional
symmetry properties like symmetry or skewsymmetry. Thus, the aim of the present
paper is to design (split) algorithms that exploit both the Toeplitz structure as well as
the skewsymmetry and work without assumption on the rank pro'le. Split algorithms
for general symmetric Toeplitz matrices were designed in our recent paper [15]. Let
us reiterate that the skewsymmetric case is not simply an analogue of the symmetric
case but has some speci'c peculiarities.

Our approach is based on a look-ahead strategy. In the algorithms we consider only
those submatrices Tn which are nonsingular. Let n1¡n2¡ · · ·¡nr =N be the set of
all n= nk for which Tn is nonsingular, and let u(k) be the vector spanning the (one-
dimensional) nullspace of Tnk+1. Here TN+1 means any skewsymmetric extension of TN .
The Levinson-type algorithm computes a vector u(k+1) from u(k) and u(k−1) by a three-
term recursion, and the Schur-type algorithm computes the corresponding residuals. The
last two vectors u(k) determine the inverse matrix via an “inversion formula” which
allows to solve a linear system e?ciently.

Note that a di>erent approach for solving skewsymmetric Toeplitz systems will be
discussed in a forthcoming paper [9]. The approach in [9] is based on the recursion
of fundamental systems (see [13]). One of its advantages is that it can easily be
generalized to the block case, which is not the case for the look-ahead approach.

Like the classical Schur algorithm is related to an LU-factorization of the Toeplitz
matrix and the classical Levinson algorithm is related to a UL-factorization of its
inverse, the split Schur algorithm for symmetric Toeplitz matrices is related to a
ZW -factorization 1 of the matrix and the split Levinson algorithm to a WZ-factorization
of its inverse. This was observed in [5]. Concerning WZ-factorization for general ma-
trices we refer to [6,18] and references therein.

In [14] the structure of the ZW -factorization of centro-nonsingular skewsymmetric
Toeplitz matrices was studied. It was shown that such a matrix TN admits a represen-

1 The de'nitions of Z- and W -matrices are given in Section 6.
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tation TN =ZXZT in which Z is a special unit Z-matrix and X is a skewsymmetric
antidiagonal matrix (and a similar result for T−1

N ). In the present paper we show that,
more general, any nonsingular skewsymmetric Toeplitz matrix admits such a represen-
tation in which X is a skewsymmetric block antidiagonal matrix and the blocks are
multiples of the identity. The factors Z and X can be computed with the help of the
generalized split Schur algorithm. The factorization combined with back substitution
gives another possibility to solve linear systems without computing the vectors u(k).

Besides the solution via inversion formula and factorization we also discuss the
solution via direct recursion. We refrain from computing the computational complexities
in all cases, since their exact values depend on the rank pro'le of the matrix. However,
it can be pointed out that these values are in general not essentially higher and in most
cases even lower than the corresponding values computed in [14] for the case of a
centro-nonsingular skewsymmetric Toeplitz matrix.

Let us introduce some notations that will be used throughout the paper. We de-
note by Jn the n× n matrix of counteridentity, which has ones on the antidiagonal
and zeros elsewhere. A vector u∈ Fn is called symmetric if u= Jnu and skewsym-
metric if u= − Jnu. An n× n matrix B is called centrosymmetric if JnBJn =B or
centro-skewsymmetric if JnBJn = −B. Let Fn± be the subspaces of Fn consisting of all
symmetric, skewsymmetric vectors, respectively.

Occasionally we will use polynomial language. For a matrix A= [aij], A(t; s) will
denote the bivariate polynomial

A(t; s) =
∑
i;j

aijti−1sj−1;

and for u= (ui)ni=1 we set u(t) =
∑n

i=1 uiti−1.
For a vector u= (ui)li=1, let Mk(u) denote the (k + l− 1)× k matrix

Mk(u) =




u1 0
...

. . .

ul u1

. . .
...

0 ul







k + l− 1:

It is easily checked that, for x∈ Fk , (Mk(u)x)(t) = u(t)x(t).
Furthermore, ek ∈ Fn will denote the kth vector in the standard basis of Fn, and 0k

will denote a zero vector of length k. If the length of the vector is clear or irrelevant
we omit the subscript.

2. Inversion formula

From now on, let TN = [ai−j]Ni;j=1 be a nonsingular skewsymmetric Toeplitz matrix
and TN+1 any skewsymmetric (N + 1)× (N + 1) Toeplitz extension of TN . Clearly,
N must be even and TN+1 and TN−1 have one-dimensional nullspaces. Let u∈ FN+1
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and u′ ∈ FN−1 be the vectors spanning these nullspaces. In [13] (see also [14]) it was
shown that the vectors u and u′ are symmetric.

Since TN is nonsingular, the last component of u is nonzero. Therefore, we may
assume that it is equal to 1. Note that the last component of u′ might be zero.

Let r be de'ned by

r = [aN−1 · · · a1]u′:

Since TN is nonsingular, we have r �= 0. It is worth to mention that the vectors

1
r

[
u′

0

]
; −1

r

[
0

u′

]

are the last and the 'rst columns of T−1
N , respectively. We introduce the (symmetric)

vector

x =
1
r




0

u′

0


 ∈ FN+1

which is the solution of the equation TN+1x= eN+1 − e1.
The following is a speci'cation of a well-known inversion formula for general

Toeplitz matrices (see [10,1]) for the case of skewsymmetric matrices and was dis-
cussed in [14].

Theorem 2.1. The inverse of TN is given by

T−1
N (t; s) =

x(t)u(s) − u(t)x(s)
1 − ts

: (1)

Formula (1) can be expressed in matrix form in many ways. Let us present one of
them, which is the “classical” Gohberg-Semencul formula built from triangular Toeplitz
matrices.

For a vector v= (vi)N+1
i=1 , let L(v) denote the N ×N lower triangular Toeplitz matrix

L(v) =



v1 0
...

. . .

vN · · · v1


 :

Corollary 2.2. The inverse of TN is given by

T−1
N = L(x)L(u)T − L(u)L(x)T: (2)

The direct application of (2) has complexity O(N 2), but if F is the 'eld of real or
complex numbers fast algorithms with complexity O(N log N ) can be applied. Let us
mention that there are formulas for T−1

N that contain only diagonal matrices and discrete
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Fourier or real trigonometric transformations, which are ready for implementation (see
for example [11,12] and references therein).

Note also that formula (2) can be written in terms of polynomial multiplication, and
polynomial multiplication can be carried out with complexity O(N log N log log N )
in any 'eld (see [17] and references therein).

3. Recursion background

We are going to show some facts which will be the basis for the split algorithms
developed in the next sections. Besides the (nonsingular) matrix TN and its extension
TN+1 we consider its central submatrices. Recall that N is even and so all central
submatrices of TN have even order. These central submatrices coincide with the leading
principal submatrices Tk = [ai−j]ki;j=1 for even k.

Let Tn be nonsingular. Then Tn+1 has the kernel dimension one. Let un span the
kernel of Tn+1. Since the last component of un does not vanish we may assume that
it is equal to 1. As mentioned above, un is symmetric.

We introduce the numbers

rj = [aj+n · · · aj]un

for j = 1; : : : ; N − n, which will be called residuals of un.

Proposition 3.1. Let r1 = · · · = rd−1 = 0, rd �= 0, and m= n+2d. Then Tn+1; : : : ; Tm−1

are singular and Tm is nonsingular.

Proof. We have

TmM2d(un) =



Od×d −R

O O

RT Od×d


 ; (3)

where R denotes the d×d upper triangular Toeplitz matrix

R =



rd · · · r2d−1

. . .
...

0 rd


 :

Hence

Tn+2k+1



0k
un
0k


 = 0

for k = 0; : : : ; d − 1, which means that the matrices Tn+1; : : : ; Tm−1 are singular. Fur-
thermore, we conclude from (3) that the vectors e1; : : : ; ed and em−d+1; : : : ; em belong
to the range of Tm and also to the range of TT

m .
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Suppose that Tmv= 0. Then gTv= 0 for all vectors from the range of TT
m . Hence the

'rst and last d components of v vanish, and v is of the form vT = [0d v′T 0d]T, where
v′ belongs to the kernel of Tn. Since Tn is nonsingular, we conclude that v= 0. Thus
Tm is nonsingular.

Besides the vector un we consider a solution xn of the equation Tn+1xn = en+1 −
e1. Since uT

n (en+1 − e1) = 0, this equation has a (non-unique) solution x, which is
symmetric, due to the centro-skewsymmetry of Tn. We introduce numbers

sj = [aj+n · · · aj]xn

for j = 0; : : : ; N − n. In particular, s0 = 1.
Let xm be a solution of the equation Tm+1xm = em+1 − e1 and um the vector spanning

the kernel of Tm+1 with the last component equal to 1. We show now how um and xm
can be computed from un and xn.

From (3) we conclude that

Tm+1



0d
un
0d


 = rd(em+1 − e1):

Thus xm can be chosen as

xm =
1
rd



0d
un
0d


 : (4)

To 'nd um we observe that

Tm+1M2d+1(un) =




0 · · · −rd · · · −r2d

...
. . .

...

0 −rd
0 0 0

rd 0
...

. . .
...

r2d · · · rd · · · 0



: (5)

Let R̃ denote the (d + 1)× (d + 1) upper triangular Toeplitz matrix

R̃ =



rd · · · r2d

. . .
...

0 rd


 ;
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and c= (ci)d+1
i=1 the solution of the triangular Toeplitz system

R̃
T
c = s;

where s= (si−1)d+1
i=1 .

Furthermore, let c̃=
[
c
c′

]
∈ F2d+1

+ be the symmetric extension of c, q= 1=c1, and

p= qc̃. Then we have

Tm+1


M2d+1(un)p− q



0d
xn
0d




 = 0:

By construction, the last (and the 'rst) component of M2d+1(un)p equals 1. We arrived
at the relation

um = M2d+1(un)p− q



0d
xn
0d


 : (6)

We write relations (4) and (6) in polynomial language and arrive at the following.

Proposition 3.2. The vectors um and xm can be computed from un and xn via

um(t) = p(t)un(t) − qtdxn(t);

xm(t) =
1
rd

tdun(t): (7)

4. Split algorithms

We discuss now the algorithms emerging from the recursion described in Propo-
sition 3.2. First we introduce some notation. Let n1¡ · · ·¡n‘ =N be the integers
n∈{1; 2; : : : ; N} for which Tn is nonsingular, dk = 1

2 (nk+1 − nk), and let u(k) be the
vector spanning the kernel of Tnk+1 with last component equal to 1 and x(k) a solution
of Tnk+1x(k) = enk+1 − e1. The residuals r(k)

j and s(k)
j of u(k) and x(k) are de'ned by

r(k)
j = [aj+nk · · · aj]u(k); s(k)

j = [aj+nk · · · aj]x(k); (8)

respectively, for j = 0; : : : ; N − nk . Clearly, r(k)
0 = 0 and s(k)

0 = 1.
Our aim is to 'nd u= u(‘) and x= x(‘). Then the solution of a linear system TN f = b

can be computed using the formula from Corollary 2.2 or another inversion formula.
First let us note that according to (7)

x(k) =
1

r(k−1)
dk−1



0dk−1

u(k−1)

0dk−1



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and

s(k)
j =

1

r(k−1)
dk−1

r(k−1)
j+dk−1

:

That means it is su?cient to compute the residuals r(k)
j and to construct the

vectors u(k).
For initialization we set n0 = 0 and u(0) = 1. Then r(0)

j = aj. If a1 = · · · = ad−1 = 0
and ad �= 0, then n1 = 2d. The vector u(1) is the normalized solution of the homoge-
neous system T2d+1v= 0.

We show how this solution can be found. We form the matrix

R̃
(0)

=



ad · · · a2d

. . .
...

0 ad


 :

Let c be the solution of the triangular Toeplitz system (R̃
(0)

)Tc= e1 and v=
[
c
c′

]
∈

F2d+1 its symmetric extension. Then T2d+1v= 0. Hence u(1) = (1=c)v, where c is the
'rst component of c.

We assume now that nk−1, nk , u(k−1) and u(k) are given. We also need some of the
values r(k−1)

j (j = 1; : : : ; 2dk−1) that are computed in the previous step. Now nk+1 and

u(k+1) are computed as follows. If r(k)
1 = · · · = r(k)

d−1 = 0 and r(k)
d �= 0, then dk =d, i.e.

nk+1 = nk + 2d.
We compute the numbers r(k)

dk+1; : : : ; r
(k)
2dk

and form the matrix R̃
(k)

as

R̃
(k)

=



r(k)
dk

· · · r(k)
2dk

. . .
...

0 r(k)
dk


 :

If dk¿dk−1, then it will be necessary to compute also the numbers r(k−1)
j for j = 2dk−1

+ 1; : : : ; dk + dk−1 to form the vector r′(k−1) = (r(k−1)
j )dk+dk−1

j=dk−1
.

Let c(k) be the solution of the triangular Toeplitz system

(R̃
(k)

)Tc(k) = r
′(k−1);

q(k) = 1=c, where c is the 'rst component of c(k), and p(k) = q(k)

[
c(k)

c′(k)

]
∈ F2dk+1

+ be

the symmetric extension of q(k)c(k). Then

u(k+1) = M2dk+1(u(k))p(k) − q(k)


 0dk+dk−1

u(k−1)

0dk+dk−1


 :

In polynomial language the recursion can be written as follows.
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Theorem 4.1. The polynomials u(k)(t) satisfy the three-term recursion

u(k+1)(t) = p(k)(t)u(k)(t) − tdk+dk−1q(k)u(k−1)(t):

Example 1. Consider the skewsymmetric Toeplitz matrix T6 = [ai−j]6
i;j=1, with (ak)5

k=1
= (1; 2; 3; 5; 6). Since we need also an extension of T6 we set a6 = 0. The standard
setting for initialization is n0 = 0, u(0) = 1 and r(0)

j = aj. Since r(0)
1 = 1 �= 0 we have

d0 = 1 and n1 = n0 + 2d0 = 2. We obtain x(1) = [0 1 0]T and u(1) = [1;−2; 1]T. With
u(0) and u(1) we can start the recursion.

We compute the residuals as r(1)
1 = 0, r(1)

2 = 1. Thus d1 = 2, n2 = n1 + 2d1 = 6, and

x(2) = [0; 0; 1;−2; 1; 0; 0]T. In order to form the matrix R̃
(1)

we 'nd that r(1)
3 = − 1

and r(1)
4 = − 7, and in order to form the vector r′(0) we observe that r(0)

2 = a2 = 2,

r(0)
3 = a3 = 3. The solution of the system (R̃

(1)
)Tc(1) = r′(0) is c(1) = [1; 3; 13]T. Hence

p(1) = [1; 3; 13; 3; 1]T, which gives

u(2) = [1; 1; 8;−21; 8; 1; 1]T:

The inverse of T6 is now given by Corollary 2.2 with x= x(2) and u= u(2). A check
shows that this really gives the inverse matrix.

Let us discuss the complexity of the algorithm emerging from Theorem 4.1. Surpris-
ingly, the existence of singular central submatrices does not increase the complexity,
in many cases it even decreases it. For simplicity we assume that all dk are equal to
d, where d is small compared with N . We neglect lower order terms. The amount for
inner product calculations will be almost independent of d. We have to compute about
N inner products of a symmetric and a general vector. For this 1

2 N
2 additions and

1
4 N

2 multiplications are needed. Then we have in each step 2d + 1 vector additions
of symmetric vectors and d + 1 multiplications of a symmetric vector by a scalar.
This results in

(
1
4 + 1

8d

)
N 2 additions and

(
1
8 + 1

8d

)
N 2 multiplications. Thus, the over-

all complexity is about
(

3
4 + 1

8d

)
N 2 additions and

(
3
8 + 1

8d

)
N 2 multiplications. That

means the amount decreases when d increases. In the case d= 1, which is the centro-
nonsingular case, Theorem 4.1 is just Theorem 3.2 in [14]. In this case the complexity
is 7

8 N
2 additions and 1

2 N
2 multiplications (comp. [14]).

The algorithm just described is a split Levinson-type algorithm and includes the
calculation of the residuals via long inner products, which might be not convenient in
parallel computing. We show now that the residuals can also be computed by a Schur-
type algorithm. The Schur-type algorithm is of independent interest, since it provides
a factorization, which will be described in Section 6.

We consider the full residual vectors r(k) = (r(k)
j )N−nk

j=1 and the corresponding polyno-

mials r(k)(t). By the de'nition of the integer dk , r̃
(k)(t) = t−dk+1r(k)(t) is a polynomial.

The monic, symmetric polynomial p(k)(t) and q(k) ∈ F have been constructed in such
way that the polynomial

r̃(k)(t)p(k)(t) − q(k)r̃(k−1)(t)
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has a zero of order dk + 1 at t = 0. According to Theorem 4.1, the remainder will give
us r(k+1)(t). Let Pm denote the projector mapping a polynomial

∑N
j=1 pjtj−1 (N¿m)

to
∑m

j=1 pjtj−1, i.e. cutting o> high powers.
Theorem 4.1 gives us immediately the following recursion formula for the residuals.

Theorem 4.2. The polynomials r(k)(t) satisfy the recursion

r(k+1)(t) = PN−nk+1(t
−2dkp(k)(t)r(k)(t) − t−dk−1−dk q(k)r(k−1)(t)):

To write this recursion in matrix form we introduce the matrix Q(k) by

Q(k) = [r(k)
2dk+i−j+1]%k 2dk+1

i=1 j=1 ;

where %k =N − nk+1 =N − nk − 2dk . Now we have

r(k+1) = Q(k)p(k) − q(k) Or(k−1);

where Or(k−1) = [r(k−1)
dk+dk−1+i]

%k
i=1.

The recursion starts with Or(−1) = 0, r(0) = [aj]Nj=1, p(0) = u(1), and Q(0) =
[an1+i−j+1]N−n1 n1+1

i=1 j=1 . The vector u(1) will be computed as described in the initializa-
tion of the Levinson-type recursion via the solution of a triangular (d1 + 1)× (d1 + 1)
Toeplitz system.

Theorem 4.2 can be combined with Theorem 4.1 to compute u and x, the parameters
for the inversion formula.

5. Solution of linear systems

In this section we show how to solve a linear system

TN fN = bN

with a nonsingular N ×N skewsymmetric Toeplitz coe?cient matrix TN recursively
without using the inversion formula. We use all notations that were introduced in the
previous section.

Suppose that b= [bi]Ni=1. We set b(k) = [bi]
(1=2)(N+nk )
i=(1=2)(N−nk+2) ∈ Fnk We consider the sys-

tems

T (k)f (k) = b(k);

where T (k) =Tnk . Our aim is to compute f (k+1) from f (k).
Since T (k+1) is of the form

T (k+1) =



∗ −B(k)

− ∗
∗ T (k) ∗
∗ B(k)

+ ∗


 ;
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where

B(k)
+ =




ank · · · a1

...
. . .

...

ank+dk−1 · · · adk


 ; B(k)

− = JdkB
(k)
+ Jnk

we have

T (k+1)



0

f (k)

0


 =



−'(k)

−
b(k)

'(k)
+


 ;

where '(k)
± =B(k)

± f (k).
As in Section 4 we obtain

T (k+1)M2dk (u
(k)) =




O −R(k)

O O

(R(k))T O


 ;

where

R(k) =



rdk · · · r2dk−1

. . .
...

rdk


 :

Hence we have, for ((k)
± ∈ Fdk ,

T (k+1)





0

f (k)

0


 + M2dk (u

(k))

[
((k)

+

((k)
−

] =




−R(k)((k)
− − '(k)

−
b(k)

(R(k))T((k)
+ + '(k)

+


 : (9)

From this relation we conclude the following.

Theorem 5.1. Suppose that

b(k+1) =



b(k)
−
b(k)

b(k)
+


 ;

where b(k)
± ∈ Fdk and ((k)

± are the solutions of

(R(k))T((k)
+ = b(k)

+ − '(k)
+ ; R(k)((k)

− = −b(k)
− − '(k)

− : (10)
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Then the solution f (k+1) of T (k+1)f (k+1) = b(k+1) is given by

f (k+1) =



0

f (k)

0


 + M2dk (u

(k))

[
((k)

+

((k)
−

]
: (11)

For one step of the recursion one has 'rst to compute the vectors '(k)
± which require

the multiplication of a vector by the dk × nk Toeplitz matrix B(k)
± , then to solve two

triangular dk ×dk Toeplitz systems (with actually the same coe?cient matrix) to get
((k)
± and 'nally to apply formula (11).
The computations of the vectors '(k)

± require long inner product calculations which

can be avoided if the full residual vectors '̃
(k)
± ∈ FN−nk are considered. These vectors

are given by

TN



0

f (k)

0


 =



−'̃

(k)
−

b(k)

'̃
(k)
+


 :

Let Q(k)
± be de'ned by

Q(k)
+ = [r(k)

2dk+i−j+1])k dk
i=1 j=1; Q(k)

− = J)kQ
(k)
+ Jdk ;

where )k = 1
2 (N − nk). Then we conclude from (9) that

'̃
(k+1)
± = Q(k)

± ((k)
± + ('̃

(k)
± )′;

where here the prime at '̃
(k)
+ means that the 'rst dk components are deleted and at

'̃
(k)
− that the last dk components are deleted.

6. Generalized ZW -factorization

Like the classical Schur algorithm for symmetric Toeplitz matrices is related to the
LU-factorization of the matrix and the classical Levinson algorithm related to a UL-
factorization of its inverse, the split Schur algorithm is related to a ZW -factorization
of the matrix and the split Levinson algorithm to a WZ-factorizaton of the inverse. In
[14] the latter factorizations were investigated for skewsymmetric Toeplitz matrices. It
was shown that centro-nonsingular skewsymmetric matrices admit a ZW -factorization
in which the factors possess some additional symmetry properties. We are going to
generalize this result to arbitrary nonsingular skewsymmetric Toeplitz matrices. The
factorization will lead to the possibility to solve a linear system by a pure Schur-type
algorithm.

To be more precise, let us recall some concepts. A matrix A= [aij]ni;j=1 is called a
W -matrix if aij = 0 for all (i; j) for which i¿j and i + j¿n or i¡j and i + j6n.
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The matrix A will be called a unit W -matrix if, in addition, aii = 1 for i= 1; : : : ; n
and ai;n+1−i = 0 for i �= (n + 1)=2. The transpose of a W -matrix is called a Z-matrix.
A matrix which is both a Z- and a W -matrix will be called an X -matrix. The names
come from the shapes of the set of all possible positions for nonzero entries, viz.

W =




• •
• ◦ ◦ •
• ◦ ◦ ◦ ◦ •
• ◦ • • ◦ •
• • • •
• •



; Z =




• • • • • •
◦ ◦ ◦ •
◦ •
• ◦

• ◦ ◦ ◦
• • • • • •



:

A unit Z- or W -matrix is obviously nonsingular and a linear system with such a
coe?cient matrix can be solved by back substitution with n2=2 additions and n2=2
multiplications.

A representation A=ZXW in which Z is a unit Z-matrix, W is a unit W -matrix, and
X a nonsingular X -matrix is called ZW -factorization. Analogously WZ-factorization is
de'ned. A admits a ZW -factorization if and only if A is centro-nonsingular. Under the
same condition A−1 admits a WZ-factorization.

That means if A is not centro-nonsingular, then no such a factorization exists and a
generalization is not at hand. We show now that, nevertheless, in the special case of
a skewsymmetric Toeplitz matrix there is a natural generalization of the factorization
result in [14].

We introduce N ×dk matrices W (k)
± by

W (k)
− =




O)k×dk

Mdk (u
(k))

Odk×dk

O)k×dk


 ; W (k)

+ =




O)k×dk

Odk×dk

Mdk (u
(k))

O)k×dk


 ;

where )k = 1
2 (N − nk+1), and form the matrix

W = [W (‘−1))
− · · · W (0)

− W (0)
+ · · · W (‘−1)

+ ]: (12)

Recall that u(0) = 1, n0 = 0. Obviously, W is a centrosymmetric unit W -matrix.
We have

TNW
(k)
− =




−S(k)
−

O(nk+1−dk )×dk

(R(k))T

S(k)
+

;


 ; TNW

(k)
+ =




−Ŝ
(k)
+

−R(k)

O(nk+1−dk )×dk

Ŝ
(k)
−


 ;

where

S(k)
+ = [r(k)

2dk+i−j]
)k dk
i=1 j=1; S(k)

− = [r(k)
)k−i+j]

)k dk
i=1 j=1;
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Ŝ
(k)
± = J)k S

(k)
± Jdk . We set r(k) = r(k)

dk
,

Z (k)
+ =

1
r(k) TNW

(k)
− ; Z (k)

− = − 1
r(k) TNW

(k)
+ ;

and form the matrix

Z = [Z (‘−1)
− · · · Z (0)

− Z (0)
+ · · · Z (‘−1)

+ ]: (13)

Then Z is a centrosymmetric unit Z-matrix. Furthermore,

TNW = ZX;

where X is the skewsymmetric block antidiagonal matrix

X =




0 −r(‘−1)Id‘−1

. .
.

−r(0)Id0

r(0)Id0

. .
.

r(‘−1)Id‘−1 0



: (14)

This leads to the following.

Theorem 6.1. A nonsingular skewsymmetric Toeplitz matrix and its inverse admit
representations

TN = ZXZT; T−1
N = WX−1W T;

where Z is a centrosymmetric Z-matrix given by (13), W is a centrosymmetric
W -matrix given by (12), and X is a skewsymmetric block antidiagonal matrix given
by (14).

Example 2. Let us illustrate the factorizations for the example of a nonsingular skew-
symmetric Toeplitz matrix T6 = [ai−j]6

i;j=1 with a1 �= 0 for which T4 is singular.
That means we have n1 = 2 and N = n2 = 6. Let u(1) = [1 u 1]T span the nullspace
of T3. Then the factors of the generalized ZW -factorization of T6 and generalized WZ-
factorization of T−1

6 are given by

W =




1 0

u 1 0 0

1 u 1 0 1 0

0 1 0 1 u 1

0 0 1 u

0 1



; Z =




1
r3

r2

a3

a1
−a2

a1
0 0

1
a2

a1
−1 0

1 0

0 1

0 −1
a2

a1
1

0 0 −a2

a1

a3

a1

r3

r2
1



;
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X =




−r2 0

0 −r2

−a1

a1

r2 0

0 r2



;

where r2 = a4 + a3u + a2 and r3 = a5 + a4u + a3.
Let us point out that the factorization of TN can be computed with the help of

the Schur-type algorithm emerging from Theorem 4.2. and the factorization of T−1
N

with the help of the Levinson-type algorithm emerging from Theorem 4.1. Thus these
algorithms can be used to solve linear systems via factorization and back substitution
or matrix multiplication, respectively.

7. Concluding remarks

The algorithms described in the previous sections lead to several methods for solving
a linear system TN f = b with a nonsingular, skewsymmetric Toeplitz coe?cient matrix.
There are three possibilities, namely (a) via inversion formula, (b) via direct recursion,
and (c) via factorization. For each possibility there is a Levinson-type and a Schur-type
version. That means we have six methods. In [14] these six methods (and two more)
are described in detail and compared from the view point of complexity in sequential
processing in the centro-nonsingular case. In the general case complexity matters are
more complicated, since the complexity heavily depends on the rank pro'le but the
comparison will give, in principle, the same result.

It turned out that the Levinson-type algorithm combined with the inversion formula
is the most e?cient one from the complexity point of view, provided that for matrix-
vector multiplication a fast algorithm is used. If it is carried out in the classical way,
then direct recursion and factorization are preferable.

Let us point out that complexity is not the only criterion for estimating the perfor-
mance of an algorithm. In Qoating point arithmetics stability is an important issue. It is
well known that, as a rule, Schur-type algorithms are more stable than Levinson-type
algorithms (see [2]). From this point of view a solution via ZW -factorization and back
substitution might be preferable over the other methods. Furthermore, all Schur-type
versions are preferable in parallel computing, since they avoid inner product calcula-
tions.
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