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ABSTRACT 

It is well known that the inverses of Hankel and Toeplitz matrices can be 
represented as Bezoutians of polynomials. In the present note a Bezoutian-type 
formula for the inverses of Toeplitz-plus-Ha&e1 matrices and a complete characteriza- 
tion of Toeplitz-plus-Hankel matrix inverses are given. 

INTRODUCTION 

Utilizing some earlier results concerning Toeplitz matrix inversion pre- 
sented in [l], F. I. Lander [5] remarked that the inverse of a regular Hankel 
matrix, i.e. a matrix of the form [ si+ j];l- ‘, can be represented as a Bezoutian 
of two polynomials and, vice versa, any regular Bezoutian is the inverse of a 
Hankel matrix. A similar result holds for Toeplitz matrices, i.e. matrices of the 
form [ti_j];;-‘. 

The main aim of the present note is to show that a Bezoutian-type 
formula also exists for the inverse of a matrix of the form A = T + H, where T 

is Toeplitz and H is Hankel. We shall call matrices of this kind T + H-matrices. 

A second aim will be a complete characterization of the class of T + H-matrix 
inverses. 

In the first section we shall introduce Bezoutian concepts and quote some 
known results. Furthermore, we formulate our main theorem. It turns out 
that Hankel, Toeplitz, and T + H-matrices are special types of a class of 
matrices which we shall call “tistructured matrices.” This concept will be 
introduced in the present paper (Section 2) for the first time. In Section 3 we 
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shall deduce an inversion formula for T + H-matrices. Let us note that 
formulas of this kind are important for constructing fast inversion algorithms 
for T + H-matrices. Our paper [2] is dedicated to the investigation of such 
algorithms. In Section 4 the sufficiency of the condition of the main theorem 
will be proved, which is an analogue of Theorem I, 2.1 in [3]. 

1. BEZOUTIANS 

It is convenient to define the Bezoutian concepts in the language of 
generating functions. The generating function of an m x n matrix A = 

['ijl~- '1 :-I is, by definition, the polynomial in two variables 

m-l n-l 

A(X,p)= C C aij’i/LFLj. 
i=a j=O 

Identifying vectors a = (ai);-’ E C” with the corresponding n x 1 matrices, 
this notation will also be used for vectors of C”. 

DEFINITION 1.1. A matrix B is called an H-Bemtian (“H” refers to 
Hankel) iff there are polynomials gi( X), fi( X) (i = 1,2) such that 

(A --cL)B(X, CL) = i gi(X)fi(P). 0.1) 
i=l 

In case 

(1.2) 

B is said to be a clussical H-Bemutian. 

This Bezoutian concept was introduced in [6]. Concerning the classical 
Bezoutian concept we refer to [4]. 

THEOREM 1.1. A regular mutrix B is an H-Bemtian iff B-’ is Hankel. 
Moreover, any regular H-Bemtiun is classical. 

The proof of the fact that B- ’ is Hankel iff B is a classical Bezoutian was 
already given in [S]. The stronger version of Theorem 1.1 was shown in [3, 
1.2.31. 
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DEFINITION 1.2. A matrix B is called a T-Rezoutian (“T ” refers to 
Toeplitz) iff there exist polynomials gi( X), fi( h) (i = 1,2) such that 

(1- X/.@(k II) = : g,(axP)~ 
i=l 

In case 

with n the degree of fi(X) and f,(h), B is said to be a classical T-Bezoutian. 

THEOREM 1.2. A regular matrix B is a T-Bezoutian iff B-’ is Toeplitz. 
Moreover, any regular T-Bemutian is classical. 

The proof of this theorem is, in principle, the 
1.1. 

DEFINITION 1.3. A matrix B will be called a T + H-Bezoutian iff there 

same as that of Theorem 

are polynomials g,(X), J(X) (i = 1,2,3,4) such that 

(A -p)(l- h~)B(h, P) = i gi(X)fi’(PL). (1.3) 
i=l 

Clearly, any 2%Bezoutian as well as any T-Bezoutian is a T + H-Bezoutian. 
On the other hand, the sum of a T-Bezoutian and an H-Bezoutian is not 
necessarily a T + H-Bezoutian, as simple examples show. 

The main result of our note is the following one. 

THEOREM 1.3. A regular matrix B is a T + H-Bezoutian iff B- ’ is a 
T + H-matrix. 

The two directions of the proof will be given in Sections 3 and 4. 

2. MATRICES WITH &TRUCTURE 

In this section we introduce the concept of w-structured matrices. This 
concept seems to be fruitful also in other situations and will be developed in a 
further publication of the authors. 
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Let L, denote the class of all n X n matrices with complex entries. With 
any given matrix w = [ w,,]i, E Ll+ 1 we associate two transformations V,: 

L” + L”+I and 02: L, + L,_, defined by 

VUA ‘= s lfloui-$, j-t",.] I. 
n-l+1 

3 (2.1) 
0 

O,OA ‘= s fZ,'i-s, j-1411 

[. 

n-l 

2 

1 

(2.2) 

where A=[aij];f-’ and uij:=O if i,jG {O,l,...,n-1). Clearly, V, and 
0: are linear operators. Furthermore, the transformation v, can be repre- 
sented in terms of generating functions. 

PROPOSITION 2.1. 

(v,A)(X,P) =+b+%~)* 

The proof is an elementary calculation. 
From Proposition 2.1 it becomes clear that V, (w f 0) is left invertible. 

DEFINITION 2.1. A matrix A E L, is said to possess an ostructure iff 
v,oA = 0. 

Let us give some examples. Put 

0 
wH:= 1 

-1 
[ 1 0 ’ 

then, obviously, A has an w,-structure iff A is Hankel. Defining 

1 0 
+:=o _1’ 

[ 1 
the matrices with an or-structure are just the Toeplitz matrices. Note that 

‘,,&,.g=x-p and q(k11)=1--~. 

Hence, by Proposition 2.1, 
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and 

(v,,A)(L CL) = (I- ~dA(~~ CL). 

Therefore, H- and T-Bezoutians can be characterized by means of trans- 
formations v,. In that manner B is an H-Bezoutian (T-Bezoutian) iff rank 
v,_B 6 2 (rankvOTB < 2). Moreover, the equality holds if B z 0. Now let us 
characterize T + Himatrices. 

PROPOSITION 2.2. Suppose 

-1 0 
0 1 

-1 0 I* (2.3) 

Then A has an u-structure iflA is Toeplitz-plzls-Ha&l. 

Proof. We compare the linear space s!~ of all n X n T + H-matrices 
with the kernel of OZ. It is easily verified that vZA = 0 if A E .s?“; that 
means 

sY” G kervz. (2.4) 

Thus, it remains to prove that the dimensions of &, and kervi coincide. 
First we compute dim JZ?“. Let Yn denote the space of n x n Toeplitz and 
X, the space of n X n Hankel matrices. Obviously, dim S, = dim ZR - 
2n - 1. Because 59, is the algebraic sum of 7” and Z,, we obtain 

The intersection S, n Yn consists of all “checkered’ matrices 

b 

“b 

a 

b 

a 

. . . 

. . . *..I . . . 

and is therefore two-dimensional. This implies 

dim32”=2(2n-l)-2=4n-4. (2.5) 
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Next we observe that any matrix A E kerv,0 is uniquely determined by its 
first two rows and its first and last columns, which means 

dimkervi < 2n +2(n - 2) = 4n - 4. 

Taking into account (2.4) and (2.5), we obtain dimkervz = dim &“. Conse- 
quently, kervi = &,,. n 

We observe that, for w defined by (2.3) 

W(XrCL)=X-_++hCL2-X2C1=(h--)(1--XC1) 

= q&k r+T&PCL). 

Therefore, by Proposition 2.1, 

(v,A)(X,p) = (A - d(l- h-h’% P)- 

Consequently, according to Definition 1.3, B is a T + H-Bezoutian iff 
rankv,B Q 4. 

3. INVERSION FORMULA 

Throughout this and the next section let v denote the transformation V, 
for w defined by (2.3). In order to obtain an inversion formula for T + H- 
matrices we study the action of the transformation V. Let S, denote the 
matrix [ ai_ i, i]i-’ of the forward shift in C “, and W, the sum of S, and its 
transpose. An elementary computation yields the following fact. 

PROPOSITION 3.1. For A = [aij];-’ E L,, the matrix VA bus the form 

- CT 
AW, - W,,A 

- c2’ 

where 

b,= [%o .** %-I,& b2= [a,,,-, *** %-I&-, 

cl= u@) *** 
1 ao,n-1 IT’ c2= [%-LO *.. %-Ln-l]T. 
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Now we assume that A is a T + H-matrix 

A= [t,_j+si+j]o”-l. 

Then we have 

AW,,-W,A= -gle,T-g,e,T_,+e,f~+e,_,f,*, 

where 

g,= [t,+s_, .** t”+SJ*, 

(3.2) 

g,= [t_,+s, ... t_l+SZn_llT, 

f,= [t_,+s_, *.* t_n+Sn-ZIT? 

fi= [tn+sn *-- tl+S2”_JT, 

e,= [l 0 .a. OIT, e,_,= [0 .a. 0 11*, 

and s_~, s~~_~, t,,, t_, are arbitrary numbers. 
Equation (3.2) represents a W,,W,,-reduction of the T + H-matrix A in the 

sense of [3]. According to the theory developed in this monograph one has to 
consider now the following “fundamental” equations 

Ax, = g,, Ax, = g,, Ax, = e,, AZ, = e,_,, (3.3) 

ATyl = eo, ATy2 = en-,, A*Y~ = fi, A*Y,=& (3.4) 

THEOREM 3.1. 

completely 
from the solutions of (3.3) and (3.4) by the following fmnulu: 

1 4 

A-‘&CL) = (h _PcL)(l _ xP) i~lui(A)vi(P)’ (3.5) 

where 

UI(X) = - 1+ Xx,(A), Vl(V = XY,(V, 

u2( X) = Xx,(X) - xn+l, v2(V =AY,(Uv 

f&)=$(q, vg(q=l-xY,(q, 

u4@)=Xx4(X), v4(h)= -Ay4(h)+An+? 

(3.6) 
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Proof. First we prove the regularity of A, Without loss of generality we 
may assume that the equations (3.4) are solvable. [In the case that the 
equations (3.3) are solvable we consider A’, which is a T + H-matrix again, 
instead of A.] Let u belong to the kernel of A, i.e. Au = 0. Then, according 
to (3.2), 

AW,u = -g,e,Tu-g2e,T_,u+eof,Tu+en_,f2Tu 

= - g,yTAu - g,ylAu + e,ylAu + e,_,yTAu, 

and consequently 

e,Tu=e,T,u=O 

and 

AW,,u = 0. 

With the same arguments we conclude A W,“’ ‘u = 0 and el W$ = e,‘_ IW,$ 
-0for k-1,2,.... This implies u = 0, and the regularity of A is proved. 

Next we prove the inversion formula (3.5). From (3.2) we obtain 

A-‘W,-WA-‘= 
n X,YT + X,Y,T - %Y,T - X,Y,T. (3.7) 

According to Proposition 3.1, we have 

I 
0 - YF 0 

VA-‘= x3 A-‘W,-WA-’ x4 . ” 

0 - Yz’ 0 1 
Taking (3.7) into account, we conclude 

-1 
X1 X2 X3 X4 

0 

(3.3) 
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Using generating functions, this can be written as 

VA-‘&~) = [ -I+A~,(~)I~Y~(cL)+[~~~(A) -A”+‘]cLYs(/‘) 

+hx,(X)[I-ILY3(CL)] +A%@)[ -~Y,(I”)+~“+‘l. 

Together with Proposition 2.1, this leads just to the formula (3.5), and the 
theorem is proved. n 

We proceed with some additional remarks. 

3.1 
Besides the matrix A = [ ti _ j + si + j] t- ‘, we consider the following well- 

defined (n - 2) x (n + 2) matrix: 

which has full rank in case A is regular. Therefore, A, has a four-dimensional 
kernel. We shall show that there is a close relation between the kernel of A, 
and the solutions of the fundamental equations (3.3). Suppose xi (i = 1,2,3,4) 
to be the solutions of (3.3). Then the vectors ui defined by (3.6) are linearly 
independent and 

A,uj = 0 (i = 1,2,3,4). (3.9) 

On the other hand, assume A is regular and { zi }f_ i is a basis of the 
kernel of A,. Then on account of (3.9) there exists a regular 4 X 4 matrix C 
such that 

[% u2 u3 %I=[% z2 23 %]C. 

In other words, the vectors ui (i = 1,2,3,4) are linear combinations of the 
vectors zr, z2, z3, and zq. Thus we obtain the following assertions. 

PROPOSITION 3.2. Let the equutions (3.3) be solvable. Then the vectors 
ui defined by (3.6) fm a basis of the kernel of A,. 

3.2 
Let us now prove that the entries of a T + H-matrix inverse can be 

evaluated recurrently. 
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PROPOSITION 3.3. Suppose A is a regular n x n T + H-matrix. Then the 
entries cjk (f, k = 0,. . . , n - 1) of A-’ can be determined recurrently as 
folf?4n.m: 

cj _l:=o, 'j.0 T = ejxl, 

'j,k+l =Cj+l,k+Cj-l,k- cj,k-lfe~(XlyT+Xly~-X3Y~-X4Y~)Ck, 

(3.10) 

where ej = ( ai j)y--,’ and xi, yi (i = 1,2,3,4) are the solutions of the equations 
(3.3). 

proof. Let ck denote the (k + 1)th column of A-‘. Then from (3.7) one 
concludes 

A-‘w,,e, = w,,ck + xlyfek + x2ylek - x3yTek - x4yzek. 

Since w,,ek = ek_ 1 + ek+ 1, this implies (3.10). 

3.3 
For the construction of A-’ it suffices to know the solutions xi. 

PROPOSITION 3.4. 

evaluuted via 
The entries cjk of a T + H-matrix inverse A-’ can be 

cj, _1:= 0, cj,o = eTxl, 

cj,k+l=Cj+l,k+Cj-l,k-Cj,k-l+CT(Xle,T+X,e,T_,-X,f~-X,fzT)Ck, 

(3.11) 

where ck := A-‘ek and fl, fi defined by (3.2). 

Proof. From (3.2) and (3.7) it follows immediately that 

which leads to (3.11). 
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3.4 
It is easy to verify that a T + H-matrix is symmetric iff the Toeplitz part 

has this property, and in this case the inversion formulas (3.5) and (3.10) can 
be simplified using the following relations between the fundamental solutions 
of (3.3) and (3.4): 

Y, = x3, Y, = x4. Y, = Xl, Y, = x2. (3.12) 

3.5 
The definition of the concept of classical H- and T-Bezoutians includes 

the fact that there is a close relation between the fundamental solutions xi 
and y,. Section 3.3 above shows that there also exist such relations for 
T + H-Bezoutians. However, these relations are not so transparent as in the 
Toeplitz and Hankel cases. For this reason we could not find, hitherto, a 
natural definition of the concept “classical T + H-Bezoutian.” 

4. CHARACTERIZATION OF T + H-MATRIX INVERSES 

In this section we prove the converse part of Theorem 1.3. 

THEOREM 4.1. Suppose that B is a regular matrix such thut 

rankvB = 4. 

Then B is the inverse of a T + H-matrix. 

Proof. According to Proposition 3.1 the matrix v B admits a representa- 
tion 

4 

~B=6,e~+6,e~-e&-e,&+ c ii,cT, 
i=l 

(4.1) 

where 

El= [:,,I, h2= [Bei_l], E,= [B”], Ez2= [B’i-1], 

iiI,=[s], Ci=[i], 
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SW, - W,B = i up;. 
i=l 

We intend to show that VB can be represented in the form 

vB=&,[l * 0] +6,[0 * l] - (4.2) 

where * stands for some vector of C “. In view of (4.1) we have a 
representation 

vB=R+ 2 iiid; (4.3) 
i=l 

for m = 4, where R denotes a matrix possessing the form of the right-hand 
side of (4.2). It remains to show that there is a representation (4.3) for m - 1, 
too. For this we utilize the elementary fact that if rankZ~!“,,giJT < m then 
the vectors gi or $ are linearly dependent. Since rank v B = 4, the vectors 

1 0 
6,, &s, * , * ) q(d=l,..., m) [I [I (4.4) 

0 1 

or the corresponding row vectors are linearly dependent. Assume the vectors 
(4.4) are linearly dependent.’ In view of the special form of these vectors, we 
have linear dependence already for &i, &s, Ci (i = 1,. . . , m). Taking the 
regularity of B into account, we obtain that one of the vectors Ci, say t,, is a 
linear combination of the others: 

‘In the other case we can proceed analogously. 
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Substituting this into (4.3), we obtain 

VB=h([l * o]+[o alurn cl]) 

+&([o * 1]+[0 “2% 01) 

1 0 [I [I 
m-1 

- * CT- * El+ c iii(v',+piqJ, 
0 1 i=l 

which is indeed a representation of the form (4.3) for m - 1. Finally (4.2) is 
obtained. Using the notation of Proposition 3.1, this means in particular that 
there are vectors zi E C n such that 

SW,, - W,,B = Be,+:+ Be,_,zi+ z,eiB + z4eT-,B. 

Applying B-’ from both sides, the latter leads to 

-(B-l~,-w,~-l)=e,f~+e,_,f,T+f,e,T+f,e,T_,, (4.5) 

where $ = (B-‘)Tzi (i = 1,2), fi’= B-‘z, (i = 3,4). The relation (4.5) shows 
in particular that for the corresponding transformation v O defined by (2.2) 

v”B-l=O 

holds. Consequently, by Proposition 2.2, B-’ is a T + H-matrix, and the 
theorem is proved. n 

For completeness let us remark the following fact. 

THEOREM 4.2. Let B be an n X n matrix, n >, 2. Zf rankv B -C 4, then 
the first and lust column or the first and last row of B are linearly dependent, 
which means, in particular, that B is singular. 

Proof. Obviously, the relation (4.2) holds if rank v B < 4 and the first 
and the last columns as well as the first and the last rows are linearly 
independent. Thus, both the system of vectors 

1 0 
ii> 62, * , * , [I [I 0 1 
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and the corresponding system of row vectors 

ET, g2’, [ 1 * 01, [o * 11 

are linearly independent. This implies rank v B = 4. n 

Finally, we note that, in contrast with H- and T’-Bezoutians, there are 
nontrivial T + H-Bezoutians B with rankvB < 4. For example, if B is a 
checkered matrix of odd order, then rank v B G 2. 
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