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Abstract

The structure of the kernel of block Toeplitz-plus-Hankel matrices R = [aj−k + bj+k],
where aj and bj are the given p × q blocks with entries from a given field, is investigated. It
is shown that R corresponds to two systems of at most p + q vector polynomials from which a
basis of the kernel of R and all other Toeplitz-plus-Hankel matrices with the same parameters
aj and bj can be built. The main result is an analogue of a known kernel structure theorem for
block Toeplitz and block Hankel matrices. © 2002 Elsevier Science Inc. All rights reserved.
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1. Introduction

The kernel (nullspace) kerR = {u: Ru = 0} of a Hankel R = [aj+k] or a Toep-
litz matrix R = [aj−k] possesses a remarkable structure. It is, provided that it is
nontrivial, the span of one or two vectors and their shifts (see [9]). This fact can be
formulated in a nice form in polynomial language. If x = (xj )nj=0, then x(t) will

denote the polynomial
∑n
j=0 xj t

j . Now the set of all u(t) with u ∈ kerR is given by

u(t) = u1(t)ξ1(t)+ u2(t)ξ2(t),

where u1(t) and u2(t) are two polynomials depending only on the parameters aj
(and not on the size of H) and ξ1(t), ξ2(t) run over all polynomials satisfying certain
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degree restrictions. In the case of a square Toeplitz or Hankel matrix only one poly-
nomial u1(t) generates the kernel. The system {u1(t), u2(t)} is called fundamental
system of (aj ). Note that the concept of a fundamental system is also important in
the case of a nonsingular Toeplitz or Hankel matrix. In fact, the inverse of a Hankel
matrix is, up to constant factor, equal to the Bezoutian of the two polynomials in
any fundamental system of the sequence (aj ) (see [9]). The result about the kernel
structure was generalized in [7] to block Hankel and Toeplitz matrices.

For infinite Toeplitz matrices [aj−k]∞j,k=0 (
∑ |aj | <∞) generating a Fredholm

operator in the sequence space �p a similar kernel structure result was already ob-
tained in the classical papers on Wiener–Hopf operators [13] for the scalar and for
the block case using the Wiener–Hopf factorization of the symbol [2].

The kernel structure result for finite Toeplitz and Hankel matrices found several
applications. Let us list some of them. In [9] (see also references therein) it was used
to design fast inversion algorithms for Toeplitz and Hankel matrices that are not
strongly nonsingular and for which the classical algorithms (Levinson–Trench and
Schur–Bareiss) fail. In [5] it was used to study the structure of the Moore–Penrose
inverse of a Toeplitz or Hankel matrix and in [6] to design fast algorithms for its
computation. Finally, it was applied in [4] to construct matrices which are not similar
to a Toeplitz matrix. The kernel structure result for infinite block Toeplitz matrices
obtained in a purely algebraic way was used in [12] to construct the Wiener–Hopf
factorization in algebras of bounded matrix functions.

These applications are the motivations for the investigation of the kernel structure
of other classes of structured matrices. In [3,9] a general approach to describe the
kernel of matrices with a displacement structure was presented, but this approach is
rather coarse and does not provide the full picture in special cases.

The aim of the present paper is to study the kernel of block Toeplitz-plus-Hankel
matrices and to show that a similar result as for block Toeplitz matrices holds. In
the scalar case the result can roughly be described as follows: For a given Toeplitz-
plus-Hankel matrix R = T +H , there exist four polynomials u+

1 (t), u
+
2 (t), u

−
1 (t)

and u−
2 (t) such that the set of all u(t) with u ∈ kerR is given by

u(t) = u+
1 (t)ξ

+
1 (t)+ u+

2 (t)ξ
+
2 (t)+ u−

1 (t)ξ
−
1 (t)+ u−

2 (t)ξ
−
2 (t), (1.1)

where ξ+
1 (t), ξ

+
2 (t) run over all symmetric polynomials and ξ−

1 (t), ξ
−
2 (t) over all

skewsymmetric polynomials satisfying certain degree restrictions. Here we call a
polynomial symmetric or skewsymmetric if its coefficient vector is symmetric or
skewsymmetric, respectively. A vector (xk)nk=0 is called symmetric or skewsymmet-
ric if xn−k = xk or xn−k = −xk for k = 0, . . . , n, respectively. It is remarkable that
if we interchange in (1.1) the roles of {u+

1 , u
+
2 } and {u−

1 , u
−
2 }, then we obtain just the

kernel of T −H .
The basic idea to prove this result is to use the extension approach for Toep-

litz-plus-Hankel matrices, which was, as far as we know, first proposed in [14] and
which is based on the observation that the direct sum of the Toeplitz-plus-Hankel
matrices T +H and T −H is unitarily equivalent to a block Hankel matrix with
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2 × 2 blocks. Note that this extension idea is also used in other fields of mathematics
like the theory of singular integral equations with shift. This allows us to apply the
results from [7] about the kernel structure of block Hankel matrices (see also [1]).
To obtain our main result we use some concepts that were introduced in [11].

2. Kernel structure of block Hankel matrices

In this section we recall some definitions and results from [7] in a form which is
appropriate for our considerations. Before this we introduce some notations that will
be used throughout the paper.

Let F be a field with a characteristic not equal to 2. We denote by Fq,n+1 the set
of all vectors (xj )nj=0 with xj ∈ Fq . If x = (xj )nj=0 ∈ Fq,n+1, then x(t) will denote

the vector polynomial
∑n
j=0 xj t

j .
A sequence of blocks a = (a0, . . . , aN−1), aj ∈ Fp×q , will be associated with the

family of block Hankel matrices

Hk(a) = [
ai+j

]
i=0,...,l−1; j=0,...,k−1 (k + l = N + 1),

where k = 1, . . . , N . The following theorem is a slightly different formulation of
Theorem 2.1 in [7].

Theorem 2.1. Let a sequence of blocks a be given and δ = q − rank aT. 1 Then
there exists a uniquely defined (p + q)-tuple of nonnegative integers (d1, . . . , dp+q),
d1 � · · · � dp+q � N + 1 satisfying

∑p+q
j=1 dj = (N + 1)p and p + q − δ vectors

uj ∈ Fq,dj+1 such that, for k = 1, . . . , N, the kernel of Hk(a) consists of all vectors
u for which u(t) is of the form

u(t) =
∑
k>dj

ξj (t)uj (t), (2.1)

where ξj is any vector from Fk−dj . Furthermore, Fq,N+1(t) consists of vector poly-
nomials of the form (2.1), where ξj ∈ FN+1−dj . Moreover, the vector polynomials
tkuj (t), k = 0, . . . , N − dj , j = 1, . . . , p + q are linearly independent.

Note that δ is the number of dj that are equal to N + 1.
The numbers dj (j = 1, . . . , p + q) are called characteristic degrees and the sys-

tem {uj } or {uj (t)} (j = 1, . . . , p + q − δ) is called a fundamental system for a or
for any of the matrices Hk(a).

From Theorem 2.1 we conclude the following.

1 We identify a with the corresponding column. Note that aT = HN(a).
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Corollary 2.2. For k = 1, . . . , N, the dimension of the kernel of Hk(a) is given by

dim kerHk(a) =
∑
k>dj

(k − dj ).

Another consequence is a nonsingularity condition.

Corollary 2.3. The matrix Hk(a) is nonsingular if and only if kq = lp (k + l =
N + 1) and all dj are equal to k.

3. Main result

In this section we consider l × k block Toeplitz-plus-Hankel matrices Rk with
p × q blocks. Let Jq,k denote the matrix of the block counteridentity

Jq,k =
 0 Iq

..
.

Iq 0

 k
and Iq,k the block diagonal matrix with k diagonal blocks Iq , where Iq is the q × q
identity matrix. Then any l × k block Toeplitz-plus-Hankel matrix Rk can be repre-
sented in the form

Rk = Rk(a, b) = Hk(a)+Hk(b)Jq,k
for some sequences of blocks a = (a0, . . . , aN−1) and b = (b0, . . . , bN−1) andN +
1 = k + l. Note that this representation is not unique, since the spaces of Toeplitz
and Hankel matrices have a nontrivial intersection. Besides Rk(a, b) we consider the
matrix Hk(a)−Hk(b)Jq,k and the matrix

H̃k(a, b) =
[
Hk(̂a) Hk(̂b)
Hk(b) Hk(a)

]
, (3.1)

where â denotes the sequence a in reversed order, i.e., â = (aN−1, . . . , a0).
There is a relation between the matrices Hk(a)±Hk(b)Jq,k and H̃k(a, b), which

was used, for example, in [8,14] for inversion purposes and which is described in the
following.

LetQq,k denote the unitary matrix

Qq,k = 1√
2

[−Jq,k Jq,k
Iq,k Iq,k

]
.

Proposition 3.1. The matrix H̃k(a, b) is unitarily equivalent to the direct sum of
Hk(a)+Hk(b)Jq,k and Hk(a)−Hk(b)Jq,k via

QT
p,l H̃k(a, b)Qq,k =

[
Hk(a)−Hk(b)Jq,k 0

0 Hk(a)+Hk(b)Jq,k
]
,

where k + l = N + 1.



G. Heinig / Linear Algebra and its Applications 340 (2002) 1–13 5

The proof is a direct verification.
From Proposition 3.1 we conclude the following.

Corollary 3.2. The vector u ∈ Fq,k belongs to the kernel of Hk(a)±Hk(b)Jq,k if
and only if [ u±û ] belongs to the kernel of H̃k(a, b), respectively.

Note that H̃k(a, b) is a 2 × 2 block matrix where the four blocks are l × k block
Hankel matrices of equal size. Matrices of this kind will be called Hankel-cross
matrices. Among all Hankel-cross matrices the matrices H̃k(a, b) are characterized
by the property to be centro-symmetric.

Recall that a 2l × 2k block matrix R is called centro-symmetric if Jp,2lRJq,2k =
R.

Proposition 3.3. The 2l × 2k Hankel-cross matrix

H̃k = H̃k(a, b, c, d) =
[
Hk(c) Hk(d)
Hk(b) Hk(a)

]
(3.2)

is centro-symmetric if and only if c = â and d = b̂.

Proof. We have[
0 Jp,l
Jp,l 0

] [
Hk(c) Hk(d)
Hk(b) Hk(a)

] [
0 Jq,k
Jq,k 0

]
=

[
Hk(̂a) Hk(̂b)
Hk(̂d) Hk(̂c)

]
,

from which the assertion follows immediately. �

After appropriate permutations of rows and columns a Hankel-cross matrix goes
over into a block Hankel matrix with 2p × 2q blocks. Therefore, Theorem 2.1 can
be applied. We obtain the following:

Theorem 3.4. Let sequences of blocks a, b, c, d be given and let δ = 2q − rank H̃N .
Then there exists a uniquely defined 2(p + q)-tuple of nonnegative integers
(d1, . . . , d2(p+q)), d1 � · · · � d2(p+q) � N + 1 satisfying

∑p+q
j=1 dj = 2p(N + 1)

and vectors ũj = [uj
vj

], uj , vj ∈ Fq,dj+1 (j = 1, . . . , 2(p + q)− δ) such that, for

k = 1, . . . , N, the kernel of the matrix H̃k given by (3.2) consists of all vectors
ũ = [u

v
] for which ũ(t) = [u(t)

v(t)
] is of the form

ũ(t) =
∑
k>dj

ξj (t )̃uj (t), (3.3)

where ξj is any vector from Fk−dj . Moreover, the coefficient vectors of t s ũj (t), s =
0, . . . , N − dj , j = 1, . . . , 2(p + q) form a basis of Fq,2N+2.

We now specify this result for the centro-symmetric case, i.e., for matrices
H̃k(a, b). In this case
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δ = 2p − rank

[̂
aT b̂T

bT aT

]
= 2p − rank H̃N(a, b).

In the sequel δ will always denote this integer.
A subspace of Fq,k will be called flip invariant if it is an invariant subspace for

Jq,k . For example, the kernel of a centro-symmetric matrix is flip invariant. A vector
will be called flip invariant if it is symmetric or skewsymmetric.

Let W be a flip invariant subspace of Fq,k . Then W can be represented as a direct
sum

W = W+ ⊕W−,
whereW+ consists of all symmetric andW− of all skewsymmetric vectors in W.

Definition [11]. The integer

sgnW = dimW+ − dimW−
will be called the signature of W.

The whole space Fq,k has the signature zero if k is even and q if k is odd. Thus the
space Fq,2k has signature zero. The row space of the 2p ×Nq matrix H̃N(a, b) is flip
invariant. Let σ = σ(a, b) denote its signature. Then the signature of the subspace
ker H̃N(a, b) equals −σ . Obviously, |σ | � δ.

It follows from the construction of a fundamental system (see [7]) that in the case
of a centro-symmetric block Hankel matrix the vectors of this system can be chosen
as flip invariant. Such a system splits into a symmetric part {u+

1 , . . . , u
+
r+} and a

skewsymmetric part {u−
1 , . . . , u

−
r−}, where r+ + r− = 2(p + q)− δ. We are going

to show that r+ = r− = p + q + σ .
For a vector ũ = [u

v
], u, v ∈ Fq,m+1 and k � m+ 1, Mk(̃u) will denote the space

of all vectors w ∈ Fq,k with the property that w(t) = ξ(t )̃u(t) for some ξ ∈ Fk−m+1.
The dimension of Mk (̃u) is equal to k −m+ 1.

The following obvious fact is important for our considerations (cf. [7,11]).

Lemma 3.5. Let ũ = [u
v
] be flip invariant, i.e., v = û or v = −û. Then Mk(̃u) is a

flip invariant subspace and has the signature

sgnMk(̃u) =


0, k −m+ 1 even,
1, k −m− 1 odd, ũ symmetric,

−1, k −m− 1 odd, ũ skewsymmetric.

Let re,+ and ro,+ denote the number elements in the symmetric part of a
fundamental system of H̃k(a, b) with even or odd characteristic degree, respectively,
and let re,− and ro,− be defined analogously.

Proposition 3.6. If N is odd, then

re,+ = re,− and ro,+ = ro,− − σ.
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If N is even, then

ro,+ = ro,− and re,+ = re,− − σ.
In particular, r+ = r− − σ .

Proof. Let N be odd and let {̃uj } be a fundamental system for H̃k(a, b) that consists
of symmetric and skewsymmetric vectors. In view of Theorem 3.4, the space Fq,2N+2

is the direct sum of the subspaces MN+1(̃uj ). Since the signature of Fq,2N+2 equals
zero, the sum of the signatures of the subspaces MN+1(̃uj )must be zero. According
to Lemma 3.5, the signature of MN+1(̃uj ) is nonzero only if dj is even and in this
case it is ±1, depending on whether uj is even or odd. Hence re,+ = re,−.

To obtain the equality for the other pair we consider the subspace ker H̃N(a, b) of
Fq,2N . This subspace has the signature −σ . Furthermore, it is the direct sum of the
subspaces MN (̃uj ). This means the sum of the signatures of the subspaces MN (̃uj )

must be −σ . Hence, ro,+ = ro,− − σ . For even N the proof is analogous. �

Corollary 3.7. If δ = 0, then r+ = r− = p + q.

We now can describe the structure of the kernel of the matrices H̃k = H̃k(a, b).
From Theorem 3.4 and Proposition 3.6 we conclude the following.

Theorem 3.8. Let two sequences of blocks a and b be given. Then there exist two
uniquely defined (p + q)-tuples of nonnegative integers (d+

1 , . . . , d
+
p+q) and

(d−
1 , . . . , d

−
p+q) satisfying d±

1 � · · · � d±
p+q � N + 1 and

∑p+q
j=1 (d

+
j + d−

j )= 2p(N + 1) and vectors

ũ±
j =

[
u±
j

±û±
j

]
, u±

j ∈ Fq,dj+1, j = 1, . . . , r±,

where r+ + r− = p + q − δ and r+ − r− = −σ, such that, for k = 1, . . . , N, the
kernel of the matrix H̃k(a, b) consists of all vectors ũ = [u

v
] for which ũ(t) = [u(t)

v(t)
]

is of the form

ũ(t) =
∑
k>d+

j

ξ+
j (t )̃u

+
j (t)+

∑
k>d−

j

ξ−
j (t )̃u

−
j (t), (3.4)

where ξ±
j is any vector from F

k−d±
j . Moreover, the coefficient vectors of t s ũj (t),

s = 0, . . . , N − dj , j = 1, . . . , 2(p + q) form a basis of Fq,2N+2.

We now can state our main result.

Theorem 3.9. Let two sequences of blocks a and b be given. Then there exist two
uniquely defined (p + q)-tuples of nonnegative integers (d+

1 , . . . , d
+
p+q) and

(d−
1 , . . . , d

−
p+q) satisfying d±

1 � · · · � d±
p+q � N + 1 and

∑p+q
j=1 (d

+
j + d−

j )
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= 2p(N + 1) and vectors u±
j ∈ F

q,d±
j +1 such that, for k = 1, . . . , N, the kernel of

Hk(a)+Hk(b)Jq,k consists of all vectors u for which u(t) is of the form

u(t) =
∑
k>d+

j

ξ+
j (t)u

+
j (t)+

∑
k>d−

j

ξ−
j (t)u

−
j (t), (3.5)

where ξ±
j is any vector from F

k−d±
j

± . The kernel of Hk(a)−Hk(b)Jq,k consists of all
vectors u for which u(t) is of the form

u(t) =
∑
k>d+

j

ξ−
j (t)u

+
j (t)+

∑
k>d−

j

ξ+
j (t)u

−
j (t) (3.6)

with ξ±
j ∈ F

k−d∓
j

± .

Proof. According to Corollary 3.2 u belongs to the kernel of Hk(a)+Hk(b)Jq,k if
[uT ûT]T belongs to the kernel of H̃k(a, b). In view of Theorem 3.7 this is equivalent
to the existence of polynomials ξj (t)± satisfying the degree restrictions mentioned
in Theorem 3.7 such that

u(t) =
r+∑
j=1

ξ+
j (t)u

+
j (t)+

r−∑
j=1

ξ−
j (t)u

−
j (t)

and

û(t) =
r+∑
j=1

ξ+
j (t )̂u

+
j (t)−

r−∑
j=1

ξ−
j (t )̂u

−
j (t).

Since the vectors ξ±
j are unique, we conclude that ξ̂+

j = ξ+
j and ξ̂−

j = −ξ−
j , which

means that the ξ+
j are symmetric and the ξ−

j skewsymmetric. �

The dimension of Fk+ equals [(k + 1)/2] and the dimension of Fk− equals [k/2],
where [·] denotes the integer part. Therefore, the following is true.

Corollary 3.10. The dimensions of the kernels of Hk(a)±Hk(b)Jq,k are given by

dim ker(Hk(a)+Hk(b)Jq,k) =
∑
k>d+

j

[
k − d+

j + 1

2

]
+

∑
k>d−

j +1

[
k − d−

j

2

]
,

dim ker(Hk(a)−Hk(b)Jq,k) =
∑

k>d+
j +1

[
k − d+

j

2

]
+

∑
k>d−

j

[
k − d−

j + 1

2

]
.
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The system of vectors {u+
j } (j = 1, . . . , p + q) will be called the (+)-part and

the system {u−
j } the (−)-part of a fundamental system for the pair of block sequences

(a, b). The integers d±
j will be called characteristic degrees of (a, b).

Let us point out that the characteristic degrees are associated with the pair of
sequences (a, b) rather than with the matrixRk(a, b). This is becauseRk(a, b)might
have different characteristic degrees depending on the representation of Rk(a, b) in
the form Rk(a, b) = Hk(a)+Hk(b)Jq,k . This concerns, however, only the numbers
d−
j . The numbers d+

j are uniquely defined by Rk(a, b).
Let us give a simple example. The matrix 2I2 can be represented with a = (0, 0, 0)

and b = (0, 2, 0). In this case all four characteristic degrees are equal to 2. But this
matrix can also be represented with a = (1, 0, 1) and b = (0, 1, 0). In this case we
have d+

1 = d+
2 = 2, d−

1 = 0 and d−
2 = 4.

Corollary 3.11. Let d+
j and d−

j (j = 1, . . . , r±) denote the characteristic degrees
of (a, b). Then:

1. The kernel ofHk(a)+Hk(b)Jq,k is trivial if and only if d+
j � k and d−

j � k − 1
for all j.

2. The kernel ofHk(a)−Hk(b)Jq,k is trivial if and only if d−
j � k and d+

j � k − 1
for all j.

Corollary 3.12. For the kernel dimensions of Hk(a)+Hk(b)Jq,k and Hk(a)−
Hk(b)Jq,k the relation

| dim ker(Hk(a)+Hk(b)Jq,k)− dim ker(Hk(a)−Hk(b)Jq,k)| � p + q
holds.

For the scalar case p = q = 1 this result was obtained in [3].

4. Special cases

4.1. Nonsingular Toeplitz-plus-Hankel matrices

In this section we consider the case of a nonsingular scalar Toeplitz-plus-Hankel
matrix Rn = Rn(a, b) = Hn(a)+Hn(b)Jn. It was shown in [10] that Rn is nonsin-
gular if and only if the dimension of the kernel of Rn+2 equals 4, and the inverse of
Rn can be described with the help of a basis of the kernel of Rn+2 and a basis of the
kernel of RT

n−2 = Rn+2(a, b̂). We now show how such a basis can be constructed
from a fundamental system of (a, b).

According to Corollary 3.11, for a nonsingular Rn four cases are possible:

1. d+
1 = d+

2 = d−
1 = d−

2 = n,
2. d+

1 = d+
2 = n, d−

1 = n− 1, d−
2 = n+ 1,
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3. d+
1 = n, d+

2 = n+ 1, d−
1 = n− 1, d−

2 = n,
4. d+

1 = d+
2 = n+ 1, d−

1 = d−
2 = n− 1.

If now {u+
1 , u

+
2 , u

−
1 , u

−
2 } is a corresponding fundamental system, then the coeffi-

cient vectors of the following polynomials form a basis of Rn+2, respectively:

1. (t + 1)u+
1 (t), (t + 1)u+

2 (t), (t − 1)u−
1 (t), (t − 1)u−

2 (t),
2. (t + 1)u+

1 (t), (t + 1)u+
2 (t), (t

2 − 1)u−
1 (t), u

−
2 (t),

3. (t + 1)u+
1 (t), u

+
2 (t), (t

2 − 1)u−
1 (t), (t − 1)u−

2 (t),
4. u+

1 (t), u
+
2 (t), (t

2 − 1)u−
1 (t), (t

2 − 1)u−
2 (t).

4.2. Block Hankel and Toeplitz matrices

In the case of a pure block Hankel (or block Toeplitz) matrix Hk(a) = Rk(a, 0)
the matrix H̃k(a, 0) splits into the direct sum of the two block Hankel matricesHk(a)
and Hk(̂a). Hence, if dj are the characteristic degrees, then d+

j = dj , d−
j = dj are

the characteristic degrees of (a, 0). Furthermore, if {uj } is a fundamental system of
a, then a fundamental system of (a, 0) is given by

u+
j = u−

j = uj (j = 1, . . . , p + q − δ).
Thus Theorem 2.1 follows from Theorem 3.9. In this sense our result is a general-
ization of the corresponding result for block Hankel matrices.

4.3. Centro-symmetric block Toeplitz-plus-Hankel matrices

We now consider the case that the block Toeplitz-plus-Hankel matrixRk = Hk(a)
+Hk(b)Jq,k is centro-symmetric. i.e., Jp,lRkJq,k = Rk . It is easily checked that
then a and b can be chosen such that â = a and b̂ = b. The matrix H̃k(a, b) now
takes the form

H̃ (a, b) =
[
Hk(a) Hk(b)
Hk(b) Hk(a)

]
.

Let Pq,k denote the unitary matrix

Pq,k = 1√
2

[−Iq,k Iq,k
Iq,k Iq,k

]
.

Then we have

P T
p,l H̃k(a, b) Pq,k =

[
Hk(a − b) 0

0 Hk(a + b)

]
where k + l = N + 1.

From this equality we conclude that u ∈ Fq,k belongs to the kernel of Hk(a + b)
if and only if [u

u
] belongs to the kernel of H̃ (a, b), and u ∈ kerHk(a − b) if and only

if [ u−u ] ∈ ker H̃ (a, b). Note that if u is symmetric, then [u
u
] is symmetric and [ u−u ]

is skewsymmetric, if u is skewsymmetric, then [u
u
] is skewsymmetric and [ u−u ] is

symmetric.
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Let uj be flip invariant and belong to a fundamental system of a + b. If uj is sym-
metric, then this vector contributes to the (+)-part of a fundamental system of (a, b)
and if uj is skewsymmetric, then it contributes to the (−)-part of a fundamental sys-
tem. Analogously, if vj belongs to a fundamental system of a − b, then it contributes
to the (−)-part if vj is symmetric and to the (+)-part if it is skewsymmetric.

From now on we assume, for simplicity of formulation, that the block rows (a ±
b)T have full rank. This is equivalent to the condition δ = 0.

In [7] the following is proved (Theorem 5.1).

Proposition 4.1. A centro-symmetric block Hankel or Toeplitz matrix has a fun-
damental system consisting of flip invariant vectors. If r+ denotes the number of
symmetric and r− the number of skewsymmetric vectors in a fundamental system,
then r+ − r− = q − p.

From this we can conclude the following theorem.

Theorem 4.2. Suppose that a and b are symmetric. Let u+
j (j = 1, . . . , r+) be the

symmetric vectors and u−
j (j = 1, . . . , r−) the skewsymmetric vectors of a funda-

mental system of a + b(r+ + r− = p + q), and let {v+j }, {v−j } be the corresponding

systems for a − b. Then the union of {u+
j } and {v−j } forms the (+)-part of a funda-

mental system and the union of {u−
j } and {v+j } forms the (−)-part of a fundamental

system for (a, b).

Recall that the (+)-part of a fundamental system of (a, b) is the (−)-part of a
fundamental system of (a,−b) and the (−)-part of a fundamental system of (a, b)
is the (+)-part of a fundamental system of (a,−b).

Corollary 4.3. Let δ±j denote the characteristic degrees for a + b, where the δ+j
correspond to symmetric and the δ−j correspond to the skewsymmetric vectors in

this system and let ε±j be analogously defined for a − b. Then δ+j and ε−j are the

characteristic degrees d+
j of (a, b) and δ−j and ε−j are the characteristic degrees

d−
j .

One consequence of this corollary is that for a scalar nonsingular centro-symmet-
ric Toeplitz-plus-Hankel matrix Case 2 in Section 4.1 is not possible.

4.4. Centro-skewsymmetric block Toeplitz-plus-Hankel matrices

We now consider centro-skewsymmetric block Toeplitz-plus-Hankel matrices Rk
= Hk(a)+Hk(b)Jq,k . Again we assume that the block rows (a ± b)T have full rank.
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The block sequences a and b can be chosen such that â = −a and b̂ = −b and the
matrix H̃k(a, b) takes the form

H̃k(a, b) =
[−Hk(a) −Hk(b)
Hk(b) Hk(a)

]
.

Hence

P T
p,l H̃k(a, b) Pq,k =

[
0 Hk(a + b)

Hk(a − b) 0

]
.

As in the centro-symmetric case, we conclude from this relation that u ∈ kerHk(a +
b) if and only if [u

u
] ∈ ker H̃k(a, b), and u ∈ kerHk(a − b) if and only if [ u−u ] ∈

ker H̃k(a, b).
The following proposition shows that there is an essential difference between the

centro-symmetric and the centro-skewsymmetric case.

Proposition 4.4. A centro-skewsymmetric block Hankel matrix Hk(a) has a funda-
mental system consisting of symmetric vectors.

Proof. The proof follows the same lines as the proof of Proposition 3.6. As in the
centro-symmetric case (see [7]), it can be shown that a skewsymmetric a has a
fundamental system consisting of flip invariant vectors. Let re,+ and ro,+ denote the
number of symmetric vectors in this system with even or odd characteristic degree,
respectively.

First we consider the case of an odd N. The dimension of the kernel of aT is
equal to Nq − p. Since a is skewsymmetric and the signature of Fq,N is equal to
q, the subspace ker aT has the signature p + q. On the other side, this subspace is
the direct sum of the MN (̃uj ) (j = 1, . . . , p + q). With the help of Lemma 3.5 we
conclude that re,+ = p + q and ro,+ = ro,− = re,− = 0. In other words, all uj are
symmetric and have an even characteristic degree.

Now let N be even. Then the signature of Fq,N+1 is equal to q. By Theorem
2.1, Fq,N+1 is the direct sum of the subspaces MN+1(uj ). With the help of Lemma
3.5 we conclude that re,+ − re,− = q. The signature of Fq,N is in this case equal to
zero, thus the signature of ker aT is equal to p. Hence ro,+ − ro,− = p. From the two
relations we conclude that re,− = ro,− = 0, re,+ = q and ro,+ = p. This means that
we have again only symmetric vectors in the fundamental system. �

Thus, the following centro-skewsymmetric analogue of Theorem 4.2 holds. It sur-
prises that its formulation is much simpler than the centro-symmetric version.

Theorem 4.5. Suppose that a and b are skewsymmetric. Let {uj } (j = 1, . . . , p +
q) be a fundamental system of a + b and {vj } be a fundamental system of a − b.
Then {uj } is the (+)-part and {vj } is the (−)-part of a fundamental system of (a, b).
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Let us discuss finally the nonsingularity of an n× n centro-skewsymmetric Toep-
litz-plus-Hankel matrix in the scalar case p = q = 1. Clearly, for this it is necessary
that n is even. Furthermore, it is shown in [11] that the characteristic degrees of a
square centro-skewsymmetric Toeplitz (or Hankel) matrix are even. This means the
Cases 2–4 in Section 4.1 are not possible and we come to a somehow surprising
conclusion: If Hn(a)+Hn(b)Jn is a nonsingular, centro-skewsymmetric Toeplitz-
plus-Hankel matrix, then all four characteristic degrees of (a, b) are equal to n. This
means, in particular, that Hn(a)−Hn(b)Jn is also nonsingular.
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