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Abstract

In this paper we explore generalized “r-Fibonacci Numbers” using a com-
binatorial “tiling” interpretation. This approach allows us to provide sim-
ple, intuitive proofs to several identities involving r-Fibonacci Numbers
presented by F.T. Howard and Curtis Cooper in the August, 2011, issue of
the Fibonacci Quarterly. We also explore a connection between the general-
ized Fibonacci numbers and a generalized form of binomial coefficients.
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Chapter 1

Introduction

Recall the combinatorial Fibonacci numbers { fn}, defined by

Definition 1.1.

fn =


1, if n = 0;
1, if n = 1;
fn−1 + fn−2, if n > 1.

fn counts the number of ways to tile an n-board, a 1× n grid with cells
labeled 1, 2, . . . , n, with 1× 1 squares and 1× 2 dominoes. Length zero and
length one boards can each be tiled in exactly one way (via the empty set
and a single square, respectively), whereas for a board of length n, every
tiling can be formed by either adding a domino to a tiled (n− 2)-board (in
fn−2 ways) or adding a square to a tiled (n− 1)-board ( fn−1 ways). We will
sometimes refer to a tiled n-board as an n-tiling. R.T. Howard and Curtis
Cooper (2011) have defined a generalization of this sequence.

Definition 1.2. Let r ≥ 1 be an integer. The r-generalized Fibonacci sequence
{Gn} is defined as

Gn =


0, if 0 ≤ n < r− 1;
1, if n = r− 1;
Gn−1 + Gn−2 + ... + Gn−r, if n ≥ r.

Howard and Cooper remark upon (but do not make use of) the fact
that Gn+r−1 counts the number of tilings of an n-board with tiles of length
at most r. To simplify notation, we define a new sequence {gn} which
corresponds more naturally to tilings.
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Definition 1.3. Let r ≥ 1 be an integer. The r-generalized combinatorial Fi-
bonacci sequence {gn} is defined as

gn =


0, if n < 0;
1, if n = 0;
gn−1 + gn−2 + ... + gn−r, if n ≥ 0.

Note that gn = Gn+r−1, so that gn counts the number of n-tilings with
tiles of length at most r. (The same reasoning from the r = 2 case ap-
plies: to form a tiling of length n, for 1 ≤ k ≤ r we can start with a tiled
(n − k)-board and add a length k tile.) The initial conditions specified in
the definition also make sense from a combinatorial perspective: they cor-
respond to adopting the convention that a negative-length board cannot
be tiled (as the existence of such a board does not make sense), but that a
board of length zero can be tiled in exactly one way (by the empty set of
tiles).

Howard and Cooper have provided algebraic proofs of a number of in-
teresting original identities involving the r-Fibonacci sequences {Gn}. We
provide combinatorial proofs for gn versions of all of their identities.



Chapter 2

Results

Theorem 2.1. For n ≥ r + 1,

2gn = gn+1 + gn−r.

Proof. We prove the identity by finding a 2:1 correspondence between the
set of n-tilings with tiles of length at most r (counted by gn) and the set of
such tilings of length n + 1 or n− r (counted by gn+1 + gn−r.

First, given an n-tiling, we can produce an n+ 1-tiling simply by adding
a square. This maps every n-tiling to an n+ 1-tiling that ends with a square.

Second, for each n-tiling, we can do one of two things. If the last tile
has length k and k < r, then we can replace it with a tile of length k + 1 to
get another unique length n + 1 tiling, this time ending with a tile of length
k + 1, where 2 ≤ k + 1 ≤ r. Otherwise, k = r and we can simply remove
the last tile to get a tiling of length n− r.

Thus each length n tiling maps to two unique tilings on the right-hand
side of the equation, which may have length either n + 1 or n− r, proving
the theorem. Conversely, each (n + 1)-tiling and (n− r)-tiling is achieved
by this construction, and the theorem is proved.

Theorem 2.2. For 1 ≤ n ≤ r,

gn = 2n−1.

Proof. Begin by tiling the board with n squares. There are then n− 1 divid-
ing lines between squares. Since n ≤ r, we can obtain any length n tiling
by selectively removing or leaving these dividing lines.

Thus gn is equal to the number of ways to remove dividing lines. There
are n− 1 such lines, and two choices for each: keep or remove. This gives
2n−1 possibilities in all.
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Note that, in the proof above, it was essential that we be able to remove
dividing lines without restriction. This was possible because the length of
the board was at most r, so that there was no risk of removing dividing
lines in a way that created an “illegal” tile of length r + 1 or greater. The
next theorem considers boards that are long enough to contain exactly one
illegal tile.

Theorem 2.3. For r + 1 ≤ n ≤ 2r + 1,

gn = 2n−1 − (n− r + 1)2n−r−2.

Proof. The left-hand side counts the number of length n tilings with tiles of
length at most r.

We obtain the right-hand side by counting the total number of possible
length n tilings (using tiles of any length), then subtracting away the tilings
which contain a tile of length r + 1 or greater to get the number of length n
tilings with tiles of length at most r.

We obtain the total number of tilings by starting with the all-squares
tiling and counting the number of ways to remove dividing lines. There
are again n− 1 such lines, so the total number of tilings is 2n−1.

To count the number of illegal tilings, we consider the position of the
illegal tile’s left edge. If its left edge coincides with the left edge of the
board, then there are r dividing lines internal to the illegal tile which must
remain absent for it to have length at least r + 1. This leaves n − 1 − r
dividing lines elsewhere on the board, each of which can be either removed
or kept, so that there are a total of 2n−r−1 illegal tilings with the illegal tile
flush with the left edge of the board.

Otherwise, there are n− r − 1 places to place the illegal tile’s left edge
(and leave room to the right for it to have length at least r + 1). Once the
left edge has been established, the status of that dividing line is fixed, as
is the status of the first r “lines” internal to the illegal tile, so that there are
in this case n− 2− r dividing lines which we can choose to either keep or
remove. There are thus (n− r− 1)2n−r−2 such tilings.

The total number of illegal tilings is thus (n− r− 1)2n−r−2 + 2n−r−1 =
(n − r + 1)2n−r−2. Subtracting this from the total number of tilings, we
obtain gn = 2n−1 − (n− r + 1)2n−r−2.

We now consider tilings where the number of illegal tiles is at most k.

Theorem 2.4. For k(r + 1) ≤ n < (k + 1)(r + 1),

gn = 2n−1 +
k

∑
i=1

(−1)ian,i2(n−1)−i(r+1),
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where an,0 = 1, an,1 = 0 for n < (r + 1), an,r+1 = 2, and an,i = an−1,i +
an−(r+1),i−1.

Proof. Consider a board of length n. The number of ways to tile this board
with tiles of length at most r is of course gn.

We can also count tilings by counting all those with tiles of any length,
then subtracting away the “illegal” tilings in which a tile of length r + 1 or
greater appears.

The total number of tilings is 2n−1. We first subtract, for each cell j,
the number of tilings with an illegal tile starting at cell j. However, this
over-subtracts tilings with more than one illegal tile, so by the principle of
inclusion/exclusion we have to add back in tilings with two illegal starting
points, then subtract tilings with three illegal starting points, and so on.

Next we count the number of tilings with i designated starting points
(where these starting points are at least r + 1 apart). For such a tiling, i
of the board’s n − 1 dividers are fixed, as are the r dividers that must be
removed for each illegal tile to ensure it is sufficiently long. Thus there are
n− 1− i(r + 1) choices to make about the remaining dividers, so there are
2(n−1)−i(r+1) ways to tile the rest of the board.

Note that when we designate the left end of the board as the edge of an
illegal tile, we are not fixing an internal dividing line, so as in the previous
theorem we have an additional factor of two in that case. We get around
this by counting as normal, then weighting the special tilings by two.

All that remains to consider is the number of ways to designate the left
edges. Let an,i denote the number of ways to designate left edges for i illegal
tiles on a length n board, where we give weight 2 to a designation where
an illegal tile is flush with the left end of the board.

Then inclusion/exclusion gives us

k

∑
i=1

(−1)ian,i2(n−1)−i(r+1),

so the total number of legal tilings is

gn = 2n−1 +
k

∑
i=1

(−1)ian,i2(n−1)−i(r+1).

We must show that an,i behaves as we claim. There is of course exactly
one way to designate left edges for zero such tiles, so an,0 = 1. For n < r + 1
there’s no way to designate the left edge of an illegal tile, since the board
isn’t long enough to accomodate one, so an,1 = 0 for n < r + 1. When
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n = r+ 1, there is exactly one way to designate the left edge of an illegal tile
(since such a tile fills the board), but since this puts the illegal tile flush with
the left edge of the board, we give it weight 2 so that ar+1,1 = 2. Finally, we
can obtain a recurrence by conditioning on whether or not the last illegal
tile we designate must occupy the last r + 1 spaces of the board. (That is,
if the left edge is placed such that to be sufficiently long, the tile must be
flush with the right edge of the board.) If it doesn’t, the number of ways
to designate the left edges is an−1,i, since we can remove the rightmost tile
of the board without changing anything. If it does, we already know the
position of one tile, so the number of ways to designate the rest is an−1−r,i−1.
Summing over the two cases, we have an,i = an−1,i + an−(r+1),i−1. This
completes the proof.

Note that the expression for gn found above could have been written a
little more compactly. Specifically,

gn =
k

∑
i=0

(−1)ian,i2(n−1)−i(r+1).

Theorem 2.5. For k(r + 1) ≤ n < (k + 1)(r + 1),

gn =
k

∑
i=0

(−1)i
[(

n− ri
i

)
+

(
n− ri− 1

i− 1

)]
2(n−1)−i(r+1).

Proof. It suffices to show that in the previous theorem,

an,i =

(
n− ri

i

)
+

(
n− ri− 1

i− 1

)
.

That is, we must count the number of ways to designate the left edges of
i illegal tiles on a board of length n, where we give weight 2 to designations
that place an illegal tile flush with the left edge of the board.

First we count the number of ways to choose left endpoints, ignoring
the weighting condition. There are n cells on the board, n− r of which can
be designated the leftmost cell of an illegal tile (cells n− r + 1 through n are
too close to the right edge of the board to permit a sufficiently long tile to
begin at them). Thus we wish to choose i cells x1, ..., xifrom the set {1, ..., n−
r} to serve as edge cells for our illegal tiles. The cells must be spaced far
enough apart for the illegal tiles to “fit”, so we require that xj− xj−1 ≥ r + 1
for all j. To do this, we first choose y1, ..., yi from the set {1, ..., n− r− (i−
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1)r}, then set x1 = y1, x2 = y2 + r, x3 = y3 + 2r, ..., xi = yi + r(i− 1). The
number of ways to choose the yj is (n−r−(i−1)r

i ) = (n−ri
i ). Since the equations

above provide a bijection between the xi and the yi, this is also the number
of ways to choose the xi and thus the number of ways to designate leftmost
cells of illegal tiles.

Now to give tilings with an illegal tile on the left edge of the board
weight 2, we simply count those tilings again and add them to the total, so
that they get counted twice. If one illegal tile has its left edge flush with
the left edge of the board, then what remains is to choose i − 1 cells to
serve as left endpoints for the remaining illegal tiles, where we choose from
{r + 2, ..., n− r}. (The first r + 1 cells belong to the leftmost illegal tile, of
course.) By the same reasoning as above, the number of ways to do this is
((n−r−(i−2)r)−(r+1)

i−1 ) = (n−ri−1
i−1 ).

Thus in total an,i = (n−ri
i ) + (n−ri−1

i−1 ).

The next theorem also involves subtracting away “illegal” tilings. It
allows us to consider much more general n, but the identity is recursive.

Theorem 2.6. For n ≥ 2r− 1,

gn = 2r−1gn−r +
r−1

∑
k=1

(
r−k

∑
i=1

2r−1−i)gn−r−k.

Proof. The left-hand side counts tilings of a length n board with tiles of
length up to r.

To show that the right-hand side counts the same quantity, we start with
a board of length n. Assuming no tile crosses the interface between cell r
and cell r + 1, we can tile its first r cells and its last n− r cells separately.
These can be (safely) tiled in 2r−1 and gn−r ways, respectively, giving a total
of 2r−1gn−r such tilings.

We must add in the tilings which do have a tile crossing the line after cell
r. Consider tilings with a tile of length i + k crossing the r, r + 1 interface,
where i is the number of cells the tile extends past the interface to the left,
and k is the number of cells the tile extends past the interface to the right.
To the right of the crossing tile there are then gn−r−k possible tilings, and to
the left of the crossing tile there are 2r−1−i possible tilings.

Note that k can range from 1 to r− 1 (if k were any longer the interface-
crossing tile would be illegally long, as i must have length at least 1), while
for fixed k, i can range from 1 to r− k. Thus the total number of tilings with
an interface-crossing tiling is ∑r−1

k=1(∑
r−k
i=1 2r−1−i)gn−r−k.
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Thus the total number of tilings of a length n board with tiles of length
at most r is

gn = 2r−1gn−r +
r−1

∑
k=1

r−k

∑
i=1

2r−1−ign−r−k.

The next theorem follows a similar approach.

Theorem 2.7. For n ≥ r,

gn = 2r−1gn+1−r −
r

∑
k=2

2k−2gn−r−k+1.

Proof. The left-hand side counts the number of ways to tile a length n board
with tiles of length at most r.

To obtain the right-hand side, we divide the board into two parts. The
first r− 1 cells can be tiled in 2r−2 ways, and the remaining n− (r− 1) cells
can be tiled in gn−r+1 ways. We have not yet addressed what happens at
the interface between cell r− 1 and cell r. We can either keep or remove the
dividing line here, giving us an extra factor of 2 and a total of 2r−1gn−r+1
tilings. However, removing the dividing line between r − 1 and r will oc-
casionally result in the creation of a tile of illegal length.

We now count the number of such illegal tilings. First consider the
rightmost n − r + 1 cells. (That is, the cells r through n.) If the tile be-
ginning at cell r has length k, the remaining cells to its right can be tiled in
gn−r−k+1 ways. Now remove the line between cells r − 1 and r. For this
to create a tile of illegal length, we must have had a tile of length r + 1− k
ending on cell r− 1. The internal r− k lines of this tile are fixed, so that we
have (r − 1)− (r − k) = k− 2 choices to make about the remaining lines.
Thus the left side can be tiled in 2k−2 ways. Note that this only makes sense
for 2 ≤ k, since if k is 1, removing the line between r− 1 and r cannot create
an illegal tile, no matter how the first r− 1 cells have been tiled.

Summing over all possible k, we find that the number of illegal tilings is
∑r

k=2 2k−2gn−r−k+1. Subtracting this from the total number of tilings created
in this way gives the number of legal tilings,

gn = 2r−1gn+1−r −
r

∑
k=2

2k−2gn−r−k+1.
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The next theorem generalizes a well-known “sum of squares” identity
for Fibonacci numbers.

Theorem 2.8. For r ≥ 2,

n

∑
k=0

g2
k +

r−1

∑
i=2

n

∑
k=i

gkgk−i = gngn+1.

Proof. Consider an (n + 1)-board laid parallel to an n-board, such that the
left edges of the two boards align and the (n + 1)-board extends one cell to
the right past the right edge of the n-board.

There are gn+1 ways to tile the longer board, and gn ways to tile the
shorter, so that there are gn+1gn ways to tile the pair simultaneously.

We now show that the left-hand side of the equation counts the same
quantity. Let s be the rightmost cell of either board which is not covered by
a domino, and let k + 1 be its position within its board. Note that since n
and n + 1 have different parity, s is always uniquely determined by k.

Suppose that s is covered by a square. Then the cells to its right on its
board must be covered by dominoes and the cells to its left can be tiled in
gk ways. Likewise, cells k + 1 and beyond of the board not containing s
must be covered by dominoes, with gk ways to tile the remaining k cells.
Thus the two boards can be tiled in g2

k ways. The cell s can be positioned
anywhere from 1 to n + 1, so k can range from 0 to n. The total number of
tilings where s is covered by a square is thus ∑n

k=0 g2
k .

Otherwise, s is covered by a tile of length i + 1, where 2 ≤ i ≤ r − 1.
Then the cells to the right of s must still be covered by dominoes, the tile
covering s also covers the first i cells to its left, and the remaining k− i cells
can be tiled in gk−i ways. As before, cells k + 1 and beyond of the board
not containing s must be covered by dominoes, and the remaining cells can
be tiled in gk ways, giving gk−igk tilings. Summing over all possible i and k
gives ∑r−1

i=2 ∑n
k=i gkgk−i tilings where s is not covered by a square. (Note that

k ≥ i, as s must necessarily be the rightmost cell of the tile that covers it.)
Thus in total the number of tilings of the pair of boards is

n

∑
k=0

g2
k +

r−1

∑
i=2

n

∑
k=i

gkgk−i = gngn+1.



10 Results

Theorem 2.9. For n > 0, m > 0, r ≥ 3,

gn+m−r+1 = gn−r+1gm−r+1 + gn−r+1gm−r + gn−rgm−r+1

+
r−2

∑
i=1

gn−igm−r+i+1 −
r−2

∑
i=2

i−1

∑
j=1

gn−igm−r+i−j+1.

Proof. We count the number of ways to tile a board of length n + m− r + 1.
Obviously this is gn+m−r+1, the left side of the equation.

To see that the right-hand side also counts this, we begin by considering
the first r− 2 potential breaks after cell n− r + 2. That is, the r− 2 gridlines
starting with the right edge of cell n− r + 2 and ending with the right edge
of cell n− 1.

For each such gridline, we count the number of tilings which have a
break at that line. In general, given a break at cell n− i, there are gn−i ways
to tile the leftmost n− i cells. This leaves m− r + i + 1 cells to be tiled to
the right of the break, which can be done in gm−r+i+1 ways, so that there
are gn−igm−r+i+1 tilings with a break at cell n− i. Summing over all r − 2
potential breakpoints under consideration gives ∑r−2

i=1 gn−igm−r+i+1 tilings.
Since it is possible for a tiling to have breaks at more than one of the

r − 2 special lines, the sum just constructed counts many tilings multiple
times. We must subtract away each tiling the appropriate number of times;
if a tiling has breaks at exactly k of the r− 2 special lines, it will have been
counted k times, so we must subtract it k− 1 times.

To do this, we consider, for each tiling, what happens in the region of
the board bounded by the first and last of the r− 2 special lines. If a tiling
has breaks at exactly k of the r− 2 lines, then those k breaks bound k− 1 tiles
within this region. (We do not count tiles which overlap this region but are
not wholly contained within it.) Thus we can achieve the appropriate sub-
traction by counting the number of tilings with a particular length tile in a
particular position, for each possible tile and position within the special re-
gion. For example, a tiling with exactly three breaks within the region—say
at the right edges of cells n− 4, n− 2, and n− 1—will be subtracted twice:
once for having a domino on cells n− 3 and n− 2, and once for having a
square on cell n− 1. Note that for tilings with exactly one break within the
region, no subtraction is needed, and since no tiles are fully contained in
the special region, no subtraction will be performed.

We now perform this subtraction. Consider tilings with a tile of length
j covering cells n− i + 1 through n− i + j. There are gn−i ways to tile the
board to the left of this tile, and gm−r+i−j+1 ways to tile the board to the
right of this tile. Thus there are gn−igm−i−j+1 such tilings. We sum over all
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such tiles within the region bounded by the r− 2 special lines. The leftmost
of these lines is the right edge of cell n− r + 2; thus the first cell the special
tile can include is n− r + 3, and so i can be at most r− 2. The last cell the
tile can include is n − 1, so i must be at least 2. Since tilings start at cell
n− i + 1 and must end at or before cell n− 1, j can be at most i− 1. Thus j
ranges from 1 to i− 1, and we have the double sum

r−2

∑
i=2

i−1

∑
j=1

gn−igm−r+i−j+1.

Thus far we have shown that the number of tilings with one or more
breaks at r− 2 specially designated lines is

r−2

∑
i=1

gn−igm−r+i+1 −
r−2

∑
i=2

i−1

∑
j=1

gn−igm−r+i−j+1.

All that remains is to add in the tilings which don’t have breaks at any of the
r− 2 special lines. There are three possible cases. First, the r− 2 lines can
be covered by a single tile of length r − 1 covering cells n− r + 2 through
n. Note that no shorter tile could cover all r − 2 lines, and that this is the
only way to position a tile of length r − 1 to cover r − 2 lines. Tiling the
board to the left and the right of the tile, respectively, we see that there are
gn−r+1gm−r+1 such tilings. The other possibility is that the r − 2 lines are
covered by a tile of length r. Since this tile is longer than necessary by 1,
it can begin either at cell n − r + 1 or at cell n − r + 2 and still cover all
r − 2 of the special lines. In the former case the rest of the board can be
tiled in gn−rgm−r+1 ways; in the latter case there are gn−r+1gm−r possible
tilings. Thus in total there are gn−r+1gm−r+1 + gn−rgm−r+1 + gn−r+1gm−r
tilings which have no breaks at any of the special points.

The total number of tilings of a board of length n + m− r + 1 is thus

gn−r+1gm−r+1 + gn−rgm−r+1 + gn−r+1gm−r

+
r−2

∑
i=1

gn−igm−r+i+1 −
r−2

∑
i=2

i−1

∑
j=1

gn−igm−r+i−j+1,

as desired.
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Further Work

Future work will focus primarily on using the combinatorial interpreta-
tion to produce interesting r-Fibonacci identities that go beyond those pre-
sented by Howard and Cooper. Additionally, Howard and Cooper present
a number of congruence relationships involving r-Fibonacci numbers that
may lend themselves to combinatorial interpretation.

3.1 Binomial Coefficients

One area of research that seems particularly ripe for generalization is the
connection between Fibonacci numbers and binomial coefficients. The fol-
lowing theorem is well known.

Theorem 3.1. For n ≥ 0,

fn =

n
2

∑
k=0

(
n− k

k

)
.

To generalize this result to r-Fibonacci numbers we require a new defi-
nition.

Definition 3.1. For s ≥ 1, n ≥ 0 and k ≥ 0 all integers, we define the s-restricted
multichoose function (n

k)s to be the number of ways of choosing a k-element subset
from a parent set of n elements, where elements can be chosen for the subset a
maximum of s times. Note that (n

k)1 = (n
k), (

n
k)0 = 1.

With this definition in hand, we can state and prove the following the-
orem:
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Theorem 3.2. For n ≥ 0, r ≥ 2,

gn = ∑
k≥0

(
n− k

k

)
r−1

,

where gn is the generalized r-Fibonacci sequence.

Proof. The left side counts the number of ways to tile a length n board with
tiles of length at most r.

For the right side we condition on the number of tiles in the tiling. Con-
sider a tiling with n− k tiles. We can create such a tiling by starting with
n− k squares and lengthening them. Each lengthening step increases the
length of a single tile by exactly 1. There must therefore be k lengthening
steps in total. Each tile can be lengthened a maximum of r− 1 times—any
more and it would become too long. Thus to count the number of possible
tilings we count the number of ways to choose i tiles from a set of n − i,
where each tile can be chosen at most r − 1 times. This is, by definition,
(n−k

k )r−1. Ranging over all possible k, the total number of tilings is

gn = ∑
k=0

(
n− k

k

)
r−1

This easy generalization suggests that other, more complicated iden-
tities involving Fibonacci numbers and binomial coefficients might also
be generalized to identities on r-Fibonacci numbers and s-binomial coef-
ficients.
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