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a b s t r a c t

In the realm of the Riordan group, we consider the characterization of Riordan arrays by
means of the A- and Z-sequences. It corresponds to a horizontal construction of a Riordan
array, whereas the traditional approach is through column generating functions. We show
how the A- and Z-sequences of the product of two Riordan arrays are derived from those
of the two factors; similar results are obtained for the inverse. We also show how the
sequence characterization is applied to construct easily a Riordan array. Finally, we give
the characterizations relative to some subgroups of the Riordan group, in particular, of the
hitting-time subgroup.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In the recent literature, special emphasis has been given to the concept of Riordan arrays, which are a generalization of
the well-known Pascal triangle. Riordan arrays are infinite, lower triangular matrices defined by the generating function of
their columns. They form a group, called the Riordan group (see Shapiro et al. [12]). Some of the main results on the Riordan
group and its application to combinatorial sums and identities can be found in Sprugnoli [14,15], on subgroups of the Riordan
group in Peart and Woan [7] and Shapiro [9], on some characterizations of Riordan matrices in Rogers [8] and Merlini et al.
[5], and on many interesting related results in Cheon et al. [2], He et al. [4], Nkwanta [6], Shapiro [10,11], and so forth.
More formally, let us consider the set of formal power series (f.p.s.) F = R[[t]]; the order of f (t) ∈ F , f (t) =

∑
∞

k=0 fkt
k,

is the minimal number r ∈ N such that fr 6= 0; F r is the set of formal power series of order r . It is known that F 0 is the
set of invertible f.p.s. and F 1 is the set of compositionally invertible f.p.s., that is, the f.p.s.’s f (t) for which the compositional
inverse f (t) exists such that f (f (t)) = f (f (t)) = t . Let d(t) ∈ F 0 and h(t) ∈ F 1; the pair (d(t), h(t)) defines the (proper)1
D = (dn,k)n,k∈N having

dn,k = [tn]d(t)h(t)k (1.1)

or, in otherwords, having d(t)h(t)k as the generating functionwhose coefficientsmake-up the entries of column k. Rogers [8]
introduced the concept of the A-sequence for Riordan arrays; Merlini et al. [5] introduced the related concept of the Z-
sequence and showed that these two concepts, together with the element d0,0, completely characterize a proper Riordan
array. This fact is the starting point of this paper, which aims to study Riordan arrays through their A- and Z-sequence
characterization, simply referred to as sequence characterization.

E-mail address: the@iwu.edu (T.-X. He).
1 The concept of a Riordan array canbe extended in variousways, as shown inCorsani et al. [3] so that the term ‘‘proper ’’ distinguishes the arrays belonging
to the Riordan group. In the present paper we will be interested only in this latter kind of Riordan arrays, so we usually understand the qualification proper
and use it only to stress that some property holds for proper, but may not hold for non-proper Riordan arrays.
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It is immediate to show that the usual row-by-column product of two Riordan arrays is also a Riordan array:
(d(t), h(t)) ∗ (f (t), g(t)) = (d(t)f (h(t)), g(h(t))). (1.2)

The Riordan array I = (1, t) is everywhere 0 except that it contains all 1’s on the main diagonal; it is easily seen that I acts
as an identity for this product, that is, (1, t) ∗ (d(t), h(t)) = (d(t), h(t)) ∗ (1, t) = (d(t), h(t)). From these facts, we deduce
a formula for the inverse Riordan array:

(d(t), h(t))−1 =
(

1

d(h(t))
, h(t)

)
(1.3)

where h(t) is the compositional inverse of h(t). In thisway, the setR of proper Riordan arrays is a group. Particular subgroups
ofR are important and have been considered in the literature:
• the setA of Appell arrays, that is the Riordan arrays D = (d(t), h(t)) for which h(t) = t; it is an invariant subgroup and
is isomorphic to the group of f.p.s.’s of order 0, with the usual product as group operation;
• the setL of Lagrange arrays, that is the Riordan arrays D = (d(t), h(t)) for which d(t) = 1; it is also called the associated
subgroup; it is isomorphic with the group of f.p.s.’s of order 1, with composition as group operation;
• the setB of Bell or renewal arrays, that is the Riordan arraysD = (d(t), h(t)) for which h(t) = td(t); it is the set originally
considered by Rogers in [8];
• the set C of Checkerboard arrays, that is, the Riordan arrays D = (d(t), h(t)) for which d(t) is an even function and h(t)
is an odd function.

Another important subgroup, called the hitting-time subgroup, introduced by Peart and Woan in [7], will be considered
in Section 4.
If (fk)k∈N is any sequence and f (t) =

∑
∞

k=0 fkt
k is its generating function, then for every Riordan array D = (d(t), h(t))

we have:
n∑
k=0

dn,kfk = [tn]d(t)f (h(t))

which relates Riordan arrays to combinatorial sums and sum inversion.
The paper has the following structure; in Section 2we reconsider the sequence characterization of Riordan arrays, proving

its main properties and its relation to the previously defined subgroups; in Section 3 we show how the sequence approach
characterizes the product of two Riordan arrays; we continue in Section 4 with the inversion. In Section 5 we show how the
characterization allows us to construct easily a Riordan array and finally, in Section 6, we apply the theory to the special
case of the Riordan arrays in the hitting-time subgroup.

2. The sequence characterization

In his paper [8], Rogers states that for every proper Riordan array D = (d(t), h(t)) there exists a sequence A = (ak)k∈N
such that for every n, k ∈ Nwe have:

dn+1,k+1 = a0dn,k + a1dn,k+1 + a2dn,k+2 + · · · =
∞∑
j=0

ajdn,k+j (2.4)

where the sum is actually finite since dn,k = 0, ∀k > n. A proof of this fact was given in Sprugnoli [16], and we can
reformulate it according to the modified definition of a Riordan array used in the present paper.

Theorem 2.1. An infinite lower triangular array D =
(
dn,k

)
n,k∈N is a Riordan array if and only if a sequence A = (a0 6=

0, a1, a2, . . .) exists such that for every n, k ∈ N relation (2.4) holds.

Proof. Let us suppose that D is the Riordan array (d(t), h(t)) and let us consider the Riordan array (d(t)h(t)/t, h(t)); we
define the Riordan array (A(t), B(t)) by the relation:

(A(t), B(t)) = (d(t), h(t))−1 ∗ (d(t)h(t)/t, h(t))

or:

(d(t), h(t)) ∗ (A(t), B(t)) = (d(t)h(t)/t, h(t)).

By performing the product (1.2), we find:

d(t)A(h(t)) = d(t)h(t)/t and B(h(t)) = h(t). (2.5)

The latter identity implies B(t) = t . Therefore we have (d(t), h(t)) ∗ (A(t), t) = (d(t)h(t)/t, h(t)). The element fn,k of the
left-hand member is

∑
∞

j=0 dn,jaj−k =
∑
∞

j=0 dn,k+jaj, if as usual we interpret aj−k as 0 when j < k. The same element in the
right-hand member is:

[tn]d(t)h(t)h(t)k/t = [tn+1]d(t)h(t)k+1 = dn+1,k+1.
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Table 1
The Fibonacci triangle F .

n k
0 1 2 3 4 5 6

0 1
1 1 1
2 2 2 1
3 3 5 3 1
4 5 12 9 4 1
5 8 31 26 14 5 1
6 13 85 77 46 20 6 1

By equating these two quantities, we have the identity (2.4). We remark that the first relation in (2.5) is equivalent to
tA(h(t)) = h(t).
For the converse, let us observe that (2.4) uniquely defines the array D when the elements of column 0,

(d0,0, d1,0, d2,0, . . .), are given. Let d(t) be the generating function of this column, A(t) the generating function of the
sequence A and define h(t) as the solution of the functional equation h(t) = tA(h(t)), which is uniquely determined because
of our hypothesis a0 6= 0. We can therefore consider the proper Riordan array D̂ = (d(t), h(t)); by the first part of the
theorem, D̂ satisfies relation (2.4), for every n, k ∈ N and therefore, by our previous observation, it must coincide with D.
This completes the proof. �

The sequence A = (ak)k∈N is the A-sequence of the Riordan array D = (d(t), h(t)) and it only depends on h(t). In fact, as
we have shown during the proof of the theorem, we have:

h(t) = tA(h(t)) or A(y) =
[
h(t)
t

∣∣∣∣ y = h(t)] = [ yt ∣∣∣ y = h(t)] (2.6)

and this uniquely determines Awhen h(t) is given and vice versa, h(t) is uniquely determined when A is given.

Example 2.1. Riordan arrays were introduced as a generalization of the Pascal triangle P . Actually, we have

P =
(
1
1− t

,
t
1− t

)
;

as can be easily checked Pn,k =
( n
k

)
, the A-sequence is (1, 1, 0, 0, . . .) and the Z-sequence is (1, 0, 0, 0, . . .). See, e.g., [14].

Example 2.2. Let us now consider a Riordan array F defined by the function dF (t) = (1 − t − t2)−1, so that column 0 is
composed by Fibonacci numbers, shifted by one place. Besides, the A-sequence is AF = (1, 1, 1, 1, . . .), that is, any element
Fn+1,k+1 is obtained by summing all the elements in the previous row, starting from column k. The Riordan array F is easily
constructed; we show its upper corner in Table 1. Formula (2.6) allows us to compute the function h(t) of this array:

hF (t) = tAF (hF (t)) =
t

1− hF (t)
;

this equation has two solutions, but we know that AF (0) 6= 0, so that we should consider the solution with the minus sign:

hF (t) =
1−
√
1− 4t
2

= t + t2 + 2t3 + 5t4 + 14t5 + 42t6 + 132t7 + · · ·

the well-known Catalan numbers. Therefore we have:

F =

(
1

1− t − t2
,
1−
√
1− 4t
2

)
.

This result can be easily checked on Table 1.

Although the two functions d(t) and A(t) completely characterize a proper Riordan array, we are mainly interested in
another type of characterization. Let us consider the following result:

Theorem 2.2. Let
(
dn,k

)
n,k∈N be any infinite, lower triangular array with dn,n 6= 0, ∀n ∈ N (in particular, let it be a proper

Riordan array); then a unique sequence Z = (zk)k∈N exists such that every element in column 0 can be expressed as a linear
combination of all the elements in the preceding row, i.e.:

dn+1,0 = z0dn,0 + z1dn,1 + z2dn,2 + · · · =
∞∑
j=0

zjdn,j. (2.7)

Proof. See Merlini et al. [5]. �
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The sequence Z is called the Z-sequence for the (Riordan) array; it characterizes column 0, except for the element d0,0.
Therefore, we can say that the triple (d0,0, A(t), Z(t)) completely characterizes a proper Riordan array. Usually, we denote
d0,0 as δ.
To see how the Z-sequence is obtained by starting with the usual definition of a Riordan array, let us prove the following

result, the proof of which can again be found in Merlini et al. [5].

Theorem 2.3. Let (d(t), h(t)) be a proper Riordan array and let Z(t) be the generating function of the corresponding Z-sequence.
We have:

d(t) =
δ

1− tZ(h(t))
or Z(y) =

[
d(t)− δ
td(t)

∣∣∣∣ t = h(y)] . (2.8)

Example 2.3. Clearly, in the Pascal triangle we have ZP = (1, 0, 0, 0, . . .) and so ZP(t) = 1. Formula (2.8) gives immediately
dP(t) = 1/(1−t). The Z-sequence for the Fibonacci triangle is a bitmore complicated. Ifwe set y = hF (t) = (1−

√
1− 4t)/2,

we can invert the function hF (t) and find t = y− y2. We now substitute this expression in:

dF (t)− δF
tdF (t)

=

(
1

1− t − t2
− 1

)
·
1− t − t2

t
= 1+ t

and find ZF (t) = 1+ t − t2; the Z-sequence is ZF = (1, 1,−1, 0, 0, . . .), which checks with Table 1.

We can characterize the main subgroups ofR by means of their A- and/or Z-sequences. In fact we have:

Theorem 2.4. Let us consider a Riordan array D = (d(t), h(t)). (1) D belongs to the Appell subgroup A if and only if its A-
sequence satisfies A(t) = 1. Besides, in that case, we also have:

Z(t) =
d(t)− δ
td(t)

.

(2) D belongs to the Lagrange subgroup L if and only if its Z-sequence satisfies Z(t) = 0 and δ = 1. (3) D belongs to the
checkerboard subgroup C if and only if the generating functions A(t) of its A-sequence is even and Z(t) of its Z-sequence is odd.

Proof. (1) By formula (2.6) the two relations h(t) = t and A(t) = 1 are equivalent. The expression for Z(t) is an immediate
consequence of formula (2.8). (2) By formula (2.8) the two relations Z(t) = 0 and d(t) = δ are equivalent. Therefore, we
have a Lagrange array if and only if δ = 1. (3) By formula (2.6) the oddness of h(t) of a checkerboard array is equivalent to
the evenness of A(t), and by formula (2.8) the evenness of d(t) is equivalent to the oddness of Z(t). �

For the Bell subgroup of renewal arrays we have a more elaborate result:

Theorem 2.5. Let D = (d(t), h(t)) be a Riordan array in which d(0) = h′(0) 6= 0. Then d(t) = h(t)/t if and only if:
A(y) = δ + yZ(y).

Proof. Let us assume that A(y) = δ + yZ(y) or Z(y) = (A(y)− δ)/y. By formula (2.8), we have:

d(t) =
δ

1− tZ(h(t))
=

δ

1− (tA(h(t))− δt)/h(t)
=
δh(t)
δt
=
h(t)
t
,

because tA(h(t)) = h(t) by formula (2.6). On the contrary, by the formula for Z(y), we obtain from the hypothesis
d(t) = h(t)/t:

δ + yZ(y) =
[
δ + y

(
1
t
−

δ

h(t)

)∣∣∣∣ y = h(t)]
=

[
δ +

h(t)
t
−
δh(t)
h(t)

∣∣∣∣ y = h(t)] = [
h(t)
t

∣∣∣∣ y = h(t)] = A(y)
and this completes the proof. �

The reader can check this result for the Pascal triangle, which is a renewal array.

3. The product of two Riordan arrays

According to Formula (1.2), the product of two Riordan arrays is a Riordan array; therefore, a natural question is: how
do the A- and Z-sequences of the product depend on the analogous sequences of the two factors? In order to answer this
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Table 2
The triangles Q = P ∗ F and G = F ∗ P .

n k n k
0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 0 1
1 2 1 1 2 1
2 5 4 1 2 5 4 1
3 13 14 6 1 3 12 14 6 1
4 34 48 27 8 1 4 31 46 27 8 1
5 89 166 111 44 10 1 5 85 150 108 44 10 1
6 233 587 443 210 65 12 1 6 248 493 410 206 65 12 1

question, let us consider two proper Riordan arrays D1 = (d1(t), h1(t)) and D2 = (d2(t), h2(t)) and their product:
D3 = D1 ∗ D2 = (d1(t)d2(h1(t)), h2(h1(t)))

so that:
d3(t) = d1(t)d2(h1(t)) and h3(t) = h2(h1(t)).

Example 3.1. Let us perform the product Q = P ∗ F ; we have:

dQ (t) = dP(t)dF (hP(t)) =
1
1− t

·

[
1

1− u− u2

∣∣∣∣ u = t
1− t

]
=

1− t
1− 3t + t2

corresponding to Fibonacci numbers in odd positions. Besides:

hQ (t) = hF (hP(t)) =

[
1−
√
1− 4u
2

∣∣∣∣∣ u = t
1− t

]
=
1
2

(
1−

√
1− 5t
1− t

)
.

The product is not commutative, so we can also define G = F ∗ P , for which we find:

dG(t) = dF (t)dP(hF (t)) =
1

1− t − t2

[
1
1− u

∣∣∣∣ u = 1−√1− 4t2

]
=
1−
√
1− 4t

2t(1− t − t2)

= 1+ 2t + 5t2 + 12t3 + 31t4 + 85t5 + 248t6 + · · · ;

and

hG(t) = hP(hF (t)) =

[
u
1− u

∣∣∣∣ u = 1−√1− 4t2

]
=
1− 2t −

√
1− 4t

2t

= t + 2t2 + 5t3 + 14t4 + 42t5 + 132t6 + · · ·

another version of the Catalan numbers. The upper part of these two triangles are given in Table 2. The A- and Z-sequences
of these triangles can be computed by means of the formulas in the previous section; however, we will now find them in a
more direct way by using the corresponding sequences of P and F .

In general, we know that h(t) = tA(h(t)) and consequently h(t) = t/A(t), where h(t) represents the compositional
inverse of h(t).

Lemma 3.1. We have

h3(t) = h1(h2(t)).

Proof. Starting with the definition h3(t) = h2(h1(t)) we successively get h2(h3(t)) = h1(t) and h1(h2(h3(t))) = t . If we
now set y = h3(t) or t = h3(y) and change variable, we immediately get our assertion. �

We can express h3(t) in terms of A-sequences:

Theorem 3.2. We have

h3(y) =
y
A2(y)

/
A1

(
y
A2(y)

)
.

Proof. We apply the basic relation between A-sequences and the compositional inverse of h(t):

h3(y) = h1(h2(y)) = h1

(
y
A2(y)

)
=

[
z
A1(z)

∣∣∣∣ z = y
A2(y)

]
=

y
A2(y)

/
A1

(
y
A2(y)

)
as desired. �
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We can now prove the formula for the A-sequence of the product of two Riordan arrays:

Theorem 3.3. The A-sequence A3(t) is given by:

A3(t) = A2(t)A1

(
t
A2(t)

)
.

Proof. By the previous theorem:

h3(y) =
y
A3(y)

=
y
A2(y)

/
A1

(
y
A2(y)

)
.

An easy simplification yields:

A3(y) = A2(y)A1

(
y
A2(y)

)
from which we obtain the desired result by changing the variable. �

Example 3.2. A simple example is given by the Pascal triangle P , for which AP(t) = 1+ t; the A-sequence of P2 is:

AP2(t) = (1+ t)
[
1+ u | u =

t
1+ t

]
= (1+ t)

1+ 2t
1+ t

= 1+ 2t.

For the Riordan array Q we have:

AQ (t) =
1
1− t

[1+ u | u = t(1− t)] =
1+ t − t2

1− t
= 1+ 2t + t2 + t3 + t4 + t5 + · · · .

Analogously, for the Riordan array Gwe find:

AG(t) = (1+ t)
[
1
1− u

∣∣∣∣ u = t
1+ t

]
= (1+ t)2

and therefore AG = (1, 2, 1, 0, 0, . . .). All these results can be easily checked.

A deeper result concerns the Z-function; here we use the basic relation (2.8), valid for every Riordan array:

Theorem 3.4. The Z-sequence Z3 of the product D1 ∗ D2 is given by:

Z3(t) =
(
1−

t
A2(t)

Z2(t)
)
Z1

(
t
A2(t)

)
+ A1

(
t
A2(t)

)
Z2(t).

Proof. For d3(t)we have by definition:

d3(t) = d1(t)d2(h1(t)) =
δ1δ2

1− tZ3(h2(h1(t)))

and we can substitute to d1(t) and d2(t) their expressions in terms of Z1(t) and Z2(t):

δ1

1− tZ1(h1(t))
·

δ2

1− h1(t)Z2(h2(h1(t)))
=

δ1δ2

1− tZ3(h2(h1(t)))
.

By simplifying, this expression is equivalent to:

1− tZ3(h2(h1(t))) = (1− tZ1(h1(t))) · (1− h1(t)Z2(h2(h1(t)))).

Let us now set y = h2(h1(t)) or t = h1(h2(y)) so that:

Z1(h1(t)) = Z1(h2(h2(h1(t)))) = Z1(h2(y));

in this way, we find

1− h1(h2(y))Z3(y) = (1− h1(h2(y))Z1(h2(y))) · (1− h2(y)Z2(y))
1− h3(y)Z3(y) = (1− h3(y)Z1(h2(y))) · (1− h2(y)Z2(y)).
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Table 3
The inverse triangles P−1 and F−1 .

n k n k
0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 0 1
1 −1 1 1 −1 1
2 1 −2 1 2 0 −2 1
3 −1 3 −3 1 3 2 1 −3 1
4 1 −4 6 −4 1 4 −1 2 3 −4 1
5 −1 5 −10 10 −5 1 5 0 −3 1 6 −5 1
6 1 −6 15 −20 15 −6 1 6 0 1 −5 −2 10 −6 1

This expression only contains the compositional inverses of h1(t), h2(t) and h3(t), and we can transform them into A1(y),
A2(y), A3(y):

Z3(y) =
1

h3(y)
−

1

h3(y)

(
1− h3(y)Z1(h2(y))

)
·
(
1− h2(y)Z2(y)

)
Z3(y) =

A3(y)
y
−
A3(y)
y

(
1−

y
A3(y)

Z1

(
y
A2(y)

))
·

(
1−

y
A2(y)

Z2(y)
)
.

After some simplifications and by using the result of the previous theorem, we eventually arrive to the formula in the
theorem statement. �

Example 3.3. Let us apply the previous theorem to the Riordan array Q :

ZQ (t) = (1− t(1− t)(1+ t − t2))+ [1+ u | u = t(1− t)] (1+ t − t2)

= (1− t + 2t3 − t4)+ (1+ 2t − t2 − 2t3 + t4) = 2+ t − t2,

which gives ZQ = (2, 1,−1, 0, 0, . . .). For the array G:

ZG(t) =
(
1−

t
1+ t

)[
1+ u− u2 | u =

t
1+ t

]
+

[
1
1− u

∣∣∣∣ u = t
1+ t

]
= 1+ t +

1+ 3t + t2

(1+ t)3
= 2+ t − 2t2 + 5t3 − 9t4 + 14t5 − 20t6 + 27t7 − · · · .

We can find a closed form for these coefficients:

[tn]
1+ 3t + t2

(1+ t)3
=

(
−3
n

)
+ 3

(
−3
n− 1

)
+

(
−3
n− 2

)
= (−1)n

(
n+ 2
2

)
+ 3(−1)n−1

(
n+ 1
2

)
+ (−1)n−2

(n
2

)
= (−1)n+1

n2 + n− 2
2

,

and consequently:

ZG,n = δ0,n + δ1,n + (−1)n+1
n2 + n− 2

2
,

where, in this context, δn,k denotes the Kronecker δ. Finally, the reader can verify that ZP2 = (2, 0, 0, . . .).

4. The inverse of a Riordan array

Formula (1.3) allows us to find the inverse of any Riordan array given by the pair D = (d(t), h(t)), provided we are able
to find the compositional inverse h(t) of h(t).

Example 4.1. For the Pascal triangle, if we set y = t/(1− t), we find h(y) = y/(1+ y); therefore we have:

P−1 =
(
1
1+ t

,
t
1+ t

)
the generic element of which is (−1)n−k

( n
k

)
. In the left part of Table 3 we give the upper part of the array P−1.

For the Riordan array F−1 we begin by setting y = hF (t), that is

y =
1−
√
1− 4t
2

or h(y) = t = y− y2.
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Besides:
1

d(h(t))
= 1− (y− y2)− (y− y2)2 = 1− y+ 2y3 − y4

and we conclude:

F−1 =
(
1− t + 2t3 − t4, t − t2

)
.

The initial part of this triangle is shown in Table 3.

The sequence characterization of the inverse of a Riordan array D = (d(t), h(t)) can be found using a pattern similar to
the one used in the previous section. Let A(t) and Z(t) be the generating functions of the A- and Z-sequences of D and let
us denote by d∗(t), h∗(t), A∗(t) and Z∗(t) the corresponding functions for the inverse D−1. We immediately observe that, by
Formula (1.3), h∗(t) = h(t). Now we have:

Theorem 4.1. The A-sequence of the inverse Riordan array D−1 is:

A∗(y) =
[
1
A(t)

∣∣∣∣ y = t
A(t)

]
=

[
y
t

∣∣∣ y = t
A(t)

]
.

Proof. By Formula (2.6) we have h∗(t) = tA∗(h∗(t)) and, by the previous observation, h∗(t) = h(t) = t/A(t); therefore
we find

A∗(h(t)) =
h(t)
t
=

1
A(t)

.

Now, the formula in the assertion follows by setting y = h(t). �

For the Z-sequence we have a bit more complex derivation:

Theorem 4.2. The Z-sequence of the inverse Riordan array D−1 is:

Z∗(y) =
[
δ − d(y)
δt

∣∣∣∣ y = h(t)(= t
A(t)

)]
=

[
−yZ(t)

t(1− yZ(t))

∣∣∣∣ y = t
A(t)

]
.

Proof. The generating function d∗(t) has two definitions, one given by Formula (1.3), the other by Formula (2.8), that is:

d∗(t) =
δ∗

1− tZ∗(h∗(t))
=

1

d(h(t))

from which we get:

δ∗d(h(t)) = 1− tZ∗(h(t));

by substituting δ∗ = 1/δ we obtain the first formula in the assertion. If we now substitute t = h(t) in Formula (2.8), we get:

d(h(t)) =
δ

1− h(t)Z(t)

and by substituting this expression in the first formula in the assertion, we immediately obtain the second formula of Z∗ in
terms of A(t). �

Example 4.2. The Pascal triangle is a very simple example; in fact we have:

AP−1(y) =
[
1
1+ t

∣∣∣∣ y = t
1+ t

]
= 1− y.

ZP−1(y) =
[
−y

t(1− y)

∣∣∣∣ y = t
1+ t

]
=
−y(1− y)
y(1− y)

= −1;

these values can be checked by the left part of Table 3.
For what concerns the Fibonacci triangle, we find:

AF−1(y) =
[
1− t | y = t − t2

]
=

[
1− t | t =

1−
√
1− 4y
2

]
AF−1(t) =

1+
√
1− 4t
2

= 1− t − t2 − 2t3 − 5t4 − 14t5 − 42t6 − · · ·
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another version of the Catalan numbers. Besides we have:

ZF−1(y) =
[
−y(1+ t − t2)

t(1− y(1+ t − t2))

∣∣∣∣ y = t − t2] ;
the computation is rather complex, but changing the variable we eventually find:

ZF−1(t) = −
(1+ t)(1+

√
1− 4t)

2(1− t − t2)
= −1− t + 2t3 + 9t4 + 30t5 + 95t6 + · · · .

If g is an element of a group G, then the smallest positive integer n such that gn = e, the identity of the group, if it exists,
is called the order of g . If there is no such integer, then g is said to have infinite order. It is well known (see [10]) that if
we restrict all entries of a Riordan array to be integers, then any element of finite order in the Riordan group must have
order 1 or 2, and each element of order 2 generates a subgroup of order 2. Using Theorems 4.1 and 4.2, we can find the
characterization of Riordan arrays of order 2:

Theorem 4.3. The A- and Z-sequences of a Riordan array of order 2 satisfy:

A(t) =
t
h(t)

and Z(t) =
δ − d(t)
h(t)

.

Proof. If (d(t), h(t)) is a Riordan array of order 2, then (d(t), h(t))−1 = (d(t), h(t)). It follows from Theorem 4.1 that A = A∗
and

A(h(t)) = A∗(h(t)) =
h(t)
t
.

Substituting t = h(t) into the above equation yields A(t) = t/h(t). Similarly, from the first formula in Theorem4.2, we have:

Z(h(t)) = Z∗(h(t)) =
δ − d(h(t))

t
;

by substituting t = h(t)we obtain the expression for Z(t). �

Example 4.3. The Riordan array (1,−t) has order 2 and is characterized by A(t) = −1 and Z(t) = 0. Another example is
(1/(1− t), t/(t − 1)), for which we have A(t) = t − 1 and Z(t) = 1.

In [2], an element of order 2 in the Riordan group is called a Riordan involution. Some structures of a Riordan involution
were presented in [2].

5. The construction of Riordan arrays

One of the most important motivation for considering the sequence characterization of Riordan arrays is their
construction. The classical definition D = (d(t), h(t)) implies that we must compute the series expansion of the column
generating functions d(t)h(t)k which, although obvious (especially using any Computer Algebra System), requires a large
amount of operations. If we wish to construct the first n + 1 rows of D, we should create column 0 and then perform the
following operations for every 0 < k ≤ m ≤ n:

dm,k = [tm]d(t)h(t)k =
m∑
j=0

[t j]d(t)h(t)k−1[tm−j]h(t) =
m∑
j=0

dj,k−1hm−j =
m−1∑
j=k−1

dj,k−1hm−j.

A more formal approach is given by the following algorithm, performing the vertical construction of a Riordan array:

Proc VCRA (d(t), h(t), n);
expand d(t) = d0 + d1t + d2t2 + · · · + dntn;
expand h(t) = h1t + h2t2 + · · · + hntn;
construct column 0: d0,0 = d0, d1,0 = d1, . . . , dn,0 = dn;
for k from 1 to n do

form from k to n do
dm,k =

∑m−1
j=k−1 dj,k−1hm−j end do end do end proc.

If we think of the Pascal triangle, we realize that this construction is rather annoying. Instead, by using the A- and
Z-sequences we obtain the traditional, straight-forward method, described by the following algorithm for the horizontal
construction of a Riordan array:
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Proc HCRA (A(t), Z(t), δ, n);
expand A(t) = a0 + a1t + a2t2 + · · · + antn;
expand Z(t) = z0 + z1t + z2t2 + · · · + zntn;
set: d0,0 = δ;
form from 1 to n do
dm,0 =

∑m
j=0 zjdm−1,j;

for k from 1 tom do
dm,k =

∑m
j=k−1 aj−k+1dm−1,j end do end do end proc.

For the Pascal triangle, the 0th element of every row is 1, and every other element is computed by the A-sequence
(1, 1, 0, 0, . . .) corresponding to the basic recurrence of binomial coefficients. This was already noted in Example 2.1, and
another simple case is discussed in Example 2.2.
In the Pascal triangle the Z-sequence is particularly simple, but this is not always the case. Sometimes it is more favorable

another characterization of Riordan arrays:

Theorem 5.1. A Riordan array D = (d(t), h(t)) is completely characterized by the function d(t) and by its A-sequence.
Proof. By Formula (2.6), the A-sequence determines the function h(t). �

Both the theory and the constructions relative to this characterizations are rather obvious from what we have already
shown, and so we leave them to the interested reader as a simple exercise.
An important point relative to the construction of a Riordan array, is our ability in finding the compositional inverse of a

delta series, that is a formal power series h(t), having h(0) = 0 and h′(0) 6= 0. In our examples, we set y = h(t) and solved
this equation in t = t(y), but this is not always feasible. In the simple case that h(t) is a polynomial of third degree, technical
problems can arise, and if the degree is greater than 4, the solution (in terms of radicals) can become at all impossible. In
these cases, we can use the Lagrange Inversion Formula (LIF) to find out the coefficients of h(t). In fact, the LIF gives:

hn =
1
n
[tn−1]

(
t
h(t)

)n
and we can compute the coefficients of the A-sequence (or vice versa):

Theorem 5.2. Let D = (d(t), h(t)) be a Riordan array; then the coefficients of its A-sequence are given by:

an =
1
n
[tn−1]

h′
∗
(t)

h∗(t)n
and conversely hn =

1
n
[tn−1]A(t)n,

where h∗(t) = h(t)/t.

Proof. The LIF can assume the following form:

[tn]F(w(t)) =
1
n
[tn−1]F ′(t)φ(t)n

ifw = tφ(w). By Formula (2.6) we can write:

A(y) =
[
h(t)
t

∣∣∣∣ y = th∗(t)] = [h∗(t) ∣∣∣∣t = y 1
h∗(t)

]
.

By the previous formula we have:

an =
1
n
[tn−1]h′

∗
(t)
(
1
h∗(t)

)n
.

For the converse, if we setw = h(t) in Formula (2.6), we obtainw = tA(w) and again, by the previous form of the LIF with
F(y) = y, we get:

wn = hn =
1
n
[tn−1]A(t)n

as desired. �

From this theorem, it follows h1 = a0, h2 = a0a1, h3 = a20a2 + a0a
2
1, and so on.

6. The hitting-time subgroup

Peart and Woan consider in [7] monic Riordan arrays D = (d(t), h(t))with the additional property:

d(t) =
th′(t)
h(t)
; (6.9)
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Table 4
The Catalan and the Motzkin triangles.

n k n k
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 0 1
1 1 1 1 1 1
2 3 2 1 2 3 2 1
3 10 6 3 1 3 7 6 3 1
4 35 20 10 4 1 4 19 16 10 4 1
5 126 70 35 15 5 1 5 51 45 30 15 5 1
6 462 252 126 56 21 6 1 6 141 126 90 50 21 6 1
7 1716 924 462 210 84 28 7 1 7 393 357 266 161 77 28 7 1

the set of all these arrays is denoted byH and we can prove the well-known fact:

Theorem 6.1 (Peart and Woan). The set H with the usual Riordan product (1.2) is a subgroup of R.

The group (H, ∗) is called the hitting-time subgroup.

Example 6.1. The Pascal triangle P belongs to the hitting-time subgroup; in fact h(t) = t/(1− t) and:

d(t) =
th′(t)
h(t)

=
t

(1− t)2
·
1− t
t
=

1
1− t

.

In the same way, we can verify that the Catalan triangle:

C =

(
1
2

(
1+

1
√
1− 4t

)
,
1−
√
1− 4t
2

)
and the Motzkin triangle:

M =

(
1

√
1− 2t − 3t2

,
1− t −

√
1− 2t − 3t2

2t

)
belong toH . The upper part of these triangles is shown in Table 4.

As observed by one referee, the Riordan array on the left of Table 4 counts vertices by out-degree in ordered (planar)
trees while the Riordan array on the right is the right part of the trinomial coefficient triangle. The generating function of
the central binomial coefficients 1+ t+3t2+7t3+19t4+· · · = 1/

√
1− 2t − 3t2 was discovered by Euler (see Sloane [13]

or also Barcucci et al. [1]).
Let us consider the Riordan arrays D = (d(t), h(t)) in H , in which h(t) has integer coefficients. Almost all the Riordan

arrays studied in Combinatorics have this property, so they are rather frequent. If we callH∗ this set, we have the following
divisibility property:

Theorem 6.2. Let D = (dn,k)n,k∈N be any Riordan array inH∗, then n divides kdn,k.

Proof. Let us consider the quantity kdn,k:

kdn,k = k[tn]
th′(t)
h(t)

· h(t)k = k[tn−1]h′(t)h(t)k−1 = [tn−1]
d
dt
h(t)k = n[tn]h(t)k

and by our hypothesis [tn]h(t)k is an integer number. �

In particular, when n is a prime number, for 0 < k < n, n divides dn,k; this result can be checked on the two arrays in
Table 4; other examples can be found in [7]. By using the A- and Z-sequences, we can give a new interesting characterization
of the hitting-time subgroup:

Theorem 6.3. A monic Riordan array D = (d(t), h(t)) belongs to the hitting-time subgroup if and only if Z(t) = A′(t), where
A(t) and Z(t) are the generating functions of its A- and Z-sequences.

Proof. First of all, let us observe that by formula (2.6) A(t) = t/h(t) so that by differentiating:

A′(t) =
h(t)− th

′
(t)

h(t)2
.
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Let us suppose that D ∈ H , so that d(t) = th′(t)/h(t); by formula (2.8) we have:

Z(y) =
[
1
t
−

1
td(t)

∣∣∣∣ t = h(y)] = 1

h(y)
−

1

h(y)d(h(y))
=

1

h(y)
−

h(h(y))

h(y)2h′(h(y))

=
1

h(y)
−
yh
′
(y)

h(y)2
=
h(y)− yh

′
(y)

h(y)2
= A′(y).

For the converse, we start with Eq. (2.8) (left), in the form valid when Z(t) = A′(t):

d(t) =
1

1− tA′(h(t))

and get:

A′(h(t)) =

[
h(y)− yh

′
(y)

h(y)2

∣∣∣∣∣ y = h(t)
]
=
h(h(t))− h(t)h

′
(h(t))

h(h(t))2
=
t − h(t)/h′(t)

t2
.

We conclude:

d(t) =
t

t − t + h(t)/h′(t)
=
th′(t)
h(t)

showing that D ∈ H . �

Example 6.2. As we have already seen, in the Pascal triangle we have AP(t) = 1 + t and ZP(t) = 1 and therefore
ZP(t) = A′P(t), as expected. For the Catalan triangle C we first solve in t the Eq. (2.6):

y =
1−
√
1− 4t
2

that is t = h(y) = y− y2

and this implies:

AC (y) =
y

y− y2
=

1
1− y

.

Now, we apply Eq. (2.8) to find the Z-sequence:

ZC (y) =
1

h(y)
−

1

h(y)d(h(y))
=

1
y− y2

−
1

(y− y2)(1− y)/(1− 2y)
=

y
y(1− y)2

=
1

(1− y)2

and this proves that ZC (t) = A′C (t). Finally, for theMotzkin triangle, we have h(y) = y/(1+y+y
2), and so AM(t) = 1+t+t2.

By some computations, formula (2.8) gives ZM(t) = 1+ 2t , and so the expected relation ZM(t) = A′M(t) is verified.

Example 6.3. A vast literature exists on lattice walks; in particular, the following model has received much attention. We
consider lattice paths starting from the origin and composed by three kinds of step:

1. up steps going from (x, y) to (x+ 1, y+ 1);
2. horizontal steps going from (x, y) to (x+ 1, y);
3. down steps going from (x, y) to (x+ 1, y− 1).

These steps can be colored, so that up steps can be of ‘a’ different colors, horizontal steps can be of ‘b’ different colors and
down steps of ‘c ’ different colors. We assume that a and c are different from 0, while b can be 0. We wish to count the paths
composed of n steps, arriving at the point (n, k) and never going below the x-axis; let us denote by dn,k this number. If k 6= 0
it is immediate to observe that:

dn,k = adn−1,k−1 + bdn−1,k + cdn−1,k+1;

in fact we can arrive to (n, k) from (n − 1, k − 1) with a up steps, or from (n − 1, k) with b horizontal steps, or from
(n − 1, k + 1) with c down steps. This implies that the infinite triangle D = (dn,k)n,k∈N is a Riordan array with A-sequence
(a, b, c, 0, 0, . . .). It will be completely defined by defining the behavior of the paths when they arrive at a point on the x-
axis; in fact, the condition that the path cannot go below that axis imposes to adopt another rule for going on (this condition
is called privileged access for a reason explained in [5], but not relevant here). If we choose to define Z(t) = A′(t) = b+ 2ct
we obtain a Riordan array in the hitting-time subgroup. We simply observe that, when a = c , this condition is equivalent
to imagine that the array continues on the left, with negative values of k, as happens to the array of trinomial coefficients
(see [1]). The Motzkin triangle of the previous example is the case a = b = c = 1. The Pascal triangle corresponds to
a = b = 1 and c = 0.
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By using the theory developed in this paper, it is easily shown that the Riordan array is:

D =

(
1√

1− 2bt + (b2 − 4ac)t2
,
1− bt −

√
1− 2bt + (b2 − 4ac)t2

2ct

)
and the upper part of the array is:

n k
0 1 2 3 4 5

0 1
1 b a
2 b2 + 2ac 2ba a2

3 b3 + 6abc 3a(b2 + ca) 3a2b a3

4 b4 + 12ab2c + 6a2c2 4ab(b2 + 3ac) 2a2(3b2+2ac) 4a3b a4

5 b5 + 20ab3c + 30a2bc2 5a(b4 + 6ab2c + 2a2c2) 10a2b(b2 + 2ac) 5a3(2b2 + ac) 5a4b a5
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