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Here, we present a connection between a sequence of polynomials generated by a linear recurrence
relation of order 2 and sequences of the generalized Gegenbauer-Humbert polynomials. Many
new and known transfer formulas between non-Gegenbauer-Humbert polynomials and gener-
alized Gegenbauer-Humbert polynomials are given. The applications of the relationship to the
construction of identities of polynomial sequences defined by linear recurrence relations are also
discussed.

1. Introduction

Many number and polynomial sequences can be defined, characterized, evaluated, and clas-
sified by linear recurrence relations with certain orders. A polynomial sequence {an(x)} is
called a sequence of order 2 if it satisfies the linear recurrence relation of order 2

an(x) = p(x)an−1 + q(x)an−2(x), n ≥ 2, (1.1)

for some coefficient p(x)/≡ 0 and q(x)/≡ 0 and initial conditions a0(x) and a1(x). To construct
an explicit formula of its general term, onemay use a generating function, characteristic equa-
tion, or a matrix method (see Comtet [1], Hsu [2], Strang [3], Wilf [4], etc.). In [5], the authors
presented a new method to construct an explicit formula of {an(x)} generated by (1.1). For
the sake of the reader’s convenience, we cite this result as follows.
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Proposition 1.1. Let {an(x)} be a sequence of order 2 satisfying the linear recurrence relation (1.1),
then

an(x) =

⎧
⎪⎨

⎪⎩

(
a1(x) − β(x)a0(x)

α(x) − β(x)
)

αn(x) −
(
a1(x) − α(x)a0(x)

α(x) − β(x)
)

βn(x) if α(x)/= β(x),

na1(x)αn−1(x) − (n − 1)a0(x)αn(x) if α(x) = β(x),
(1.2)

where α(x) and β(x) are roots of t2 − p(x)t − q(x) = 0, namely,

α(x) =
1
2

(

p(x) +
√

p2(x) + 4q(x)
)

, β(x) =
1
2

(

p(x) −
√

p2(x) + 4q(x)
)

. (1.3)

In [6], Aharonov et al. have proved that the solution of any sequence of numbers that
satisfies a recurrence relation of order 2 with constant coefficients and initial conditions a0 = 0
and a1 = 1, called the primary solution, can be expressed in terms of Chebyshev polynomial
values. For instance, the authors show Fn = i−nUn(i/2) and Ln = 2i−nTn(i/2), where Fn and
Ln are, respectively, Fibonacci numbers and Lucas numbers, and Tn(x) and Un(x) are the
Chebyshev polynomials of the first kind and the second kind, respectively. Some identities
drawn from those relations were given by Beardon in [7]. Marr and Vineyard in [8] use the
relationship to establish explicit expression of five-diagonal Toeplitz determinants. In [5], the
authors presented a new method to construct an explicit formula of {an(x)} generated by
(1.1). Inspired with those results, in [9], The authors and Weng established a relationship
between the number sequences defined by recurrence relation (1.1) and the generalized
Gegenbauer-Humbert polynomial value sequences. The results are suitable for all such
number sequences defined by (1.1)with arbitrary initial conditions a0 and a1, which includes
the results in [6, 7] as the special cases. Many new and known formulas of Fibonacci, Lucas,
Pell, and Jacobsthal numbers in terms of the generalized Gegenbauer-Humbert polynomial
values were presented in [9]. In this paper, we will give an alternative form of (1.2) and
find a relationship between all polynomial sequences defined by (1.1) and the generalized
Gegenbauer-Humbert polynomial sequences.

A sequence of the generalized Gegenbauer-Humbert polynomials {Pλ,y,Cn (x)}n≥0 is
defined by the expansion (see, e.g., [1], Gould [10], and the authors with Hsu [11])

Φ(t) ≡
(
C − 2xt + yt2

)−λ
=
∑

n≥0
P
λ,y,C
n (x)tn, (1.4)

where λ > 0, y and C/= 0 are real numbers. As special cases of (1.4), we consider Pλ,y,Cn (x) as
follows (see [11]):

P 1,1,1
n (x) = Un(x), Chebyshev polynomial of the second kind,

P 1/2,1,1
n (x) = ψn(x), Legendre polynomial,

P 1,−1,1
n (x) = Pn+1(x), Pell polynomial,

P 1,−1,1
n (x/2) = Fn+1(x), Fibonacci polynomial,

P 1,1,1
n ((x/2) + 1) = Bn(x), Morgan-Voyc polynomial, [12] by Koshy,
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P 1,2,1
n (x/2) = Φn+1(x), Fermat polynomial of the first kind,

P 1,2a,2
n (x) = Dn(x, a), Dickson polynomial of the second kind,

a/= 0 (see, e.g., [13]) by Lidl et al.,

where a is a real parameter, and Fn = Fn(1) is the Fibonacci number. In particular, if y = C = 1,
the corresponding polynomials are called Gegenbauer polynomials (see [1]). More results on
the Gegenbauer-type polynomials can be found in Hsu [14] and Hsu and Shiue [15], and so
forth, it is interesting that for each generalized Gegenbauer-Humbert polynomial sequence
there exists a nongeneralized Gegenbauer-Humbert polynomial sequence, for instance,
corresponding to the Chebyshev polynomials of the second kind, Pell polynomials, Fibonacci
polynomials, Fermat polynomials of the first kind, and the Dickson polynomials of the second
kind, we have the Chebyshev polynomials of the first kind, Pell-Lucas polynomials (see [16]
by Horadam and Mahon), Lucas polynomials, the Fermat polynomials of the second kind
(see [17] by Horadam), and the Dickson polynomials of the first kind, respectively.

Similarly, for a class of the generalized Gegenbauer-Humbert polynomial sequences
defined by

P
λ,y,C
n (x) = 2x

λ + n − 1
Cn

P
λ,y,C

n−1 (x) − y2λ + n − 2
Cn

P
λ,y,C

n−2 (x), (1.5)

for all n ≥ 2 with initial conditions

P
λ,y,C

0 (x) = Φ(0) = C−λ,

P
λ,y,C

1 (x) = Φ′(0) = 2λxC−λ−1,
(1.6)

the following theorem is obtained.

Theorem 1.2 (see [5]). Let x /= ± √Cy. The generalized Gegenbauer-Humbert polynomials
{P 1,y,C

n (x)}n≥0 defined by expansion (1.4) can be expressed as

P
1,y,C
n (x) = C−n−2

(
x +
√

x2 − Cy
)n+1

−
(
x −
√

x2 − Cy
)n+1

2
√

x2 − Cy
. (1.7)

In next section, we will use an alternative form of (1.2) to establish a relationship
between the polynomial sequences defined by recurrence relation (1.1) and the generalized
Gegenbauer-Humbert polynomial sequences defined by (1.5). Many new and known
formulas of polynomials in terms of the generalized Gegenbauer-Humbert polynomials and
applications of the established relationship to the construction of identities of polynomial
sequences will be presented in Section 3.
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2. Main Results

Wenowmodify the explicit formula of the polynomial sequences defined by linear recurrence
relation (1.2) of order 2. If α(x)/= β(x), the first formula in (1.2) can be written as

an(x) =
a1(x)

(
(α(x))n − (β(x))n) − a0(x)α(x)β(x)

(
(α(x))n−1 − (β(x))n−1

)

α(x) − β(x) . (2.1)

Noting that −α(x)β(x) = α(x)(α(x) − p(x)) = β(x)(β(x) − p(x)), we may further write the
above expression of an(x) as

an(x) =
1

α(x) − β(x)
[
a1(x)

(
(α(x))n − (β(x))n) + a0(x)α(x)

(
α(x) − p(x))

×(α(x))n−1 − a0(x)β(x)
(
β(x) − p(x))(β(x))n−1

]

=
a0(x)

(
(α(x))n+1 − (β(x))n+1

)
+
(
a1(x) − a0(x)p(x)

)(
(α(x))n − (β(x))n)

α(x) − β(x) .

(2.2)

Denote r(x) = x +
√

x2 − Cy and s(x) = x −
√

x2 − Cy. To find a transfer formula
between expressions (1.7) and (2.2), we set

α(x) :=
r(x)
k(x)

, β(x) :=
s(x)
k(x)

, (2.3)

for a nonzero real or complex-valued function k(x), which are two roots of t2−p(x)t−q(x) = 0.
Thus, adding and multiplying two equations of (2.3) side by side, we obtain

α(x) + β(x) = p(x) =
2x
k(x)

,

α(x)β(x) = −q(x) = Cy

(k(x))2
.

(2.4)

The above system implies

k(x) = ±
√

Cy

−q(x) , (2.5)

and at

x =
p(x)k(x)

2
= ±p(x)

2

√
Cy

−q(x) , (2.6)
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r(x) and s(x) give expressions of α(x) and β(x) as

α(x) =
r
(
±(p(x)/2)√Cy/ − q(x)

)

±√Cy/ − q(x)
, β(x) =

s
(
±(p(x)/2)√Cy/ − q(x)

)

±√Cy/ − q(x)
. (2.7)

It is clear that α(x) and β(x) satisfy α(x) + β(x) = p(x) and α(x)β(x) = −q(x).
We first consider the case of k(x) =

√−Cy/q(x) . Substituting the corresponding (2.7)
with positive sign into (2.2), we have

an(x) =
a0(x)

(
rn+1(x) − sn+1(x)) + k(x)(a1(x) − a0(x)p(x)

)
(rn(x) − sn(x))

kn(x)(r(x) − s(x))

= a0(x)Cn+2

⎛

⎝

√
−q(x)
Cy

⎞

⎠

n

P
1,y,C
n

(
k(x)p(x)

2

)

+
(
a1(x) − a0(x)p(x)

)
Cn+1

⎛

⎝

√
−q(x)
Cy

⎞

⎠

n−1

P
1,y,C
n−1

(
k(x)p(x)

2

)

= a0(x)Cn+2

⎛

⎝

√
−q(x)
Cy

⎞

⎠

n

P
1,y,C
n

(
p(x)
2

√
Cy

−q(x)

)

+
(
a1(x) − a0(x)p(x)

)
Cn+1

⎛

⎝

√
−q(X)
Cy

⎞

⎠

n−1

P
1,y,C
n−1

(
p(x)
2

√
Cy

−q(x)

)

.

(2.8)

Similarly, for k(x) = −√−Cy/q(x), we have

an(x) = a0(x)Cn+2

⎛

⎝−
√

−q(x)
Cy

⎞

⎠

n

P
1,y,C
n

(

−p(x)
2

√
Cy

−q(x)

)

+
(
a1(x) − a0(x)p(x)

)
Cn+1

⎛

⎝−
√

−q(x)
Cy

⎞

⎠

n−1

P
1,y,C
n−1

(

−p(x)
2

√
Cy

−q(x)

)

.

(2.9)

Therefore, we obtain our main result.
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Theorem 2.1. Let sequence {an(x)}n≥0 be defined by an(x) = p(x)an−1(x) + q(x)an−2(x) (n ≥ 2)
with initial conditions a0(x) and a1(x), then an(x) can be presented as

an(x) = a0(x)Cn+2

⎛

⎝±
√

−q(x)
Cy

⎞

⎠

n

P
1,y,C
n

(

±p(x)
2

√
Cy

−q(x)

)

+
(
a1(x) − a0(x)p(x)

)
Cn+1

⎛

⎝±
√

−q(X)
Cy

⎞

⎠

n−1

P
1,y,C
n−1

(

±p(x)
2

√
Cy

−q(x)

)

,

(2.10)

where {P 1,y,c
n } is the sequence of any generalized Gegenbauer-Humbert polynomials with λ = 1. In

particular, an(x) can be expressed in terms of {P 1,1,1
n = Un}, the sequence of the Chebyshev poly-

nomials of the second kind,

an(x) = a0(x)
(

±
√

−q(x)
)n

Un

(

± p(x)

2
√−q(x)

)

+
(
a1(x) − a0(x)p(x)

)
(

±
√

−q(x)
)n−1

Un−1

(

± p(x)

2
√−q(x)

)

,

(2.11)

which is a special case of (2.10) for (y,C) = (1, 1).

Corollary 2.2. For (y,C) = (−1, 1), (1, 1), (2, 1), and (2a, 2) (a/= 0), respectively, from (2.10), one
has transfer formulas

an(x) = a0(x)
(

±
√

q(x)
)n

Pn+1

(

± p(x)

2
√
q(x)

)

+
(
a1(x) − a0(x)p(x)

)
(

±
√

q(x)
)n−1

Pn

(

± p(x)

2
√
q(x)

)

,

an(x) = a0(x)
(

±
√

q(x)
)n

Fn+1

(

± p(x)
√
q(x)

)

+
(
a1(x) − a0(x)p(x)

)
(

±
√

q(x)
)n−1

Fn

(

± p(x)
√
q(x)

)

,

an(x) = a0(x)
(

±
√

−q(x)
)n

Bn

(

± p(x)
√−q(x)

− 2

)

+
(
a1(x) − a0(x)p(x)

)
(

±
√

−q(x)
)n−1

Bn−1

(

± p(x)
√−q(x)

− 2

)

,

an(x) = a0(x)

⎛

⎝±
√

−q(x)
2

⎞

⎠

n

Φn+1

(

±p(x)
√

2
−q(x)

)
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+
(
a1(x) − a0(x)p(x)

)

⎛

⎝±
√

−q(x)
2

⎞

⎠

n−1

Φn

(

±p(x)
√

2
−q(x)

)

,

an(x) = 4a0(x)

⎛

⎝±
√

−q(x)
a

⎞

⎠

n

Dn

(

±p(x)
√

a

−q(x) , a
)

+ 4
(
a1(x) − a0(x)p(x)

)

⎛

⎝±
√

−q(x)
a

⎞

⎠

n−1

Dn−1

(

±p(x)
√

a

−q(x) , a
)

,

(2.12)

whereUn(x), Pn(x), Fn(x), Φn(x), and Dn(x, a) are the Chebyshev polynomials of the second order,
Pell polynomials, Fibonacci polynomials, Fermat polynomials, and the Dickson polynomials of the
second kind, respectively.

Example 2.3. As the first example, we consider the Chebyshev polynomials of the first kind
Tn(x) = cos(n arc cosx) satisfying recurrence relation (1.1) with p(x) = 2x and q = −1 and
initial conditions T0(x) = 1 and T1(x) = x. From Corollary 2.2, we have

Tn(x) = Un(x) − xUn−1(x),

Tn(x) = (−1)n(Un(−x) + xUn−1(x)),

Tn(x) = (±i)nPn+1(∓xi) − x(±i)n−1Pn(∓xi),

Tn(x) = (±i)nFn+1(∓2xi) − x(±i)n−1Fn(∓2xi),

Tn(x) = (±1)nBn(±2x − 2) − (±1)n−1xBn−1(±2x − 2),

Tn(x) = Bn(±2x − 2) − xBn−1(±2x − 2),

Tn(x) =
(

± 1√
2

)n

Φn+1

(
∓2

√
2x
)
− x
(

± 1√
2

)n−1
Φn

(
∓2

√
2x
)
,

Tn(x) =
(

± 1√
4a

)n

Dn

(∓2√ax, a) − x
(

± 1√
4a

)n−1
Dn−1

(∓2√ax, a),

(2.13)

in which the first relation is equivalent to the well-known result 2Tn(x) = Un(x) − Un−2(x)
due to

2Tn(x) = 2Un(x) − 2xUn−1(x) = Un(x) + (2xUn−1(x) −Un−2(x)) − 2xUn−1(x). (2.14)

For the special cases of a0(x) and a1(x), we have the following corollaries.
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Corollary 2.4. Let sequence {an(x)}n≥0 be defined by an(x) = p(x)an−1(x) + q(x)an−2(x) (n ≥ 2)
with initial conditions a0(x) = 0 and a1(x) = d. Then

an(x) = d
(

±
√

−q(x)
)n−1

Un−1

(

± p(x)

2
√−q(x)

)

,

an(x) = d
(

±
√

q(x)
)n−1

Pn

(

± p(x)

2
√
q(x)

)

,

an(x) = d
(

±
√

q(x)
)n−1

Fn

(

± p(x)
√
q(x)

)

,

an(x) = d
(

±
√

−q(x)
)n−1

Bn−1

(

± p(x)
√−q(x)

− 2

)

,

an(x) = d

⎛

⎝±
√

−q(x)
2

⎞

⎠

n−1

Φn

(

±p(x)
√

2
−q(x)

)

,

an(x) = 4d

⎛

⎝±
√

−q(x)
a

⎞

⎠

n−1

Dn−1

(

±p(x)
√

a

−q(x) , a
)

.

(2.15)

Corollary 2.5. Let sequence {an(x)}n≥0 be defined by an(x) = p(x)an−1(x) + q(x)an−2(x) (n ≥ 2)
with initial conditions a0(x) = c and a1(x) = cp(x), then

an(x) = c
(

±
√

−q(x)
)n

Un

(

± p(x)

2
√−q(x)

)

,

an(x) = c
(

±
√

q(x)
)n

Pn+1

(

± p(x)

2
√
q(x)

)

,

an(x) = c
(

±
√

q(x)
)n

Fn+1

(

± p(x)
√
q(x)

)

,

an(x) = c
(

±
√

−q(x)
)n

Bn

(

± p(x)
√−q(x)

− 2

)

,

an(x) = c

⎛

⎝±
√

−q(x)
2

⎞

⎠

n

Φn+1

(

±p(x)
√

2
−q(x)

)

,

an(x) = 4c

⎛

⎝±
√

−q(x)
a

⎞

⎠

n

Dn

(

±p(x)
√

a

−q(x) , a
)

.

(2.16)

We now give another special case of Theorem 2.1 for the sequence defined by (1.1)
with initial cases a0(x) = 2 and a1(x) = p(x).
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Corollary 2.6. Let sequence {an(x)}n≥0 be defined by an(x) = p(x)an−1(x) + q(x)an−2(x) (n ≥ 2)
with initial conditions a0(x) = 2 and a1(x) = p(x).

Then

an(x) = 2
(

±
√

−q(x)
)n

Un

(

± p(x)

2
√−q(x)

)

− p(x)
(

±
√

−q(x)
)n−1

Un−1

(

± p(x)

2
√−q(x)

)

,

an(x) = 2
(

±
√

q(x)
)n

Pn+1

(

± p(x)

2
√
q(x)

)

− p(x)
(

±
√

q(x)
)n−1

Pn

(

± p(x)

2
√
q(x)

)

,

an(x) = 2
(

±
√

q(x)
)n

Fn+1

(

± p(x)
√
q(x)

)

− p(x)
(

±
√

q(x)
)n−1

Fn

(

± p(x)
√
q(x)

)

,

an(x) = 2
(

±
√

−q(x)
)n

Bn

(

± p(x)
√−q(x)

− 2

)

− p(x)
(

±
√

−q(x)
)n−1

Bn−1

(

± p(x)
√−q(x)

− 2

)

,

an(x) = 2

⎛

⎝±
√

−q(x)
2

⎞

⎠

n

Φn+1

(

±p(x)
√

2
−q(x)

)

− p(x)
⎛

⎝±
√

−q(x)
2

⎞

⎠

n−1

Φn

(

±p(x)
√

2
−q(x)

)

,

an(x) = 23
⎛

⎝±
√

−q(x)
a

⎞

⎠

n

Dn

(

±p(x)
√

a

−q(x) , a
)

− p(x)22
⎛

⎝±
√

−q(x)
a

⎞

⎠

n−1

Dn−1

(

±p(x)
√

a

−q(x) , a
)

.

(2.17)

In addition, one has

an(x) = 2
(

±
√

−q(x)
)n

Tn

(

± p(x)

2
√−q(x)

)

, (2.18)

where Tn(x) are the Chebyshev polynomials of the first kind.
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Proof. It is sufficient to prove the positive case of (2.18). From the first formula shown in
Corollary 2.6 and the recurrence relationUn(x) = 2xUn−1(x) −Un−2(x), one easily sees

an(x) =
(√

−q(x)
)n
[

2Un

(
p(x)

2
√−q(x)

)

− p(x)
√−q(x)

Un−1

(
p(x)

2
√−q(x)

)]

=
(√

−q(x)
)n
[

2Un

(
p(x)

2
√−q(x)

)

−
(

Un

(
p(x)

2
√−q(x)

)

+Un−2

(
p(x)

2
√−q(x)

))]

=
(√

−q(x)
)n
[

Un

(
p(x)

2
√−q(x)

)

−Un−2

(
p(x)

2
√−q(x)

)]

.

(2.19)

From the first formula of Example 2.3, the above last expression of an(x) implies the positive
case of (2.18). The negative case can be proved similarly.

Example 2.7. As an example, the Lucas polynomial sequence {Ln(x)} defined by (1.1) with
p(x) = x and q(x) = 1 and initial conditions L0(x) = 2 and L1(x) = x has an explicit formula
for its general term

Ln(x) = 2(±i)nTn
(

∓xi
2

)

. (2.20)

Using Corollary 2.6, we also have

Ln(x) = 2(±i)nUn

(

∓xi
2

)

− x(±i)n−1Un−1

(

∓xi
2

)

,

Ln(x) = 2Pn+1
(
±x
2

)
− xPn

(
±x
2

)
,

Ln(x) = 2Fn+1(±x) − xFn(±x),

Ln(x) = 2(±i)nBn(∓xi − 2) − x(±i)n−1Bn−1(∓xi − 2),

Ln(x) = 2
(

± i√
2

)n

Φn+1

(
∓
√
2xi
)
− x
(

± i√
2

)n−1
Φn

(
∓
√
2xi
)
,

Ln(x) = 23
(

± i√
a

)n

Dn

(∓√axi, a) − x22
(

± i√
a

)n−1
Dn−1

(∓√axi, a).

(2.21)

From Theorem 2.1, one may obtain transfer formulas between generalized Gegen-
bauer-Humbert polynomials.

3. Examples and Applications

We first give some examples of Theorem 2.1 for sequences {an(x)} defined by (1.1).
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Example 3.1. The Chebyshev polynomials of the third kind and fourth kind satisfy the same
recurrence relationship as the Chebyshev polynomials of the first kindwith the same constant
initial term 1 and different linear initial terms, 2x−1 and 2x+1, respectively (see, e.g., Mason
and Handscomb [18] and Rivlin [19]). Hence, the Chebyshev polynomials of the third kind,
T
(3)
n (x), and the Chebyshev polynomials of the fourth kind, T (4)

n (x), when x2 /= 1, have the
following expressions using the argument shown in [5]:

T
(3)
n (x) =

√
x2 − 1 + x − 1

2
√
x2 − 1

(
x +
√
x2 − 1

)n
+

√
x2 − 1 − x + 1

2
√
x2 − 1

(
x −
√
x2 − 1

)n
,

T
(4)
n (x) =

√
x2 − 1 + x + 1

2
√
x2 − 1

(
x +
√
x2 − 1

)n
+

√
x2 − 1 − x − 1

2
√
x2 − 1

(
x −
√
x2 − 1

)n
.

(3.1)

Similarly to the Chebyshev polynomials of the first kind (see Example 2.3), we can
transfer T (3)

n (x) and T (4)
n (x) to the generalized Gegenbauer-Humbert polynomials with λ = 1,

T
(3)
n (x) = Un(x) −Un−1(x),

T
(3)
n (x) = (−1)n(Un(−x) +Un−1(x)),

T
(3)
n (x) = (±i)nPn+1(∓xi) − (±i)n−1Pn(∓xi),

T
(3)
n (x) = (±i)nFn+1(∓2xi) − (±i)n−1Fn(∓2xi),

T
(3)
n (x) = (±1)nBn(±2x − 2) − (±1)n−1Bn−1(±2x − 2),

T
(3)
n (x) =

(

± 1√
2

)n

Φn+1

(
∓2

√
2x
)
−
(

± 1√
2

)n−1
Φn

(
∓2

√
2x
)
,

T
(3)
n (x) =

(

± 1√
4a

)n

Dn

(∓2√ax, a) −
(

± 1√
4a

)n−1
Dn−1

(∓2√ax, a),

T
(4)
n (x) = Un(x) +Un−1(x),

T
(4)
n (x) = (−1)n(Un(−x) −Un−1(x)),

T
(4)
n (x) = (±i)nPn+1(∓xi) + (±i)n−1Pn(∓xi),

T
(4)
n (x) = (±i)nFn+1(∓2xi) + (±i)n−1Fn(∓2xi),

T
(4)
n (x) = (±1)nBn(±2x − 2) + (±1)n−1Bn−1(±2x − 2),

T
(4)
n (x) =

(

± 1√
2

)n

Φn+1

(
∓2

√
2x
)
+
(

± 1√
2

)n−1
Φn

(
∓2

√
2x
)
,

T
(3)
n (x) =

(

± 1√
4a

)n

Dn

(∓2√ax, a) +
(

± 1√
4a

)n−1
Dn−1

(∓2√ax, a).

(3.2)
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From the above formulas, one may obtain some identities between the Chebyshev poly-
nomials of different kinds. For instance,

T
(3)
n (x) + T (4)

n (x) = 2Un(x),

Tn(x) + xT
(4)
n (x) = (1 + x)Un(x),

Tn(x) − xT (3)
n (x) = (1 − x)Un(x).

(3.3)

Since Tn(x) = cosnθ, Un(x) = sin(n + 1)θ/ sin θ, T (3)
n (x) = cos(n + 1/2)θ/ cos(1/2)θ,

and T
(4)
n (x) = sin(n + 1/2)θ/ sin(1/2)θ, where x = cos θ, the above identities of Chebyshev

polynomials also present the following identities of trigonometric functions, respectively,

cos(n + 1/2)θ
cos(1/2)θ

+
sin(n + 1/2)θ
sin(1/2)θ

= 2
sin(n + 1)θ

sin θ
,

cosnθ + cos θ
sin(n + 1/2)θ
sin(1/2)θ

= (1 + cos θ)
sin(n + 1)θ

sin θ
,

cosnθ − cos θ
sin(n + 1/2)θ
sin(1/2)θ

= (1 − cos θ)
sin(n + 1)θ

sin θ
.

(3.4)

Example 3.2. Consider the Jacobsthal polynomials {Jn(x)} defined by (1.1) with coefficients
p(x) = 1 and q(x) = 2x and initial conditions J0(x) = J1(x) = 1. One may use Corollary 2.5 to
obtain transfer formulas

Jn(x) =
(
±
√
−2x
)n
Un

(

± 1

2
√−2x

)

,

Jn(x) =
(
±
√
2x
)n
Pn+1

(

± 1

2
√
2x

)

,

Jn(x) =
(
±
√
2x
)n
Fn+1

(

± 1√
2x

)

,

Jn(x) =
(
±
√
−2x
)n
Bn

(

± 1√−2x
− 2
)

,

Jn(x) =
(±√−x)nΦn+1

(

± 1√−x

)

,

Jn(x) = 22
⎛

⎝±
√

−2x
a

⎞

⎠

n

Dn

(

±
√

a

−2x , a
)

.

(3.5)

The first formula and its inverse (see the first formula below)were given on [20, page 76] by
Riordan using a different method. The positive case of the third formula is easily to be trans-
ferred to the formula of Theorem 1 in [21], where they used a different recurrence relation
with p(x) = 1 and q(x) = x for constructing the Jacobsthal polynomials. Reference [20] also
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gave the inverse formula to present Un(x) in terms of Jn(x). Actually, we can easily have the
inverse formulas ofUn(x), Pn+1(x), Fn+1(x),Φn+1(x), andDn(x, a) in terms of Jn(x) as follows:

Un(x) = (2x)nJn
(

− 1
8x2

)

,

Pn+1(x) = (2x)nJn
(

1
8x2

)

,

Fn+1(x) = xnJn
(

1
2x2

)

,

Bn(x) = (x + 2)nJn

(

− 1

2(x + 2)2

)

,

Φn+1(x) = xnJn
(

− 1
x2

)

,

Dn(x, a) =
1
4
xnJn

(

− a

2x2

)

.

(3.6)

Example 3.3. In Eu [22], the polynomial sequence {Hn(x)} is defined by Sn(x) = xSn−1(x) −
Sn−2(x)with initial conditions S0(x) = 1 and S1(x) = x. Using Corollary 2.5, we obtain

Sn(x) = Un

(
±x
2

)
,

Sn(x) = (±i)nPn+1
(
∓x
2
i
)
,

Sn(x) = (±i)nFn+1(∓xi),
Sn(x) = (±1)nBn(±x − 2),

Sn(x) =
(

± 1√
2

)n

Φn+1

(
±
√
2x
)
,

Sn(x) = 4
(

± 1√
a

)n

Dn

(±√ax, a),

(3.7)

in which the first formula was given in [22] using a different approach. Similar to the case of
the Jacobsthal polynomial sequence shown in Example 3.2, we have the inverse formulas

Un(x) = Sn(±2x),
Pn+1(x) = (∓i)nSn(±2xi),
Fn+1(x) = (∓i)nSn(±xi),
Bn(x) = (±1)nSn(±(x + 2)),
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Φn+1(x) =
(
±
√
2
)n
Sn

(

± x√
2

)

,

Dn(x, a) =
1
4
(±√a)nSn

(

± x√
a

)

.

(3.8)

Another polynomial sequence {Hn(x)} is defined by Hn(x) = (1 − x)Hn−1(x) −
x2Hn−2(x) with initial conditions H0(X) = 1 and H1(x) = 1 − x [22]. Using Corollary 2.5,
we obtain

Hn(x) = (±x)nUn

(

±1 − x
2x

)

,

Hn(x) = (±ix)nPn+1
(

∓1 − x
2x

i

)

,

Hn(x) = (±ix)nFn+1
(

∓1 − x
x

i

)

,

Hn(x) = (±x)nBn
(

±1 − x
x

− 2
)

,

Hn(x) =
(

± x√
2

)n

Φn+1

(

±
√
2
1 − x
x

)

,

Hn(x) = 4
(

± x√
a

)n

Un

(

±√a1 − x
x

, a

)

,

(3.9)

where the first formula has been established in [22] by using a different method. The inverse
of the above formulas can be found similarly. For instance,

Un(x) = (2x ± 1)nHn

(
1

1 ± 2x

)

. (3.10)

Example 3.4. In Riordan [23], the associate Legendre polynomial sequence {ρn(x)} is defined
by ρn(x) = (2 + x)ρn−1(x) − ρn−2(x) with initial conditions ρ0(x) = 1 and ρ1(x) = 1 + x, then
we use Theorem 2.1 and Corollary 2.2 to generate the following transfer formulas:

ρn(x) = Un

(
±
(
1 +

x

2

))
−Un−1

(
±
(
1 +

x

2

))
,

ρn(x) = (±i)nPn+1
(
∓i
(
1 +

x

2

))
− (±i)n−1Pn

(
∓i
(
1 +

x

2

))
,

ρn(x) = (±i)nFn+1(∓i(x + 2)) − (±i)n−1Fn(∓i(x + 2)),

ρn(x) = (±1)nBn(±(x + 2) − 2) − (±1)n−1Bn−1(±(x + 2) − 2),
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ρn(x) =
(

± 1√
2

)n

Φn+1

(
±
√
2(x + 2)

)
−
(

± 1√
2

)n−1
Φn

(
±
√
2(x + 2)

)
,

ρn(x) = 4
(

± 1√
a

)n

Dn

(±√a(x + 2), a
) − 4

(

± 1√
a

)n−1
Dn−1

(±√a(x + 2), a
)
,

(3.11)

where the first formula was given on [20, page 85] using a different method.

Example 3.5. In Chow and West [24], the polynomial sequence {pn(x)} is defined by pn(x) =
−xpn−1(x) − xpn−2(x) with initial conditions p0(x) = 1 − x−1 and p1(x) = 2 − x (x /= 0). From
Theorem 2.1 and Corollary 2.2, we obtain

pn(x) =
(
1 − x−1

)(±√x)nUn

(

∓
√
x

2

)

+
(±√x)n−1Un−1

(

∓
√
x

2

)

,

pn(x) =
(
1 − x−1

)(±√xi)nPn+1
(

±
√
xi

2

)

+
(±√xi)n−1Pn

(

±
√
xi

2

)

,

pn(x) =
(
1 − x−1

)(±√xi)nFn+1
(±√xi) + (±√xi)n−1Fn

(±√xi),

pn(x) =
(
1 − x−1

)(±√x)nBn
(∓√x − 2

)
+
(±√x)n−1Bn−1

(∓√x − 2
)
,

pn(x) =
(
1 − x−1

)
(

±
√
x

2

)n

Φn+1

(
±
√
2xi
)
+

(

±
√
x

2

)n−1
Φn

(
±
√
2xi
)
,

pn(x) = 4
(
1 − x−1

)
(

±
√
x

a

)n

Dn

(±√axi, a) + 4

(

±
√
x

a

)n−1
Dn−1

(±√axi, a).

(3.12)

SinceUn+1(y) = 2yUn(y) −Un−1(y), we have

Un+2
(
y
)
= 2yUn+1

(
y
) −Un

(
y
)

= 2y
(
2yUn

(
y
) −Un−1

(
y
)) −Un

(
y
)

=
(
4y2 − 1

)
Un

(
y
) − 2yUn−1

(
y
)
.

(3.13)

Hence, from the last expression of Un+2 and the transfer formula of pn(x) in terms of Un(x)
shown above, we obtain

pn(x) = (±1)nx(n−2)/2Un+2

(

∓
√
x

2

)

, (3.14)

in which the case of

pn(x) = (−1)nx(n−2)/2Un+2

(√
x

2

)

(3.15)

was established in [24] using mathematical induction.
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Equaling the right-hand expressions of the polynomials shown in each example, one
may obtain various identities of generalized Gegenbauer-Humbert polynomials. For in-
stance, from Example 2.3, we have

Un(x) − xUn−1(x) = (−1)n(Un(−x) + xUn−1(x))

= (±i)nPn+1(∓xi) − x(±i)n−1Pn(∓xi)

= (±i)nFn+1(∓2xi) − x(±i)n−1Fn(∓2xi)

= (±1)nBn(±2x − 2) − (±1)n−1xBn−1(±2x − 2)

=
(

± 1√
2

)n

Φn+1

(
∓2

√
2x
)
− x
(

± 1√
2

)n−1
Φn

(
∓2

√
2x
)

=
(

± 1√
4a

)n

Dn

(∓2√ax, a) − x
(

± 1√
4a

)n−1
Dn−1

(∓2√ax, a).

(3.16)

Using the relationship established in Theorem 2.1 and Corollaries 2.2–2.6, we may
obtain some identities of polynomial sequences from the generalized Gegenbauer-Humbert
polynomial sequence identity described in [5]

P
1,y,C
n (x) = α(x)P 1,y,C

n−1 (x) + C−2(2x − α(x)C)(β(x))n−1, (3.17)

where P
1,y,C
n (x) satisfies the recurrence relation of order 2, P 1,y,C

n (x) = p(x)P 1,y,C
n−1 (x) +

q(x)P 1,y,C
n−2 (x) with coefficients p(x) and q(x), and α(x) + β(x) = p(x) and α(x)β(x) = −q(x).

Clearly (see (2.41) in [5]),

α(x) =
1
C

{

x +
√

x2 − Cy
}

,

β(x) =
1
C

{

x −
√

x2 − Cy
}

.

(3.18)

For y = C = 1, we have P 1,1,1
n (x) = Un(x), whereUn(x) are the Chebyshev polynomials of the

second kind, and we can write (3.17) as

Un(x) = α(x)Un−1(x) + (2x − α(x))(β(x))n−1 = α(x)Un−1(x) +
(
β(x)

)n
, (3.19)

where α(x) = x +
√
x2 − 1 and β(x) = x −

√
x2 − 1. From the first formula of Example 3.2 and

using transform ±1/(2√−2x) �→ x, we have

Un(x) = (2x)nJn
(

− 1
8x2

)

. (3.20)
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Substituting the above expression to (3.19) yields the identity

(2x)nJn
(

− 1
8x2

)

=
(
x +
√
x2 − 1

)
(2x)n−1Jn−1

(

− 1
8x2

)

+
(
x −
√
x2 − 1

)n
. (3.21)

Similarly, from Example 3.3, we obtain identities

Sn(±2x) =
(
±x +

√
x2 − 1

)
Sn−1(±2x) +

(
±x −

√
x2 − 1

)n
,

(2x ± 1)nHn

(
1

1 ± 2x

)

= (2x ± 1)n−1
(
x +
√
x2 − 1

)
Hn−1

(
1

1 ± 2x

)

+
(
x −
√
x2 − 1

)n
.

(3.22)

One may also extend some well-known identities of a polynomial sequence to other
polynomial sequences using the relationships we have established. For instance, from the
Cassini-like formula for Fibonacci polynomials

Fn+1(x)Fn−1(x) − F2
n(x) = (−1)n, (3.23)

we use the relationship shown in Example 3.2 to obtain the Cassini-like formula for the
Jacobsthal polynomials

Jn(x)Jn−2(x) − J2n−1(x) = (−2x)n, (3.24)

which can be transferred to the formula of Theorem 2 in [21] using the same argument in
Example 3.2.

Similarly, from the transform

Fn+1(x) = (±i)nUn

(

∓xi
2

)

, (3.25)

we have

Un

(

∓xi
2

)

Un−2

(

∓xi
2

)

−U2
n−1

(

∓xi
2

)

= (−1)n. (3.26)

To construct a transform relationship for the polynomials defined by recurrence
relation with coefficients related to the order of polynomials is much more difficulty. One
special example can be found on [25, page 240] by Andrews et al.. It seems there is no a
general method applied to such polynomial sequences.
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