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1. Introduction

Many number and polynomial sequences can be defined, characterized, evaluated, and
classified by linear recurrence relations with certain orders. A number sequence {an} is called
sequence of order 2 if it satisfies the linear recurrence relation of order 2:

an = pan−1 + qan−2, n ≥ 2, (1.1)

for some nonzero constants p and q and initial conditions a0 and a1. In Mansour [1], the
sequence {an}n≥0 defined by (1.1) is called Horadam’s sequence, which was introduced in
1965 by Horadam [2]. The work in [1] also obtained the generating functions for powers
of Horadam’s sequence. To construct an explicit formula of its general term, one may use
a generating function, characteristic equation, or a matrix method (see Comtet [3], Hsu [4],
Strang [5], Wilf [6], etc.) In [7], Benjamin and Quinn presented many elegant combinatorial
meanings of the sequence defined by recurrence relation (1.1). For instance, an counts
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the number of ways to tile an n-board (i.e., board of length n) with squares (representing
1ss) and dominoes (representing 2s) where each tile, except the initial one has a color. In
addition, there are p colors for squares and q colors for dominoes. In this paper, we will
present a new method to construct an explicit formula of {an} generated by (1.1). The key
idea of our method is to reduce the relation (1.1) of order 2 to a linear recurrence relation of
order 1:

an = can−1 + d, n ≥ 1, (1.2)

for some constants c /= 0 and d and initial condition a0 via geometric sequence. Then, the
expression of the general term of the sequence of order 2 can be obtained from the formula of
the general term of the sequence of order 1:

an =

⎧
⎨

⎩

a0c
n + d

cn − 1
c − 1

, if c /= 1;

a0 + nd, if c = 1.
(1.3)

The method and some related results on the generalized Gegenbauer-Humbert polynomial
sequence of order 2 as well as a few examples will be given in Section 2. Section 3 will
discuss the application of the method to the construction of the identities of sequences of
order 2. There is an extension of the above results to higher order cases. In Section 4, we will
discuss the applications of the method to the solution of algebraic equations and initial value
problems of second-order ordinary differential equations.

2. Main Results and Examples

Let α and β be two roots of of quadratic equation x2 − px − q = 0.We may write (1.1) as

an =
(
α + β

)
an−1 − αβan−2, (2.1)

where α and β satisfy α + β = p and αβ = −q. Therefore, from (2.1), we have

an − αan−1 = β(an−1 − αan−2), (2.2)

which implies that {an − αan−1}n≥1 is a geometric sequence with common ratio β. Hence,

an − αan−1 = (a1 − αa0)βn−1,

an = αan−1 + (a1 − αa0)βn−1.
(2.3)

Consequently,

an
βn

=
α

β

(
an−1
βn−1

)

+
a1 − αa0

β
. (2.4)
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Let bn := an/βn. We may write (2.4) as

bn =
α

β
bn−1 +

a1 − αa0
β

. (2.5)

If α/= β, by using (1.3), we immediately obtain

an
βn

= a0
(
α

β

)n

+
a1 − αa0

β

(
α/β

)n − 1
(
α/β

) − 1

=
1
βn

[

αna0 +
a1 − αa0
α − β

(
αn − βn)

]

,

(2.6)

which yields

an =
(
a1 − βa0
α − β

)

αn −
(
a1 − αa0
α − β

)

βn. (2.7)

Similarly, if α = β, then (1.3) implies

an = a0αn + nαn−1(a1 − αa0) = na1αn−1 − (n − 1)a0αn. (2.8)

We may summarize the above result as follows.

Proposition 2.1. Let {an} be a sequence of order 2 satisfying linear recurrence relation (2.1). Then

an =

⎧
⎪⎪⎨

⎪⎪⎩

(
a1 − βa0
α − β

)

αn −
(
a1 − αa0
α − β

)

βn, if α/= β;

na1α
n−1 − (n − 1)a0αn, if α = β.

(2.9)

In particular, if {an} satisfies the linear recurrence relation (1.1) with q = 1, namely,

an = pan−1 + an−2, (2.10)

then the equation x2 − px − 1 = 0 has two solutions:

α =
p +

√

p2 + 4

2
, β = − 1

α
=
p −

√

p2 + 4

2
. (2.11)

From Proposition 2.1, we have the following corollary.
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Corollary 2.2. Let {an} be a sequence of order 2 satisfying the linear recurrence relation an = pan−1+
an−2. Then

an =
2a1 −

(
p −

√

p2 + 4
)
a0

2
√

p2 + 4
αn −

2a1 −
(
p +

√

p2 + 4
)
a0

2
√

p2 + 4

(

− 1
α

)n

, (2.12)

where α is defined by (2.11).
Similarly, let {an} be a sequence of order 2 satisfying the linear recurrence relation an = an−1+

qan−2. Then

an =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2a1 −
(
1 −√4q + 1

)
a0

2
√
4q + 1

αn1 −
2a1 −

(
1 +

√
4q + 1

)
a0

2
√
4q + 1

αn2 , if q /= − 1
4
;

1
2n

(2na1 − (n − 1)a0), if q = −1
4
,

(2.13)

where α1 = (1/2)(1+
√
4q + 1) and α2 = (1/2)(1−√4q + 1) are solutions of the equation x2−x−q =

0.

The first special case (2.12) was studied by Falbo in [8]. If p = 1, the sequence
is clearly the Fibonacci sequence. If p = 2 (q = 1), the corresponding sequence is the
sequence of numerators (when two initial conditions are 1 and 3) or denominators (when
two initial conditions are 1 and 2) of the convergent of a continued fraction to

√
2: {1/1,

3/2, 7/5, 17/12, 41/29, . . .}, called the closest rational approximation sequence to
√
2. The

second special case is also a corollary of Proposition 2.1. If q = 2 (p = 1), {an} is the Jacobsthal
sequence (see Bergum et al. [9]).

Remark 2.3. Proposition 2.1 can be extended to the linear recurrence relations of order 2 with
more general form: an = pan−1 + qan−2 + � for p+ q /= 1. It can be seen that the above recurrence
relation is equivalent to the form (1.1) bn = pbn−1+qbn−2, where bn = an−k and k = �/(1−p−q).

We now show some examples of the applications of our method including the
presentation of much easier proofs of some well-known formulas of the sequences of order 2.

Remark 2.4. Denote

un =

[
an+1

αn

]

, A =

[
p q

1 0

]

. (2.14)

We may write relation an = pan−1 + qan−2 and an−1 = an−1 into a matrix form un−1 = Aun−2
with respect to 2 × 2 matrix A defined above. Thus un−1 = An−1u0. To find explicit expression
of un−1, the real problem is to calculateAn−1. The key lies in the eigenvalues and eigenvectors.
The eigenvalues ofA are precisely α and β, which are two roots of the characteristic equation
x2−px−q = 0 for thematrixA. However, an obvious identity can be obtained from (un, un−1) =
An−1(u1, u0) by taking determinants on the both sides: an+1an−1 − a2n = (−q)n−1(a2a0 − a21) (see,
e.g., [5] for more details).
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Example 2.5. Let {Fn}n≥0 be the Fibonacci sequence with the linear recurrence relation Fn =
Fn−1 + Fn−2, where F0 and F1 are assumed to be 0 and 1, respectively. Thus, the recurrence
relation is a special case of (1.1) with p = q = 1 and the special case of the sequence in
Corollary 2.2, which can be written as (2.1)with

α =
1 +

√
5

2
, β =

1 − √
5

2
. (2.15)

Since α − β =
√
5, from (2.12) we have the expression of Fn as follows:

Fn =
1√
5

{(
1 +

√
5

2

)n

−
(

1 − √
5

2

)n}

. (2.16)

Example 2.6. We have mentioned above that the denominators of the closest rational
approximation to

√
2 form a sequence satisfying the recurrence relation an = 2an−1 + an−2.

With an additional initial condition 0, the sequence becomes the Pell number sequence:
{pn = 0, 1, 2, 5, 12, 29, . . .}, which also satisfies the recurrence relation pn = 2pn−1 + pn−2. Using
formula (2.23) in Corollary 2.2, we obtain the general term of the Pell number sequence:

pn =
1

2
√
2

{(
1 +

√
2
)n −

(
1 −

√
2
)n}

. (2.17)

The numerators of the closest rational approximation to
√
2 are half the companion Pell

numbers or Pell-Lucas numbers. By adding in initial condition 2, we obtain the Pell-Lucas
number sequence {cn = 2, 2, 6, 14, 34, 82, . . .}, which satisfies cn = 2cn−1 + cn−2. Similarly,
Corollary 2.2 gives

cn =
(
1 +

√
2
)n

+
(
1 −

√
2
)n
. (2.18)

We now consider the sequence of the sums of Pell number: {σn = 0, 1, 3, 8, 20, . . .}, which
satisfies the recurrence relation

σn = 2σn−1 + σn−2 + 1. (2.19)

From Remark 2.3, the above expression can be transfered to an equivalent form

bn = 2bn−1 + bn−2, (2.20)

where bn = σn + 1/2. Using Corollary 2.2, one easily obtain

bn =
1
4

{(
1 +

√
2
)n+1

+
(
1 −

√
2
)n+1

}

. (2.21)
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Thus,

σn =
1
4

{(
1 +

√
2
)n+1

+
(
1 −

√
2
)n+1

}

− 1
2
. (2.22)

If the coefficients of the linear recurrence relation of a function sequence {an(x)} of
order 2 are real or complex-value functions of variable x, that is,

an(x) = p(x)an−1(x) + q(x)an−2(x), (2.23)

we obtain a function sequence of order 2 with initial conditions a0(x) and a1(x). In particular,
if all of p(x), q(x), a0(x), and a1(x) are polynomials, then the corresponding sequence {an(x)}
is a polynomial sequence of order 2. Denote the solutions of

t2 − p(x)t − q(x) = 0 (2.24)

by α(x) and β(x). Then

α(x) =
1
2

(

p(x) +
√

p2(x) + 4q(x)
)

, β(x) =
1
2

(

p(x) −
√

p2(x) + 4q(x)
)

. (2.25)

Similar to Proposition 2.1, we have

Proposition 2.7. Let {an} be a sequence of order 2 satisfying the linear recurrence relation (2.23).
Then

an(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(
a1(x) − β(x)a0(x)

α(x) − β(x)
)

αn(x) −
(
a1(x) − α(x)a0(x)

α(x) − β(x)
)

βn(x), if α(x)/= β(x);

na1(x)αn−1(x) − (n − 1)a0(x)αn(x), if α(x) = β(x),
(2.26)

where α(x) and β(x) are shown in (2.25).

Example 2.8. Consider the Chebyshev polynomials of the first kind, Tn(x), defined by

Tn(x) = cos(n arc cos x), (2.27)

which satisfies the recurrence relation

Tn(x) = 2xTn−1(x) − Tn−2(x) (2.28)
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with T0(x) = 1 and T1(x) = x. Thus the corresponding p, q, α, and β are, respectively, 2x, −1,
x+

√
x2 − 1, and x−

√
x2 − 1, which yields T1(x)−βT0(x) =

√
x2 − 1, T1(x)−αT0(x) = −

√
x2 − 1,

and α − β = 2
√
x2 − 1. Substituting the quantities into (2.7) yields

Tn(x) =
1
2

{(
x +

√
x2 − 1

)n
+
(
x −

√
x2 − 1

)n}
. (2.29)

All the Chebyshev polynomials of the second kind, third kind, and fourth kind satisfy the
same recurrence relationship as the Chebyshev polynomials of the first kind with the same
constant initial term 1. However, they possess different linear initial terms, which are 2x,
2x−1, and 2x+1, respectively (see, e.g., Mason andHandscomb [10] and Rivlin [11]). We will
give the expression of the Chebyshev polynomials of the second kind later by sorting them
into the class of the generalized Gegenbauer-Humbert polynomials. As for the Chebyshev
polynomials of the third kind, T (3)

n (x), and the Chebyshev polynomials of the fourth kind,
T
(4)
n (x), when x2 /= 1, we clearly have the following expressions using a similar argument

presented for the Chebyshev polynomials of the first kind:

T
(3)
n (x) =

√
x2 − 1 + x − 1

2
√
x2 − 1

(
x +

√
x2 − 1

)n
+

√
x2 − 1 − x + 1

2
√
x2 − 1

(
x −

√
x2 − 1

)n
,

T
(4)
n (x) =

√
x2 − 1 + x + 1

2
√
x2 − 1

(
x +

√
x2 − 1

)n
+

√
x2 − 1 − x − 1

2
√
x2 − 1

(
x −

√
x2 − 1

)n
.

(2.30)

Example 2.9. In [12], André-Jeannin studied the generalized Fibonacci and Lucas polynomials
defined, respectively, by

Un(x;a, b) = Un = (x + a)Un−1 − bUn−2, U0(x) = 0, U1(x) = 1,

Vn(x;a, b) = Vn = (x + a)Vn−1 − bVn−2, V0(x) = 2, V1(x) = x + a,
(2.31)

where a and b are real parameters. Clearly, Vn(2x; 0, 1) = 2Tn(x). Using Proposition 2.7, we
obtain

Un(x;a, b) =
1

2n
√

(x + a)2 − 4b

{(

x + a +
√

(x + a)2 − 4b
)n

−
(

x + a −
√

(x + a)2 − 4b
)n}

,

Vn(x;a, b) =
1
2n

{(

x + a +
√

(x + a)2 − 4b
)n

−
(

x + a −
√

(x + a)2 − 4b
)n}

.

(2.32)

From the last expression, we also see Vn(2x; 0, 1) = 2Tn(x).
A sequence of the generalized Gegenbauer-Humbert polynomials {Pλ,y,Cn (x)}n≥0 is

defined by the expansion (see, e.g., Gould [13] and He et al. [14]):

Φ(t) ≡ (C − 2xt + yt2)
−λ

=
∑

n≥0
P
λ,y,C
n (x)tn, (2.33)
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where λ > 0, y and C/= 0 are real numbers. As special cases of (2.33), we consider Pλ,y,Cn (x) as
follows (see [14]):

P 1,1,1
n (x) = Un(x), Chebyshev polynomial of the second kind,

P 1/2,1,1
n (x) = ψn(x), Legendre polynomial,

P 1,−1,1
n (x) = Pn+1(x), Pell polynomial,

P 1,−1,1
n

(x

2

)
= Fn+1(x), Fibonacci polynomial,

P 1,2,1
n

(x

2

)
= Φn+1(x), Fermat polynomial of the first kind,

P 1,2a,2
n (x) = Dn(x, a), Dickson polynomial,

(2.34)

where a is a real parameter and Fn = Fn(1) is the Fibonacci number.

Theorem 2.10. Let x /= ±√Cy. The generalized Gegenbauer-Humbert polynomials {P 1,y,C
n (x)}n≥0

defined by expansion (2.33) can be expressed as

P
1,y,C
n (x) = C−n−2

⎡

⎢
⎣

x +
√

x2 − Cy

2
√

x2 − Cy

(

x +
√

x2 − Cy
)n

−
x −

√

x2 − Cy

2
√

x2 − Cy

(

x −
√

x2 − Cy
)n

⎤

⎥
⎦.

(2.35)

Proof. Taking derivative with respect to x to the two sides of (2.33) yields

2λ
(
x − yt)(C − 2xt + yt2)

−λ−1
=
∑

n≥1
nP

λ,y,C
n (x)tn−1. (2.36)

Then, substituting the expansion of (C − 2xt − yt2)−λ of (2.33) into the left-hand side of (2.36)
and comparing the coefficients of term tn on both sides, we obtain

C(n + 1)Pλ,y,Cn+1 (x) = 2x(λ + n)Pλ,y,Cn (x) − y(2λ + n − 1)Pλ,y,Cn−1 (x). (2.37)

By transferring n + 1 �→ n, we have

P
λ,y,C
n (x) = 2x

λ + n − 1
Cn

P
λ,y,C

n−1 (x) − y2λ + n − 2
Cn

P
λ,y,C

n−2 (x) (2.38)

for all n ≥ 2 with

P
λ,y,C

0 (x) = Φ(0) = C−λ,

P
λ,y,C

1 (x) = Φ′(0) = 2λxC−λ−1.
(2.39)
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Thus, if λ = 1, P 1,y,C
n (x) satisfies linear recurrence relation

P
1,y,C
n (x) =

2x
C
P
1,y,C
n−1 (x) − y

C
P
1,y,C
n−2 (x), n ≥ 2,

P
1,y,C
0 (x) = C−1, P

1,y,C
1 (x) = 2xC−2.

(2.40)

Therefore, we solve t2 − pt − q = 0, where p = 2x/C and q = −y/C, for t, and obtain
solutions:

α =
1
C

{

x +
√

x2 − Cy
}

,

β =
1
C

{

x −
√

x2 − Cy
}

,

(2.41)

where x /= ±√Cy. Hence, Proposition 2.7 gives the formula of P 1,y,C
n (x) (n ≥ 2) as

P
1,y,C
n (x) = C−2

⎡

⎢
⎣

x +
√

x2 − Cy

2
√

x2 − Cy
αn −

x −
√

x2 − Cy

2
√

x2 − Cy
βn

⎤

⎥
⎦, (2.42)

where α and β are shown as (2.41). This completes the proof.

Remark 2.11. We may use recurrence relation (2.40) to define various polynomials that were
defined using different techniques. Comparing recurrence relation (2.40)with the relations of
the generalized Fibonacci and Lucas polynomials shown in Example 2.9, with the assumption
of P 1,y,C

0 = 0 and P 1,y,C
1 = 1, we immediately know that

P 1,1,1
n (x) = 2xP 1,1,1

n−1 (x) − P 1,1,1
n−2 (x) = Un(2x; 0, 1) (2.43)

defines the Chebyshev polynomials of the second kind,

P 1,−1,1
n (x) = 2xP 1,−1,1

n−1 (x) − P 1,−1,1
n−2 (x) = Un(2x; 0,−1) (2.44)

defines the Pell polynomials, and

P 1,−1,1
n

(x

2

)
= xP 1,−1,1

n−1
(x

2

)
+ P 1,−1,1

n−2
(x

2

)
= Un(x; 0,−1) (2.45)

defines the Fibonacci polynomials.
In addition, in [15], Lidl et al. defined the Dickson polynomials are also the special

case of the generalized Gegenbauer-Humbert polynomials, which can be defined uniformly
using recurrence relation (2.40), namely,

Dn(x;a) = xDn−1(x;a) − aDn−2(x;a) = P
1,2a,2
n (x) (2.46)
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with D0(x;a) = 2 and D1(x;a) = x. Thus, the general terms of all of above polynomials can
be expressed using (2.35).

Example 2.12. For λ = y = C = 1, using (2.35), we obtain the expression of the Chebyshev
polynomials of the second kind:

Un(x) =

(
x +

√
x2 − 1

)n+1 −
(
x −

√
x2 − 1

)n+1

2
√
x2 − 1

, (2.47)

where x2 /= 1. Thus,U2(x) = 4x2 − 1.
For λ = C = 1 and y = −1, formula (2.35) gives the expression of a Pell polynomial of

degree n + 1:

Pn+1(x) =

(
x +

√
x2 + 1

)n+1 −
(
x −

√
x2 + 1

)n+1

2
√
x2 + 1

. (2.48)

Thus, P2(x) = 2x.
Similarly, let λ = C = 1 and y = −1, the Fibonacci polynomials are

Fn+1(x) =

(
x +

√
x2 + 4

)n+1 −
(
x −

√
x2 + 4

)n+1

2n+1
√
x2 + 4

, (2.49)

and the Fibonacci numbers are

Fn = Fn(1) =
1√
5

{(
1 +

√
5

2

)n

−
(

1 − √
5

2

)n}

, (2.50)

which has been presented in Example 2.5.
Finally, for λ = C = 1 and y = 2, we have Fermat polynomials of the first kind:

Φn+1(x) =

(
x +

√
x2 − 2

)n+1 −
(
x −

√
x2 − 2

)n+1

2
√
x2 − 2

, (2.51)

where x2 /= 2. From the expressions of Chebyshev polynomials of the second kind, Pell
polynomials, and Fermat polynomials of the first kind, we may get a class of the generalized
Gegenbauer-Humbert polynomials with respect to y defined as follows.

Definition 2.13. The generalized Gegenbauer-Humbert polynomials with respect to y,
denoted by P (y)

n (x), are defined by the expansion

(1 − 2xt + yt2)
−1

=
∑

n≥0
P
(y)
n (x)tn, (2.52)
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by

P
(y)
n (x) = 2xP (y)

n−1(x) − yP
(y)
n−2(x), (2.53)

or equivalently, by

P
(y)
n (x) =

(
x +

√

x2 − y
)n+1

−
(
x −

√

x2 − y
)n+1

2
√

x2 − y
(2.54)

with P (y)
0 (x) = 1 and P

(y)
1 (x) = 2x, where x2 /=y. In particular, P (−1)

n (x), P (1)
n (x), and P

(2)
n (x)

are, respectively, Pell polynomials, Chebyshev polynomials of the second kind, and Fermat
polynomials of the first kind.

3. Identities Constructed from Recurrence Relations

From (2.2)we have the following result.

Proposition 3.1. A sequence {an}n≥0 of order 2 satisfies linear recurrence relation (2.1) if and only
if it satisfies the nonhomogeneous linear recurrence relation of order 1 with the form

an = αan−1 + dβn−1, (3.1)

where d is uniquely determined. In particular, if β = 1, then an = αan−1 + d is equivalent to an =
(α + 1)an−1 − αan−2, where d = a1 − αa0.

Proof. The necessity is clearly from (2.1). We now prove sufficiency. If sequence {an} satisfies
the nonhomogeneous recurrence relation of order 1 shown in (3.1), then by substituting n = 1
into the above equation, we obtain d = a1 − αa0. Thus, (3.1) can be written as

an − αan−1 = (a1 − αa0)βn−1, (3.2)

which implies that {an} satisfies the linear recurrence relation of order 2: an = pan−1 + qan−2
with p = α + β and q = −αβ. In particular, if β = 1, then p = α + 1 and q = −α, which yields the
special case of the proposition.

An obvious example of the special case of Proposition 3.1 is theMersenne number an =
2n −1 (n ≥ 0), which satisfies the linear recurrence relation of order 2: an = 3an−1 −2an−2 (with
a0 = 0 and a1 = 1) and the nonhomogeneous recurrence relation of order 1: an = 2an−1+1 (with
a0 = 0). It is easy to check that sequence an = (kn − 1)/(k − 1) satisfies both the homogeneous
recurrence relation of order 2, an = (k + 1)an−1 − kan−2, and the nonhomogeneous recurrence
relation of order 1, an = kan−1 + 1, where a0 = 0 and a1 = 1.
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We now use (3.2) to prove some identities of Fibonacci and Lucas numbers and
generalized Gegenbauer-Humbert polynomials. Let {Fn} be the Fibonacci sequence. From
(3.2),

Fn − αFn−1 = (F1 − αF0)βn−1 = βn−1, (3.3)

where the last step is due to α + β = 1. Therefore, we give a simple identity

Fn = αFn−1 + βn−1 =
1 +

√
5

2
Fn−1 +

(
1 − √

5
2

)n−1
, (3.4)

which is shown in [16, (8.2) page 122] by Koshy. Similarly, we have

βFn = βαFn−1 + βn = βn − Fn−1, (3.5)

where the last step is due to αβ = −1. The above identity can be written as

(
1 − √

5
2

)n

=
1 − √

5
2

Fn + Fn−1. (3.6)

The same argument yields αn = αFn + Fn−1, or equivalently,

(
1 +

√
5

2

)n

=
1 +

√
5

2
Fn + Fn−1. (3.7)

Identities (3.6) and (3.7) were proved by using different method in [16, page 78].
Let {Ln} be the Lucas number sequence with L0 = 2 and L1 = 1, which satisfies

recurrence relation (2.2) with the same α and β for the Fibonacci number sequence. Then,
using the same argument, we have

Ln − αLn−1 = (L1 − αL0)βn−1 = (1 − 2α)βn−1 = −
√
5βn−1. (3.8)

Thus

Ln −
(

1 +
√
5

2

)

Ln−1 = −
√
5

(
1 − √

5
2

)n−1
, (3.9)

or equivalently,

−Ln+1 +
(

1 +
√
5

2

)

Ln =
√
5

(
1 − √

5
2

)n

(3.10)

(see [16, page 129]).
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We now extend the above results regarding Fibonacci and Lucas numbers to more
general sequences presented by Niven et al. in [17]. Let {Gn}n≥0 and {Hn}n≥0 be two
sequences defined, respectively, by the linear recurrence relations of order 2:

Gn = pGn−1 + qGn−2, Hn = pHn−1 + qHn−2 (3.11)

with initial conditions G0 = 0 and G1 = 1 and H0 = 2 and H1 = p, respectively. Clearly, if
p = q = 1, then Gn and Hn are, respectively, Fibonacci and Lucas numbers. From (3.2), we
immediately have

Gn −
p +

√

p2 + 4q

2
Gn−1 =

⎛

⎜
⎝
p −

√

p2 + 4q

2

⎞

⎟
⎠

n−1

. (3.12)

Multiplying (p −
√

p2 + 4q)/2 to both sides of the above equation yields

p −
√

p2 + 4q

2
Gn + qGn−1 =

⎛

⎜
⎝
p −

√

p2 + 4q

2

⎞

⎟
⎠

n

. (3.13)

Similarly, we obtain

p +
√

p2 + 4q

2
Gn + qGn−1 =

⎛

⎜
⎝
p +

√

p2 + 4q

2

⎞

⎟
⎠

n

. (3.14)

When p = q = 1, the last two identities are (3.6) and (3.7), respectively.
Using (3.2) we can also obtain the identity

p +
√

p2 + 4q

2
Hn −Hn+1 =

√

p2 + 4q

⎛

⎜
⎝
p −

√

p2 + 4q

2

⎞

⎟
⎠

n

, (3.15)

which implies (3.10) when p = q = 1.
Aharonov et al. (see [18]) have proved that the solution of any sequence of numbers

that satisfies a recurrence relation of order 2 with constant coefficients and initial conditions
a0 = 0 and a1 = 1 can be expressed in terms of Chebyshev polynomials. For instance, the
authors show Fn = i−nUn(i/2) and Ln = 2i−nTn(i/2). Thus, we have identities

(
1 +

√
5

2

)n

=
1 +

√
5

2in
Un

(
i

2

)

+ i−(n−1)Un

(
i

2

)

,

√
5

(
1 − √

5
2

)n

= 2i−nTn
(
i

2

)

−
(

1 +
√
5

in−1

)

Tn−1

(
i

2

)

.

(3.16)
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In [19], Chen and Louck obtained Fn+1 = inUn(−i/2). Thus we have identity

(
1 +

√
5

2

)n

= in−1
1 +

√
5

2
Un−1

(−i
2

)

+ in−2Un−2

(−i
2

)

. (3.17)

Identities (3.6) and (3.7) can be used to prove the following radical identity given by
Sofo in [20]:

(αFn + Fn−1)
1/n + (−1)n+1(Fn+1 − αFn)1/n = 1. (3.18)

Identity (3.7) shows that the first term on the left-hand side of (3.18) is simply α. Assume the
sum in the third parenthesis on the left-hand side of (3.18) is c, then

βc = βFn+1 − αβFn = Fn + βFn+1 = βn+1, (3.19)

where the last step is from (3.6) with transform n �→ n + 1. Thus, we have c = βn. If n is
odd, the left-hand side of (3.18) is α + β = 1. If n is even, the left-hand side of (3.18) becomes
α − |β| = α + β = 1, which completes the proof of Sofo’s identity.

In general, let {an} be a sequence of order 2 satisfying linear recurrence relation (1.1)
or equivalently (2.1). Then we sum up our results as follows.

Theorem 3.2. Let {an}n≥0 be a sequence of numbers or polynomials defined by the linear recurrence
relation an = pan−1 + qan−2 (n ≥ 0) with initial conditions a0 and a1, and let p = α + β and q = −αβ.
Then we have identity

an = αan−1 + (a1 − αa0)βn−1. (3.20)

In particularly, if {an = Pλ,y,Cn (x)}, the sequence of the generalized Gegenbauer-Humbert polynomial
is defined by (2.33), then we obtain the polynomial identity:

P
1,y,C
n (x) = αP 1,y,C

n−1 (x) + C−2(2x − αC)βn−1, (3.21)

where α and β are shown in (2.41). For C = 1 (i.e., the generalized Gegenbauer-Humbert polynomials
with respect to y), we denote P (y)

n (x) ≡ P 1,y,1
n (x) and have

P
(y)
n (x) =

(

x +
√

x2 − y
)

P
(y)
n−1(x) +

(

x −
√

x2 − y
)n

. (3.22)

Actually, (3.22) can also be proved directly. Similarly, for the Chebyshev polynomials
of the first kind Tn(x), we have the identity

(
x +

√
x2 − 1

)
Tn−1(x) − Tn(x) =

√
x2 − 1

(
x −

√
x2 − 1

)n−1
. (3.23)
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Let x = cos θ, the above identity becomes

eiθ cos((n − 1)θ) − cos(nθ) = i sin θe−i(n−1)θ, (3.24)

which is equivalent to cosnθ = cos(n − 1)θ cos θ − sin(n − 1)θ sin θ.
Another example is from the sequence {an} shown in Corollary 2.2 with a0 = 1 and

a1 = p. Then (3.20) gives the identity an = αan−1+βn,where α = (p+
√

p2 + 4)/2 and β = −1/α.
Similar to (3.6) and (3.7), for those sequences {an}with a0 = 1 and a1 = p, we obtain identities

⎛

⎜
⎝
p −

√

p2 + 4

2

⎞

⎟
⎠

n+1

=
p −

√

p2 + 4

2
an + an−1,

⎛

⎜
⎝
p +

√

p2 + 4

2

⎞

⎟
⎠

n+1

=
p +

√

p2 + 4

2
an + an−1.

(3.25)

When p = 1, the above identities become (3.6) and (3.7), respectively. Similarly, we can prove

an+k = αkan + βnak,where α = (p +
√

p2 + 4)/2 and β = −1/α.
It is clear that if 1/an is bounded and |β| < 1, from (3.20)we have

lim
n→∞

an
an−1

= α. (3.26)

Therefore,

lim
n→∞

Fn
Fn−1

= lim
n→∞

Ln
Ln−1

=
1 +

√
5

2
. (3.27)

The method presented in this paper cannot be extended to the higher-order setting.
However, we may use the idea and a similar argument to derive some identities of sequences
of order greater than 2. For instance, for a sequence {an} of numbers or polynomials that
satisfies the linear recurrence relation of order 3:

an = pan−1 + qan−2 + ran−3, n ≥ 3, (3.28)

we set the equation

t3 − pt2 − qt − r = 0. (3.29)

Using transform t = s + p/3, we can change the equation to the standard form s3 + as + b = 0,
which can be solved by Vieta’s substitution s = u − a/(3u). The formulas for the three roots,
denoted by α, β, γ , are sometimes known as Cardano’s formula. Thus, we have

α + β + γ = p, αβ + βγ + γα = −q, αβγ = r. (3.30)
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Denote yn = an − αan−1. Then (3.28) can be written as

yn =
(
β + γ

)
yn−1 − βγyn−2. (3.31)

From Propositions 2.1 or 2.7, one may obtain

yn =

⎧
⎪⎪⎨

⎪⎪⎩

(
y1 − βy0
γ − β

)

γn −
(
y1 − γy0
γ − β

)

βn, if γ /= β;

ny1γ
n−1 − (n − 1)y0γn, if γ = β.

(3.32)

Therefore, from the identity yn = γyn−1 + βn−1(y1 − γy0), we obtain identity in terms of an:

βn−1
(
y1 − γy0

)
= an − αan−1 − γ(an−1 − αan−2)
= an −

(
α + γ

)
an−1 + αγan−2,

(3.33)

or equivalently,

an =
(
α + γ

)
an−1 − αγan−2 + βn−1

(
a1 −

(
α + γ

)
a0 + αγa−1

)
, (3.34)

where a−1 can be found uniquely from y2 = (β + γ)y1 − βγy0 and y0 = a0 − αa−1, that is,

a2 − αa1 =
(
β + γ

)
(a1 − αa0) − βγ(a0 − αa−1), (3.35)

or equivalently,

a−1 =
a2 − pa1 − qa0

r
, r /= 0. (3.36)

We have seen the equivalence between the homogeneous recurrence relation of order 3, in
(3.28), and the nonhomogeneous recurrence relation of order 2, in (3.34).

Remark 3.3. Similar to the particular case shown in Proposition 3.1, we may find the
equivalence between the nonhomogeneous recurrence relation of order 2, an = pan−1+qan−2+
k, and the homogeneous recurrence relation of order 3, an = (p + 1)an−1 + (q − p)an−2 + qan−3,
where k = a2 − pa1 − qa0.



International Journal of Mathematics and Mathematical Sciences 17

Example 3.4. As an example, we consider the tribonacci number sequence generated by an =
an−1 + an−2 + an−3 (n ≥ 3). Solving t3 − t2 − t − 1 = 0, we obtain

β =
1
3
+
1
3
(19 − 3

√
33)

1/3
+
1
3
(19 + 3

√
33)

1/3
,

α =
1
3
− 1
6

(
1 + i

√
3
)
(19 − 3

√
33)

1/3 − 1
6

(
1 − i

√
3
)
(19 + 3

√
33)

1/3
,

γ =
1
3
− 1
6

(
1 − i

√
3
)
(19 − 3

√
33)

1/3 − 1
6

(
1 + i

√
3
)
(19 + 3

√
33)

1/3
.

(3.37)

Substituting α, β, γ , and y0 = 0 (with the assumption a−1 = 0) and y1 = 1 into (3.33), we obtain
an identity regarding the tribonacci number sequence {an = 0, 1, 1, 2, 4, 7, 13, 24, . . .}:

an − 1
3
(2 − a − b)an−1 + 1

9

(
−3 − a − b + a2 + b2

)
an−2 =

1
3n−1

(1 + a + b)n−1, (3.38)

where a = (19 − 3
√
33)1/3 and b = (19 + 3

√
33)1/3.

For the sequence defined by

an = 6an−1 − 11an−2 + 6an−3, n ≥ 3, (3.39)

with initial conditions a0 = a1 = 1 and a2 = 2. Then, the first few numbers of the sequence
are {1, 1, 2, 7, 26, 91, . . .}. The three roots of t3 − 6t2 + 11t − 6 = 0 are α = 1, β = 2, and γ = 3.
Therefore, by assuming a−1 = 7/6, we obtain the corresponding y0 = −1/6 and y1 = 0 and the
following identity for the above-defined sequence:

an − 4an−1 + 3an−2 = 2n−2 (3.40)

for all n ≥ 2. From [21] by Haye, an =
{
n+1

3

}
+ 1 (n ≥ 0), where

{
n

k

}
are Stirling numbers of

the second kind. Hence, we obtain an identity of the Stirling numbers of the second kind:

{
n + 1

3

}

− 4

{
n

3

}

+ 3

{
n − 1

3

}

= 2n−2. (3.41)

The idea to reduce a linear recurrence relation of order 3 to order 2 can be extended to
the higher order cases. In general, if we have a sequence {an} satisfying the linear recurrence
relation of order r:

an =
r∑

k=1

pkan−k. (3.42)
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Assume the equation tr −∑r
k=1 pkt

r−k = 0 has solutions αk (1 ≤ k ≤ r). Denote yn = an−α1an−1.
Then the above recurrence relation can be reduced to

yn = yn−1
r∑

k=2

αk − yn−2
∑

2≤i /= j≤r
αiαj + yn−3

∑

2≤i /= j /= k≤r
αiαjαk − · · · + (−1)ryn−r+1

r∏

k=2

αk, (3.43)

a linear recurrence relation of order r−1 for sequence {yn}. Using this process, we may obtain
the explicit formula of an and/or identities in terms of an if we know the solution of the last
equation and/or the identities in terms of sequence {yn}.

The process shown in Proposition 3.1 can be applied conversely to elevate a
nonhomogenous recurrence relation of order n to a homogeneous recurrence relation of order
n + 1.

4. Solutions of Algebraic Equations and Differential Equations

The results presented in Sections 2 and 3 have more applications. In this section, we will
discuss the applications in the solutions of algebraic equations and initial value problems of
second-order ordinary differential equations.

First, we consider roots of polynomials p(x) = xn−xFn−Fn−1 or the solution of p(x) = 0,
where {Fn}n≥0 is the Fibonacci sequence. Using the identity αn = αFn + Fn−1, we immediately
know that the largest root of p(x) is

x = α =
1 +

√
5

2
. (4.1)

Indeed, p(x) only changes its coefficient signs once, which implies that it has only one positive
root α and all of its other roots must be negative, for example, β = (1 − √

5)/2. In [22], Wall
proved the largest root of p(x) is α using a more complicated manner.

We may write the identity αn = αFn + Fn−1 as

(
1 +

√
5

2

)n

=

(
1 +

√
5

2

)

Fn + Fn−1 =
Ln +

√
5Fn

2
, (4.2)

where Ln is the nth Lucas number. Similarly, we have

(
1 − √

5
2

)n

=

(
1 − √

5
2

)

Fn + Fn−1 =
Ln −

√
5Fn

2
. (4.3)

Multiplying the last two equations side by side yields (−1)n = (L2
n − 5F2

n)/4, or
equivalently, L2

n = F2
n + 4(−1)n. The last expression means 5F2

n + 4(−1)n is a perfect square,
or equivalently, if n is a Fibonacci number, then 5n2 ± 4 is a perfect square. This result is a
part of Gessel’s results in [23], but the method we used seems simpler. In addition, the above
result also shows that the Pell’s equation x2 − 5y2 = ±4 has a solution (x, y) = (Ln, Fn).

The above results on the Fibonacci sequence can be extended to the sequence {Gn}n≥0
shown in [17] and Section 3. Consider polynomial p(x) = xn −xGn −qGn−1 with q ≥ 1. We can
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see the largest root of p(x) is (p +
√

p2 + 4q)/2, which implies Wall’s result when p = q = 1. In
addition, because of

⎛

⎜
⎝
p +

√

p2 + 4q

2

⎞

⎟
⎠

n

=
p +

√

p2 + 4q

2
Gn + qGn−1

=
1
2

(√

p2 + 4qGn +Hn

)

,

⎛

⎜
⎝
p −

√

p2 + 4q

2

⎞

⎟
⎠

n

=
p −

√

p2 + 4q

2
Gn + qGn−1

=
1
2

(

−
√

p2 + 4qGn +Hn

)

,

(4.4)

we have

(−q)n =
1
4

(
H2

n −
(
p2 + 4q

)
G2
n

)
, (4.5)

or equivalently,

H2
n =

(
p2 + 4q

)
G2
n + 4(−q)n. (4.6)

Hence, (p2+4q)G2
n+4(−q)n is a perfect square, which implies the special case for the Fibonacci

sequence that has been presented. Therefore, Pell’s equation x2−(p2+4q)y2 = ±4qn (p2+4q > 0)
has a solution (x, y) = (Hn,Gn).

We now use the method presented in Section 2 to reduce an initial problem of a second
order ordinary differential equation:

y′′ − py′ − qy = 0, y′(0) = A, y(0) = B, (4.7)

of second-order ordinary differential equation with constant coefficients to the problem of
linear equations. Let p, q /= 0, and let α and β be solution(s) of x2 − px − q = 0. Denote

v(x) := y′(x) − αy(x). (4.8)

Then v′(x) = y′′(x) − αy′(x), and the original initial problem of the second order is split into
two problems of first order by using the method shown in (2.2) for n = 2:

v′(x) = βv(x), v(0) = A − αB;
y′(x) − αy(x) = v(x), y(0) = B.

(4.9)
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Thus, we obtain the solutions

v(x) = (A − αB)eβx,

y(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
α − β

((
A − βB)eαx − (A − αB)eβx), if α/= β;

eαx((A − αB)x + B), if α = β.

(4.10)

The above technique can be extended to the initial problems of higher-order ordinary
differential equations. In this paper, we presented an elementary method for construction
of the explicit formula of the sequence defined by the linear recurrence relation of
order 2 and the related identities. Some other applications in solutions of algebraic and
differential equations and some extensions to the higher dimensional setting are also
discussed. However, besides those applications, more applications in combinatorics and the
combinatorial explanations of our given formulas still remain much to be investigated.
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