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A relationship between a pair of Laurent series and Riordan arrays

is formulated. In addition, a type of generalized Sheffer groups is

defined by using Riordan arrays with respect to power series with

non-zero coefficients. The isomorphismbetweenageneralizedShef-

fer group and the group of the Riordan arrays associated with Lau-

rent series is established. Furthermore, Appell, associated, Bell, and

hitting-time subgroups of the groups are defined and discussed. A

relationship between the generalized Sheffer groupswith respect to

different type of power series is presented. The equivalence of the

defined Riordan array pairs and generalized Stirling number pairs is

given. A type of inverse relations of various series is constructed by

using pairs of Riordan arrays. Finally, several applications involving

various arrays, polynomial sequences, special formulas and identi-

ties are also presented as illustrative examples.
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1. Introduction

In the recent literature, special emphasis has been given to the concept of Riordan arrays associated

with power series, which are a generalization of the well-known Pascal triangle. Riordan arrays are

infinite, lower triangular matrices defined by the generating function of their columns. They form

a group, called the Riordan group (see Shapiro et al. [18]). Some of the main results on the Riordan

E-mail address: the@iwu.edu

0024-3795/$ - see front matter © 2011 Elsevier Inc. All rights reserved.

doi:10.1016/j.laa.2011.03.004



1242 T.-X. He / Linear Algebra and its Applications 435 (2011) 1241–1256

group and its application to combinatorial sums and identities can be found in Sprugnoli [20,21], on

subgroups of the Riordan group in Peart andWoan [12] and Shapiro [15], on some characterizations of

Riordan matrices in Rogers [14], Merlini et al. [10], and He and Sprugnoli [7], and on many interesting

related results in Cheon et al. [2,3], He et al. [6], Nkwanta [11], Shapiro [16,17], and so forth.

More formally, let us consider the set of formal power series (f.p.s.) F = C[[z]]; the order of

f (z) ∈ F , f (z) = ∑∞
k=0 fkz

k (fk ∈ C), is the minimal number r ∈ N such that fr �= 0; F r is the set

of formal power series of order r. It is known that F0 is the set of invertible f.p.s. and F1 is the set of

compositionally invertible f.p.s., that is, the f.p.s. f (z) for which the compositional inverse f (z) exists

such that f (f (z)) = f (f (z)) = z. Let d(z) ∈ F0 and h(z) ∈ F1; the pair (d(z), h(z)) defines the

(proper) 1 Riordan array D = (dn,k)n,k∈N having

dn,k = [zn]d(z)h(z)k (1)

or, in otherwords, having d(z)h(z)k as the generating functionwhose coefficientsmake-up the entries

of column k. Rogers [14] introduced the concept of the A-sequence for Riordan arrays; Merlini et al.

[10] introduced the related concept of the Z-sequence and showed that these two concepts, together

with the element d0,0, completely characterize a proper Riordan array. In [7], Sprugnoli and the author

consider the characterization of Riordan arrays by means of the A- and Z-sequences. [7] also shows

how the A- and Z-sequences of the product of two Riordan arrays are derived from those of the two

factors; similar results are obtained for the inverse. How the sequence characterization is applied to

construct easily a Riordan array is presented in the paper. Finally, it gives the characterizations relative

to some subgroups of the Riordan group, in particular of the hitting-time subgroup.

It is immediate to show that the usual row-by-column product of two Riordan arrays is also a

Riordan array:

(d1(z), h1(z)) ∗ (d2(z), h2(z)) = (d1(z)d2(h1(z)), h2(h1(z))). (2)

The Riordan array I = (1, z) is everywhere 0 except that it contains all 1’s on the main diagonal; it is

easily seen that I acts as an identity for this product, that is, (1, z) ∗ (d(z), h(z))= (d(z), h(z)) ∗ (1, z)
= (d(z), h(z)). From these facts, we deduce a formula for the inverse Riordan array:

(d(z), h(z))−1 =
(

1

d(h(z))
, h(z)

)
, (3)

where h(z) is the compositional inverse of h(z). In this way, the set R of proper Riordan arrays is a

group.

If (fk)k∈N is any sequence and f (z) = ∑∞
k=0 fkz

k is its generating function, then for every Riordan

array D = (d(z), h(z)) we have:

n∑
k=0

dn,kfk = [zn]d(z)f (h(z)),

which relates Riordan arrays to combinatorial sums and sum inversion.

Let � be the set of functions with a Laurent expansion of the form

f (z) = ∑
n�−1

anz
−n, (4)

an ∈ C. The order of f (z) ∈ � is the maximum number r ∈ Z such that fr �= 0. �r is the set of

formal power series of order r. It is known that f ∈ �0 implies 1/f (z−1) ∈ F0 the set of invertible

1 The concept of a Riordan array can be extended in various ways, as shown in Corsani et al. [4] so that the term “proper”

distinguishes the arrays belonging to the Riordan group. In the present paper we will be interested only in this latter kind of Riordan

arrays, so we usually understand the qualification proper and use it only to stress that some property holds for proper, but may not

hold for non-proper Riordan arrays.
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f.p.s, and f ∈ �−1 implies 1/f (z−1) ∈ F1, the set of compositionally invertible f.p.s. If f (z) ∈ �0 and

g(z) ∈ �−1, we now define the Riordan arrays associated with Laurent series as follows: Similar to

(1), we have matrix with entries

dn,k = [zn] 1

f (z−1)

(
1

g(z−1)

)k

, (5)

which is called the Riordan array associatedwith f (z) and g(z) and denote it by (1/f (z−1), 1/g(z−1)).

Hence, the generating function of column k of the matrix is 1/(f (z−1)g(z−1)k). There exists a rela-

tionship between the Riordan arrays associated with power series and the Riordan arrays associated

with Laurent series by using the transformation

T : f (z) �→ d(z), d(z) = (Tf )(z) = 1

f (z−1)
. (6)

It is obvious T is well defined in the sense that if f is in, respectively, �0 and �−1, then d ∈ F0

and d ∈ F1 exists uniquely. Denote by R̄ the set of all Riordan arrays associated with Laurent series,

[f (z), g(z)], where f ∈ �0 and g ∈ �−1. We now define [f (z), g(z)] by using the Riordan arrays

associated with power series as follows.

[f (z), g(z)] :=
(

1

f
(
z−1

) , 1

g
(
z−1

)
)

≡ (d(z), h(z)), (7)

where f ∈ �0 and g ∈ �−1, which implies d(z) = 1/f (z−1) ∈ F0 and h(z) = 1/g(z−1) ∈ F1, or

equivalently, (d(z), h(z)) ∈ R.

Denote by E the set of all power series
∑

n�0 cnz
n with all cn �= 0. In [5], we defined a generalized

Sheffer-type polynomial sequences using the expansion

d(z)A(xh(z)) = ∑
n�0

pn(x)z
n, (8)

where d(z) ∈ F0, h(z) ∈ F1, and A(z) = ∑
n�0 anz

n ∈ E . We now re-state the definition associated

with Laurent series. Unless otherwise specified, when dealing with A(z) we shall assume it is in E .

Definition 1.1. Let f ∈ �0 and g ∈ �−1. A generalized Sheffer-type polynomial sequence associated

with Laurent series generated by [f , g] with respect to a power series A(z) = ∑
n�0 anz

n is defined

by

1

f (z−1)
A

(
x

g(z−1)

)
= ∑

n�0

pn(x)z
n, (9)

or equivalently,

1

f (z)
A

(
x

g(z)

)
= ∑

n�0

pn(x)z
−n. (10)

Furthermore, if an = 1 (n = 0, 1, 2, . . .), i.e., A(z) = 1/(1 − z), then the corresponding sequences

pn(x) defined by (9) are called the ordinary polynomial sequences. If an = 1/n! (n = 0, 1, 2, . . .),
i.e., A(z) = ez , then expression (9) defines the classic Sheffer-type polynomial sequences. If a0 = 1

and an = 1/n (n = 1, 2, . . .), i.e., A(z) = 1 − ln(1 − z), then the corresponding pn(x) are called the

Dirichlet polynomial sequences.

Denote by PA the set of all generalized Sheffer-type polynomial sequences {pn(x)} generated by (9)

or an equivalent form (8).
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By using the Riordan array defined above and the fundamental theorem for Riordan arrays (see

[15]), we have the expression of the generalized Sheffer-type polynomial sequences defined by (9)

pn(x) =
n∑

k=0

akdn,kx
k =

n∑
k=0

pn,kx
k, (11)

where pn,k = andn,k and

dn,k = [zn] 1

f (z−1)

(
1

g(z−1)

)k

, (12)

which can be obtained from (9) with an observation of (11), the expression of pn(x). Hence, thematrix

form of 1

f (z−1)
A

(
x

g(z−1)

)
is the result of the following matrix multiplication:

⎛
⎝ 1

f (z−1)
,

1

f (z−1)

(
1

g(z−1)

)
,

1

f (z−1)

(
1

g(z−1)

)2

, . . .

⎞
⎠ (a0, a1x, a2x

2, . . .)T .

For thesakeof symmetry, onemaywrite thegeneralizedSheffer-typepolynomial sequencesdefined

by (8) as {p̃n(x)}, which is defined by

d(z)A(xh(z)) = ∑
n�0

anp̃n(x)z
n, (13)

where

anp̃n(x) = pn(x) =
n∑

k=0

pn,kx
k =

n∑
k=0

akdn,kx
k.

If an �= 0 for n ∈ N, then the coefficient matrix of polynomial sequence {p̃n(x)} is(
pn,k

an

)
n�k�0

=
(
ak

an
dn,k

)
n�k�0

= D−1(dn,k)n�k�0D,

where D = diag(a0, a1, a2, . . .). The last matrix is called a (c)-Riordan array, where c = (a0, a1, a2,
. . .), which is also called a generalized Riordan array in [22]. We denote

σ(n, k) := ak

an
dn,k (14)

and call it the generalized Stirling number associatedwith (d(z), h(z)) and A(z). Hence, the generalized
Stirling numbers are the entries of a generalizedRiordan array. The generalized Stirling numbers canbe

considered as an extension of the weighted Stirling numbers. There are two special kinds of weighted

Stirling numbers defined by Carlitz [4] (see also [1,8,9]). The Stirling numbers of the first kind and

second kind are the special cases of (14) with dn,k generated by (d(z), h(z)) = (1, log(1 + z)) and

(d(z), h(z)) = (1, ez − 1), respectively (see, for example [13]).

Example 1.1. As an example of the generalized Sheffer-type polynomial sequence, suppose f ∈ �0

and g ∈ �−1 and denote d(z) = 1/f (z−1) and h(z) = 1/g(z−1). Thus d(z) ∈ F0 and h(z) ∈ F1. The

ordinary Sheffer-type polynomial sequence {pn(x)} is generated by

d(z)

1 − xh(z)
= ∑

n�0

pn(x)z
n, (15)

or equivalently,

g(z)

f (z)(g(z) − x)
= ∑

n�0

pn(x)z
−n, (16)
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where

pn(x) =
n∑

k=0

dn,kx
k =

n∑
k=0

[zn]d(z)(h(z))kxk.

If d(z) = zh′(z)
h(z)

, or equivalently, f (z) = g(z)
zg′(z) , then the corresponding {Fn(x)} defined by

zh′(z)
h(z)(1 − xh(z))

= ∑
n�0

Fn(x)z
n

is the Faber polynomial sequence (see [3]). By substituting h(z) = 1/g(z−1) and replacing z by z−1,

we have

g′(z)
g(z) − x

= ∑
n�0

Fn(x)

zn+1

(see [19]).

In next section, we will show the operation # defined below is closed in R̄:

[f1(z), g1(z)]#[f2(z), g2(z)] = [f1(z)f2(g1(z)), g2(g1(z))], (17)

and (R̄,#) forms a group. In addition, for any {pn(x)} and {qn(x)} ∈ PA, we will show the operation

#̃ defined by

{pn(x)}#̃{qn(x)} = {rn(x) =
n∑

k=0

rn,kx
k : rn,k =

n∑
�=k

pn,�g�,k/a�, n � � � k} (18)

is closed in PA, and (PA, #̃) forms a group. An isomorphism between (R̄,#) and (PA, #̃) will also be

proved. Furthermore, the corresponding subgroups of (R̄,#) and (PA, #̃) that are isomorphic to the

Appell, associated, Bell, and hitting-time subgroups of classic Riordan group will be given in Sec-

tion 3. Finally, we present the relationships between the generalized Sheffer-type polynomial se-

quences from different groups in {PA : A ∈ E}, and we will establish inverse relations for pairs of

generalized Sheffer-type polynomial sequences in the same group of PA. In addition, an inverse rela-

tion of power series using pairs of Riordan arrays and pairs of generalized Stirling numbers will be

given.

2. Riordan group associated with Laurent series and the group of generalized Sheffer-type

polynomial sequences

First, we prove that R̄ is closed under the operation defined in (17). Indeed,

[f1(z), g1(z)]#[f2(z), g2(z)]

=
(

1

f1
(
z−1

) , 1

g1
(
z−1

)
)

∗
(

1

f2
(
z−1

) , 1

g2
(
z−1

)
)

=
(

1

f1
(
z−1

) 1

f2
(
g1

(
z−1

)) , 1

g2
(
g1

(
z−1

))
)

= [f1(z)f2(g1(z)), g2(g1(z))]. (19)
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It is easy to see that the operation # defined in (17) satisfies the associative law. In addition, for any

[f (z), g(z)] ∈ R̄, we have

[f (z), g(z)]#[1, z] = [f (z), g(z)] and [f (z), g(z)]−1 =
[

1

f (ḡ(z))
, ḡ(z)

]
, (20)

where ḡ(z−1) is the compositional inverse of g(z−1) in terms of z−1, i.e.,

ḡ(g(z−1)) = g(ḡ(z−1)) = z−1.

The first equation of (20) can be proved from the definition of operation #:

[f (z), g(z)]#[1, z] =
(

1

f
(
z−1

) , 1

g
(
z−1

)
)

∗
(
1,

1

z−1

)
= [f (z), g(z)].

Similarly, by noting the inverse of 1/g(z−1) is 1/ḡ(z−1), we have

[f (z), g(z)]#
[

1

f (ḡ(z))
, ḡ(z)

]

=
(

1

f
(
z−1

) , 1

g
(
z−1

)
)

∗
(
f

(
ḡ

(
z−1

))
,

1

ḡ
(
z−1

)
)

=
(

1

f
(
z−1

) f (
ḡ

(
g

(
z−1

)))
,

1

ḡ
(
g

(
z−1

))
)

= [1, z].

Thus, the second equation of (20) is obtained. Surveying the above results, we have

Theorem 2.1. The set R̄ forms a group under the operation # defined in (17).

We call R̄ the Riordan group associated with Laurent series. Since the mapping defined in (6) from

pair (f (z), g(z)), f ∈ �0 and g ∈ �−1, to pair (d(z), h(z)), d ∈ F0 and h ∈ F1, is one-to-one and

onto, we immediately have the following result.

Proposition 2.2. There exists a one-to-one correspondence between groups R̄ and Riordan groupR.

In the sense shown in Proposition 2.2, we may say that the usual Riordan group R is essentially

same as the group R̄ of extended Riordan arrays. The only difference is whether it is associated to

power series or Laurent series.

Similarly to Theorem 2.1, we can prove the following result.

Theorem 2.3. For a power series A(z) = ∑
n�0 anz

n, (PA, #̃) forms a group called the generalized Sheffer

group associated with A.

Proof. Suppose sequences {pn(x)}, {qn(x)} ∈ PA are generated by [f1, g1] and [f2, g2], respectively.
Then,

pn(x) =
n∑

k=0

ak[zn] 1

f1(z−1)

(
1

g1(z−1)

)k

xk =
n∑

k=0

akdn,kx
k

qn(x) =
n∑

k=0

ak[zn] 1

f2(z−1)

(
1

g2(z−1)

)k

xk =
n∑

k=0

akcn,kx
k.
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From (11) and (18), the element of {rn(x)} = {pn(x)}#̃{qn(x)} is

rn(x) =
n∑

k=0

⎛
⎝ n∑

�=k

akdn,�c�,k

⎞
⎠ xk

=
n∑

k=0

ak[zn] 1

f1(z−1)f2(g1(z−1))

(
1

g2(g1(z−1))

)k

xk, (21)

i.e., {rn(x)} ∈ PA is a generalized Sheffer-type polynomial sequence generated by [f1(f2 ◦ g1), g2 ◦ g1].
Hence, PA is closed under the operation #̃ defined by (18).

Since

(
{pn(x)}#̃{qn(x)}

)
#̃{rn(x)} =

⎧⎨
⎩

n∑
k=0

⎛
⎝ n∑

u=k

n∑
�=u

�!u!pn,�q�,uru,k

⎞
⎠ xk

⎫⎬
⎭

= {pn(x)}#̃
(
{qn(x)}#̃{rn(x)}

)

for every {pn(x) = ∑
k�0 pn,kx

k}, {qn(x) = ∑
k�0 qn,kx

k}, and {rn(x) = ∑
k�0 rn,kx

k} in PA, the

operation #̃ satisfies the associative law. In addition, we have the multiplication identity of PA as

{anxn} because of

{pn(x)}#̃{anxn} =
⎧⎨
⎩

∑
n�0

⎛
⎝ n∑

�=k

pn,�a�δ�,k/a�

⎞
⎠ xk = ∑

n�0

pn,kx
k = pn(x)

⎫⎬
⎭

for every {pn(x)} ∈ PA.

Finally, it can be easily checked that the inverse of {pn(x)} ∈ PA is {pn(x)}−1 generated by f (ḡ(z−1))
A(x/ḡ(z−1)), where ḡ(g(z−1)) = g(ḡ(z−1)) = z−1. �

We now establish a relationship between groups (R̄,#) and (PA, #̃).

Theorem 2.4. Let A(z) = ∑
n�0 anz

n be a power series. Then Riordan group (R̄,#) associated with

Laurent series is isomorphic to the generalized Sheffer group (PA, #̃) associated with A.

Proof. For the power series A(z) = ∑
n�0 anz

n, we define a map

θA : R̄ �→ PA

by

θA([f (z), g(z)]) =
{
[zn] 1

f (z−1)
A

(
x

g(z−1)

)}
,

where f (z) ∈ �0 and g(z) ∈ �−1. It follows from (21) that θA is a homomorphism. Since Ker θA =
{[1, z]}, the map θA is one-to-one. In addition, for every {pn(x)} ∈ PA, from the definition of the

generalized Sheffer-type polynomial sequence, there exists [f , g] ∈ R̄ such that {pn(x)} is generated
by [f , g]. Hence, θA is onto, which completes the proof of the theorem. �

3. Subgroups of R̄ and PA

Particular subgroups of R are important and have been considered in the literatures (see, for ex-

ample [15]):
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• the set A of Appell arrays, that is the Riordan arrays D = (d(z), h(z)) for which h(z) = z; it is an

invariant subgroup and is isomorphic to the group of f.p.s. of order 0, with the usual product as

group operation;
• the setL of Lagrange arrays, that is the Riordan arraysD = (d(z), h(z)) forwhich d(z) = 1; it is also

called the associated subgroup; it is isomorphic to the group of f.p.s. of order 1, with composition as

group operation;
• the set B of Bell or renewal arrays, that is the Riordan arrays D = (d(z), h(z)) for which h(z) =

zd(z); it is the set originally considered by Rogers in [14];

• the setH of hitting time arrays, that is, the Riordan arrays D = (d(z), h(z)) for which d(z) = zh′(z)
h(z)

;

it is the subgroup with the usual Riordan product defined by Peart and Woan in [12].

We now extend the above subgroups to R̄ and PA as follows.

For f ∈ �0 and d ∈ F0, since

[f (z), z] =
(

1

f (z−1)
, z

)
and (d(z), z) =

[
1

d(z−1)
, z

]
,

by noting 1/f (z−1) ∈ F0 and 1/d(z−1) ∈ �0, we know {[f (z), z] : f (z) ∈ �0} is one-to-one

corresponds to the Appell subgroup of classical Riordan group. Hence, Ā = {[f (z), z] : f (z) ∈ �0} is
a subgroup, called the Appell subgroup, of R̄, which is isomorphic to the group �0 of Laurent series.

The corresponding Appell subgroup of PA is the set of all polynomial sequences {pn(x)} defined by

1

f (z−1)
A(xz) = ∑

n�0

pn(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

akx
k[zn] zk

f (z−1)

⎞
⎠ zn,

or equivalently,

1

f (z)
A(xz−1) = ∑

n�0

pn(x)z
−n.

Similarly, for g ∈ �1, the set of all Riordan arrays [1, g(z)], forms a subgroup denoted by L̄ and

called the associated subgroup of R̄ because

[1, g(z)] =
(
1,

1

g(z−1)

)
and (1, h(z)) =

[
1,

1

h(z−1)

]
.

The corresponding associated subgroup of PA is the set of all polynomial sequences {pn(x)} defined by

A

(
x

g(z−1)

)
= ∑

n�0

pn(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

akx
k[zn] 1

(g(z−1))k

⎞
⎠ zn,

or equivalently,

A

(
x

g(z)

)
= ∑

n�0

pn(x)z
−n.

Let f ∈ �0 and g ∈ �−1. Denote d(z) = 1/f (z−1) and h(z) = 1/g(z−1). Due to

1

g(z−1)
= h(z) = zd(z) = 1

z−1f (z−1)

for all element (d(z), h(z)) in the Bell group of the classical Riordan group, it is reasonable to define

the Bell subgroup of R̄ by B̄ = {[f (z), zf (z)] : f (z) ∈ �0}. And the corresponding Bell subgroup of PA
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is the set of all {pn(x)} defined by

1

f (z−1)
A

(
xz

f (z−1)

)
= ∑

n�0

pn(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

akx
k[zn] zk

(f (z−1))k+1

⎞
⎠ zn,

or equivalently,

1

f (z)
A

(
x

zf (z)

)
= ∑

n�0

pn(x)z
−n.

Similarly, we may define the hitting-time subgroup of R̄ as

H̄ =
{[

g(z)

zg′(z)
, g(z)

]
: g(z) ∈ �−1

}

and the hitting-time subgroup of PA by

z−1g′(z−1)

g(z−1)
A

(
x

g(z−1)

)
= ∑

n�0

pn(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

akx
k[zn] z−1g′(z−1)

(g(z−1))k+1

⎞
⎠ zn,

or equivalently,

zg′(z)
g(z)

A

(
x

g(z)

)
= ∑

n�0

pn(x)z
−n.

We survey the above results in the following theorem.

Theorem 3.1. Sets Ā = {[f (z), z] : f ∈ �0}, L̄ = {[1, g(z)] : g ∈ �−1}, B̄ = {[f (z), zf (z)] : f ∈
�0}, and H̄ = {[g(z)/(zg′(z)), g(z)] : g ∈ �−1} are subgroups of R̄, which are called, respectively, the

Appell, associated, Bell, and hitting-time subgroups of R̄.

The sets of all polynomial sequences generated by all elements of Ā, L̄, B̄, and H̄with respect to A(z) ∈ E
are subgroups of PA and called the Appell, associated, Bell, and hitting-time subgroups of PA, respectively.

Example 3.1. In Appell subgroup, let f (z) = 1− z−1 and −1+ z−1. Then 1/f (z−1) = 1/(1− z) and
1/(z − 1), respectively. For those f (z), [f (z), z] ∈ Ā and the corresponding Sheffer-type polynomial

sequences {pn(x)} and {qn(x)} are defined, respectively, where {pn(x)} satisfies

1

1 − z
A (xz) = ∑

n�0

pn(x) = ∑
n�0

⎛
⎝ n∑

k=0

akx
k[zn] zk

1 − z

⎞
⎠ zn

= ∑
n�0

⎛
⎝ n∑

k=0

akx
k

⎞
⎠ zn.

Thus, pn(x) = ∑n
k=0 akx

k . Similarly, qn(x) = − ∑n
k=0 akx

k .

Example 3.2. Consider f (z) = 1 and g(z) = z, 1−z, and z−1, respectively. Thus,wehave 1/g(z−1) =
z, z/(z − 1), and z/(1 − z), respectively. The corresponding generalized Sheffer-type polynomial

sequences are, respectively, {pn(x)}, {qn(x)}, and {rn(x)}, where pn(x) are defined by

A (xz) = ∑
n�0

pn(x) = ∑
n�0

anx
nzn,
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i.e., pn(x) = anx
n, and, similarly, qn(x) = ∑n

k=0(−1)kak
(
n−1

n−k

)
xk and rn(x) = ∑n

k=0 ak

(
n−1

n−k

)
xk .

Another example is [1, g(z)] ∈ L̄, where g(z) = 1/(ln(1+ z)− ln z). Thus, 1/g(z−1) = ln(1+ z),
and the corresponding generalized Sheffer-type polynomial sequence {un(x)} is defined by

A (x ln(1 + z)) = ∑
n�0

un(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

akx
k[zn] (ln(1 + z))k

⎞
⎠ zn.

In particular, if A(z) = ez , then an = 1/n! and un(x) = (x)n := x(x − 1)(x − 2) · · · (x − n + 1), the
lower factorial polynomials.

Example 3.3. In Bell subgroup, we consider f (z) = 1 − z−1 and z−1 − 1. Thus, [1 − z−1, z − 1] and
[z−1 − 1, 1 − z] ∈ B̄, and the corresponding generalized Sheffer-type polynomial sequence {pn(x)}
for f (z) = 1 − z−1 is

1

1 − z
A

(
xz

1 − z

)
= ∑

n�0

pn(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

akx
k[zn] zk

(1 − z)k+1

⎞
⎠ zn

= ∑
n�0

⎛
⎝ n∑

k=0

akx
k

(
n

n − k

)⎞
⎠ zn.

Thus, pn(x) = ∑n
k=0 ak

(
n

n−k

)
xk . Similarly, the generalized Sheffer-type polynomial sequence {qn(x)}

for f (z) = z−1 − 1 is qn(x) = ∑n
k=0(−1)k+1 ak

(
n

n−k

)
xk . In particular, if A(z) = 1/(1 − z), then

pn(x) = (1 + x)n and qn(x) = −(1 − x)n.

Example 3.4. In [g(z)/(zg′(z)), g(z)], g ∈ �−1, an element of the hitting-time subgroup H̄, let

g(z) = z/(z − 1) and z/(1− z). Then, 1/g(z−1) = 1− z and z − 1, and g′(z−1) = −z2/(1− z)2 and

z2/(z − 1)2, respectively. The corresponding generalized Sheffer-type polynomial sequence {pn(x)}
and {qn(x)} for g(z) = z/(z − 1) and z/(1 − z), respectively, can be defined by

− z

1 − z
A (x(1 − z)) = ∑

n�0

pn(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

akx
k[zn](−z)(1 − z)k−1

⎞
⎠ zn

= ∑
n�0

an(−x)nzn

and

z

z − 1
A (x(z − 1)) = ∑

n�0

qn(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

akx
k[zn](z)(z − 1)k−1

⎞
⎠ zn

= ∑
n�0

anx
nzn.

Thus, pn(x) = an(−x)n and qn(x) = anx
n.

Cheon et al. [3] showed that hitting-time subgroup ofR is isomorphic to the Faber group formed by

the set of all Faber polynomial sequences. Here, a Faber polynomial sequence {Fn(x)} can be defined in
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two manners: in terms of Riordan arrays (zh′(z)/h(z), h(z)) associated with power series or Riordan

arrays [g(z)/(zg′(z)), g(z)] associated with Laurent series. From the instruction, we have

zh′(z)
h(z)(1 − xh(z))

= ∑
n�0

Fn(x)z
n

for someh ∈ F1,which implies that {Fn(x)} is anordinarySheffer-typepolynomial sequencegenerated

by (zh′(z)/h(z), h(z)) ∈ H with respect to A(z) = 1/(1 − z). {Fn(x)} can also be defined by

1

f (z−1)
A

(
x

g(z−1)

)
≡ g′(z)

g(z) − x
= ∑

n�0

Fn(x)

zn+1
,

where A(z) = 1/(1 − z), f (z) = g(z)/(zg′(z)), and g(z) ∈ �−1. For example, let g(z) = z − ρ
(ρ ∈ Z). Then the corresponding Faber polynomial sequence Fn(x) = (ρ + x)n because

g′(z)
g(z) − x

= 1

z − ρ − x
= 1

z

1

1 − (ρ + x)/z
= ∑

n�0

(ρ + x)n

zn+1
.

4. More relationships between the Riordan arrays and generalized Sheffer-type polynomial

sequences

For each A ∈ E , Theorem 2.4 shows that the generalized Sheffer group (PA, #̃) associated with A

is isomorphic to the Riordan group (R̄,#) associated with Laurent series. Hence, for A, B ∈ E , groups
(PA, #̃) and (PB, #̃) are isomorphic. We now establish a relationship between a generalized Sheffer-

type polynomial sequence {p̃n(x)} ∈ PA and the corresponding generalized Sheffer-type polynomial

sequence {q̃n(x)} ∈ PB, where p̃n(x) and q̃n(x) are defined by (13) with the same (d(z), h(z)) and

different power series A and B, where A(z) = ∑
n�0 anz

n and B(z) = ∑
n�0 bnz

n are in E . First, we

have the following result.

Theorem4.1. Let A(z), B(z) ∈ E , and let {p̃n(x)} ∈ PA. Suppose {p̃An(x)} is generated by (d(z), h(z))with

respect to A(z) and {p̃Bn(x)} is generated by the same (d(z), h(z)) with respect to B(z) by using expansion

(13). Then,

p̃An(x) =
n∑

k=0

akbn

anbk
xk

(
[xk]p̃Bn(x)

)
and p̃Bn(x) =

n∑
k=0

bkan

bnak
xk

(
[xk]p̃An(x)

)
. (22)

In particular, if A(z) = 1/(1 − z), then

p̃An(x) =
n∑

k=0

bn

bk
xk

(
[xk]p̃Bn(x)

)
and p̃Bn(x) =

n∑
k=0

bk

bn
xk

(
[xk]p̃An(x)

)
. (23)

Proof. To prove (22), it is sufficient to note

p̃An(x) =
n∑

k=0

ak

an
xk[zn]d(z)(h(z))k and p̃Bn(x) =

n∑
k=0

bk

bn
xk[zn]d(z)(h(z))k.

(23) immediately follows when an = 1 for all n � 0. �

Example 4.1. It is well-known that Bernoulli polynomial sequence is generated by

z

ez − 1
exz = ∑

n�0

1

n!Bn(x)z
n.



1252 T.-X. He / Linear Algebra and its Applications 435 (2011) 1241–1256

Noting the well-know expansion

z

ez − 1
= ∑

��0

B�

�! z
�,

whereB� is the�thBernoulli number,weobtain that theordinarypolynomial sequence {pn(x)}defined
by the same Riordan array (z/(ez − 1), z) but with respect to A(z) = 1/(1 − z) can be presented as

z

ez − 1

1

1 − xz
= ∑

n�0

pn(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

xk[zn] z

ez − 1
zk

⎞
⎠ zn

= ∑
n�0

⎛
⎝ n∑

k=0

xk
Bn−k

(n − k)!

⎞
⎠ zn.

Thus, from (23) we obtain the explicit formula of Bernoulli polynomials

Bn(x) =
n∑

k=0

n!
k!

Bn−k

(n − k)!x
k =

n∑
k=0

(
n

k

)
Bkx

n−k.

It is knownthat (p−1)st order Laguerrepolynomial sequence
{
L
(p−1)
n (x)

}
is generatedby involution

(1/(1 − z)p, z/(z − 1)) with respect to B(z) = ez ,

1

(1 − z)p
exz/(z−1) = ∑

n�0

L(p−1)
n (x)zn.

Consider the ordinary polynomial sequence {qn(x)} generated by

1

(1 − z)p

1

1 − xz/(z − 1)
= ∑

n�0

qn(x)z
n = ∑

n�0

⎛
⎝ n∑

k=0

(−x)k[zn] zk

(1 − z)p+k

⎞
⎠ zn

= ∑
n�0

⎛
⎝ n∑

k=0

(
n + p − 1

n − k

)
(−x)k

⎞
⎠ zn.

Thus, formula (22) yields

L(p−1)
n (x) =

n∑
k=0

1

k!
(
n + p − 1

n − k

)
(−x)k,

where the case p = 1 was shown in [3].

Angelescu polynomial sequence {An(x)} is a Sheffer-type polynomial sequence defined by

1

1 + z
exz/(z−1) = ∑

n�0

An(x)z
n.

Consider the ordinary Sheffer-typepolynomial sequence {rn(x)} generalizedby the sameRiordan array

(1/(1 + z), z/(z − 1)) with respect to A(z) = 1/(1 − z):
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1

1 + z

1

1 − xz/(z − 1)
= ∑

n�0

rn(x)z
n

= ∑
n�0

⎛
⎝ n∑

k=0

xk[zn] 1

1 + z

(
z

z − 1

)k
⎞
⎠ zn

= ∑
n�0

⎛
⎝ n∑

k=0

(−x)k[zn]
⎛
⎝∑

j�0

(−z)j
∑
��0

(
� + k − 1

�

)
zk+�

⎞
⎠

⎞
⎠ zn

= ∑
n�0

⎛
⎝ n∑

k=0

(−x)k[zn]
⎛
⎝∑

j�0

j∑
�=0

(−1)j−�

(
� + k − 1

�

)
zj+k

⎞
⎠

⎞
⎠ zn

= ∑
n�0

⎛
⎝ n∑

k=0

⎛
⎝n−k∑

�=0

(−1)n−�

(
� + k − 1

�

)⎞
⎠ xk

⎞
⎠ zn.

Thus, (22) gives an explicit formula of Angelescu polynomials

An(x) = (−1)n
n∑

k=0

1

k!

⎛
⎝n−k∑

�=0

(−1)�
(
� + k − 1

�

)⎞
⎠ xk.

We now define the Riordan pairs and generalized Stirling number pairs.

Definition 4.2. Let d(z) ∈ F0, h(z) ∈ F1, f (z) ∈ �0, and g(z) ∈ �−1. Then the Riordan pairs

{dn,k, d̃n,k} generated by (d(z), h(z)) and [f (z), g(z)] are defined by, respectively,

d(z)(h(z))k = ∑
n�k

dn,kz
n, d(h̄(z))−1(h̄(z))k = ∑

n�k

d̃n,kz
n, (24)

and

1

f (z−1)

(
1

g(z−1)

)k

= ∑
n�k

dn,kz
n, f (ḡ(z−1))

(
1

ḡ(z−1)

)k

= ∑
n�k

d̃n,kz
n, (25)

where h̄(z) is the compositional inverse of h(z) in terms of z, i.e., h̄(h(z)) = h(h̄(z)) = z, and ḡ(z−1)
is the compositional inverse of g(z−1) in terms of z−1, i.e., ḡ(g(z−1)) = z−1 and g(ḡ(z−1)) = z−1.

Following the definition of generalized Stirling numbers shown in the instruction, we have their

pairs defined below.

Definition 4.3. Let d(z) ∈ F0, h(z) ∈ F1, f (z) ∈ �0, and g(z) ∈ �−1. Then the generalized Stirling

number pairs {σn,k, σ̃n,k} generated by (d(z), h(z)) and [f (z), g(z)] with respect to A(z) ∈ E are

defined by, respectively,

d(z)(h(z))k = ∑
n�k

an

ak
σn,kz

n, d(h̄(z))−1(h̄(z))k = ∑
n�k

an

ak
σ̃n,kz

n, (26)

and

1

f (z−1)

(
1

g(z−1)

)k

= ∑
n�k

an

ak
σn,kz

n, f (ḡ(z−1))

(
1

ḡ(z−1)

)k

= ∑
n�k

an

ak
σ̃n,kz

n, (27)

where h̄(z) is the compositional inverse of h(z) in terms of z, and ḡ(z−1) is the compositional inverse

of g(z−1) in terms of z−1.
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Similar to [6], we may use the orthogonality of the Riordan pairs and generalized Stirling number

pairs to give several inverse relationships of power series.

Theorem 4.4. Let {fn}n�0 and {gn}n�0 be two sequences. Then there exist two inverse relationships be-

tween them which are generalized by using the Riordan pairs and generalized Stirling number pairs shown

in Definitions 4.2 and 4.3. Namely, the existence of one formula below implies the existence of another one.

anfn =
n∑

k=0

akdn,kgk ⇐⇒ angn =
n∑

k=0

akd̃n,kfk, (28)

fn =
n∑

k=0

σn,kgk ⇐⇒ gn =
n∑

k=0

σ̃n,kfk. (29)

Proof. It is sufficient to show that Definitions 4.2 and 4.3 implies∑
n�k��

dn,kd̃k,� = ∑
n�k��

d̃n,kdk,� = δn,�

and ∑
n�k��

σn,kσ̃k,� = ∑
n�k��

σ̃n,kσk,� = δn,�,

where δn,� is the Kronecker symbol. �
From (14) and the orthogonality shown above, we can see the equivalence between the pair of

generalized Stirling numbers and the corresponding pairs of Riordan arrays.

From (13) in the introduction, we know that the generalized Sheffer-type polynomial sequences

related to the generalized Stirling numbersσ(n, k) and σ̃ (n, k) are given, respectively, by the following

expressions with respect to A(z) ∈ E .

1

an
pn(x) =

n∑
k=0

σ(n, k)xk (30)

and

1

an
p̄n(x) =

n∑
k=0

σ̄ (n, k)xk, (31)

where pn(x) and p̄n(x) are generalized Sheffer-type polynomials associated with (d(z), h(z)) and

(d(h̄(z))−1, h̄(z)), respectively, or [f (z), g(z)] and [f (ḡ(z))−1, ḡ(z)], respectively. Here d ∈ F0, h ∈
F1, f ∈ �0, and g ∈ �−1, h̄ is the compositional inverse of h in terms of z, and ḡ is the compositional

inverse of g in terms of z−1. We call {pn(x), p̄n(x)} the pair of generalized Sheffer-type polynomial

sequences generated by (d(z), h(z)) or [f (z), g(z)] with respect to A(z).
Applying the reciprocal relations (28) to (30) and (31) we get

Corollary 4.5. There hold the relations

n∑
k=0

σ̄ (n, k)
1

ak
pk(x) = xn (32)

and

n∑
k=0

σ(n, k)
1

ak
p̄k(x) = xn, (33)
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or equivalently,

n∑
k=0

d̄n,kpk(x) = anx
n and

n∑
k=0

dn,kp̄k(x) = anx
n. (34)

Example 4.2. Suppose f ∈ �0 and g ∈ �−1 and denote d(z) = 1/f (z−1) and h(z) = 1/g(z−1). Thus
d(z) ∈ F0 and h(z) ∈ F1. Example 1.1 gives the ordinary Sheffer-type polynomial sequence {pn(x)}
generated by (15) and (16). Thus,

pn(x) =
n∑

k=0

dn,kx
k =

n∑
k=0

[zn]d(z)(h(z))kxk,

and the corresponding Sheffer-type polynomial sequence pair {pn(x), p̄n(x)} is given by the above

expression and

p̄n(x) =
n∑

k=0

d̃n,kx
k =

n∑
k=0

[zn]d(h̄(z))−1(h̄(z))kxk.

If d(z) = zh′(z)
h(z)

, or equivalently, f (z) = g(z)
zg′(z) , then the corresponding {Fn(x), F̄n(x)} defined by

Fn(x) =
n∑

k=0

dn,kx
k =

n∑
k=0

[zn−1]h′(z)(h(z))k−1xk,

F̄n(x) =
n∑

k=0

d̃n,kx
k =

n∑
k=0

[zn−1]h̄′(z)(h̄(z))k−1xk,

where h̄ is the compositional inverse of h in terms of z, and {Fn(x)} is the Faber polynomial sequence.

From Corollary 4.5, we obtain the following identities

n∑
k=0

(
[zn−1]h̄′(z)(h̄(z))k−1

)
Fk(x) = xn,

n∑
k=0

(
[zn−1]h′(z)(h(z))k−1

)
F̄k(x) = xn.

For instance, if h(z) = z/(1− z), then {Fk(x)} is the zero order Laguerre polynomial sequence {Lk(x)}.
Thus the above identities can be specified to

n∑
k=0

(−1)k
(

n

n − k

)
Ln(x) = xn.

Here, we use the fact of h̄(z) = h(z) and L̄n(x) = Ln(x).
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