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SPECIAL VALUES OF ZETA FUNCTIONS
ATTACHED TO SIEGEL MODULAR FORMS

By MICHAEL HARRIS (*)

Introduction

Let j be a cusp form of even weight k for the full Siegel modular group of degree n e 4 Z; let
v|/ be a primitive Dirichlet character of conductor m; for simplicity we assume
v|/ ( — 1) = 1. When j is an eigenform for all the associated Hecke operators, Andrianov and
Kalinin have recently shown that, under certain restrictive conditions, a certain Dirichlet
series with Euler product L(/, s, v|/) attached to j and \|/ can be extended to a meromorphic
function on the entire complex s plane which (under still more restrictive hypotheses) satisfies
a functional equation of the usual type (c/. [2]; their results are summarized in paragraph 5
below). We assume that the Fourier coefficients of j are algebraic numbers. The last
Theorem of the present paper states that if A;>2n+ 1, then, at each of the critical points
(essentially in the sense ofDeligne's paper [7]) ofL(y, s, \|/), at which L (j, s, \|/) has no pole (1),
the value of L (j, s, \|/) is an algebraic multiple of ̂  < j, j >^, where d is an integer depending
only on k, s, and n, and < , \ is the Petersson inner product for modular forms of
weight k. The proof gives an effective method for determining the field in which the
algebraic number L(j, s, VI/VT^O,^)^ lies.

The main object of this paper, however, is not to prove this Theorem, but rather to explain
how the differential operators, originally introduced by Maa°, which have arisen in recent
work ofShimura and Katz, as well as in the Andrianov-Kalinin paper, can be interpreted in
terms both of representation theory and of algebraic geometry, and how these interpretations
can be used to prove algebraicity Theorems of which the one mentioned in the last paragraph
is a particular example. Other examples are the Theorems of Shimura on Rankin-Selberg
type zeta functions for Hilbert modular forms ([34], [35], [37]) on which the arguments of this
paper are loosely modeled (c/. [14]), and that ofSturm and Zagier ([46], [47]) on the symmetric
square of the standard zeta function attached to a classical cusp form.

( : ; : ) Research par t ia l ly supported by NSF Grant MCS77-04951.
( i ) When k^>n there are many such points.
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78 M. HARRIS

What is common to all the results mentioned above is that, in each case, the special value of
the zeta function is equal, up to a scalar in K^ multiplied by a power of 71, to a Petersson inner
product of the form < j, h^. 5 (h^) \. Here ̂  and h^ are holomorphic modular forms of
weights / and X respectively, and 5 is a differential operator which takes modular forms of
\Y^eight X, to (nonholomorphic) modular forms of weight k — I . Our basic argument consists
in showing that:

O^i.s^X-OJo;^

where JQ is holomorphic of weight k with Fourier coefficients in the field generated over Q by
the Fourier coefficients of h^ and h^. This is done in three steps:

0 . 1 . The forms /. / ? i . and h^ correspond respectively to functions (p, (pi, and (p2 on the
group G=Sp(2^ ,R) which transform under the maximal compact subgroup:

^id) A )eG A+Bf urn^r^,[ \B A / J

by the formulas:

c p f ^ . f ^ . B ) )=de t (A+BO- f e (p^) ,
\ V 0 A //

cpif^.f^ .^^de^A+Bfpq)^),
\ \15 A //

^ ( ^ ' ( t ^^eUA+BO-^/) ,^eG, ( A " . ^ K ,\ \ B A / / \ B A /

and, if F=Sp(2n,Z)c=G and dg is the standard Haar measure on G:

1 f ———————— dej
Q,^.5(^)>fc= (p.(pi .D(p2^=((p, (pl.Dq)^),

vol (F\G) Jr^G

where D is a certain left-invariant operator on G.

0.2. We may write (pi. Dcp^ as a finite sum ofeigenfunctions q^0 for Z (g^), the center of the
universal enveloping algebra of the complexified Lie algebra of G. Now (p is an
eigenfunction for Z(c^) with character ^o; if the character ̂  ofZ(g^) corresponds to q/0, it
follows from self-adjointness properties of Z(g^) that:

</, ̂ .§(^)\=(^ cpi.D(p,)=((p, (p<°)).

0.3. Finally, (p(o) corresponds (as in step 1) to a holomorphic modular form JQ with the
required rationality properties, and:

((p.cp^OJo),.
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SPECIAL VALUES OF ZETA FUNCTIONS 79

Of these steps, the first is completely standard. The second depends on the
decomposition of tensor products of "limits ofholomorphic discrete series representations."
as investigated, tor example, by Jakobsen and Vergne in [16]. That §, which is initially
defined in terms of the MaaB operators, "comes from" the universal enveloping algebra
follows directly from the transformation property of 5. The third step is based on an idea of
Katz in [18]: We interpret the MaaB operators in terms of the Gauss-Manin connection on the
relative algebraic de Rham cohomology of the universal family of abelian varieties over the
Siegel upper half space. The rationality result is a consequence of this interpretation and the
"^-expansion principle", Theorem 4.9. It should be mentioned that this part of the
argument doesn't seem to work when either h^ or h^ is not of integral weight, as in the Sturm-
Zagier example. However, in the one-dimensional case the differential operators are so
explicit that the Fourier coefficients of JQ can be shown directly to have the right rationality
properties.

Several possible extensions of this theory should be noted:

0.4. Manin and Panchishkin have obtained results similar to those of Shimura ([34], [35])
by a different method, one which allows the estimation of how the p-adic absolute value of the
"algebraic part" of the value of the Rankin-Selberg zeta function D(s,/^, g) varies as /%,
runs over the set of twists of / by Dirichlet characters ^ of p-power conductor
(c/. [24]). Since the enveloping algebra and the moduli space both have Z-integral structures
(as well as Q-rational structures), it is possible that such results can be deduced by the
methods of this paper.

0.5. The techniques used here are valid, in principle, for a very general class of modular
forms; paragraph 7 contains a list of axioms which is probably sufficient to prove analogues of
our Theorem 7.1. Of course, the zeta functions have yet to be defined in this degree of
generality. The next candidates are the zeta functions attached by Shintani to holomorphic
cusp forms for groups of type U(2, 1) [39].

In the course of this paper, a number of artificially restrictive conditions are imposed upon
our modular form. Some of these have no other motivation than the desire to avoid
cluttering the final result with irrelevant notation. Others are required by the methods of
Andrianov-Kalinin, in particular by the absence of detailed information on the analytic
properties ofEisenstein series in the most general relevant case. It is enough to mention that
most of the arguments in the body of the text depend entirely upon formal properties of the
modular forms and differential operators in question, and that extensions of this method to
higher level (for example) involve no new ideas.

The outline of this paper is as follows: paragraphs 1 and 2, which contain nothing original,
review the theory of Siegel modular forms in the languages of [40] or [23], and [5] or [13],
respectively. In paragraph 3 some scattered facts about tensor products of analytic
continuations of discrete series representations are collected, and step 0.2 above is carried
out. The principal novelty here is the use of a Q-rational structure on the enveloping
algebra. In paragraph 4 Siegel modular forms are investigated from the point of view of
algebraic geometry; the Gauss-Manin connection is investigated, along the lines of [19], and a
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80 M. HARRIS

version of the '^-expansion principle" is proved. Section 5 is a resume of the theory of
Andrianov and Kalinin. The various differential operators introduced in the previous
sections are compared in paragraph 6; paragraph 7 applies this work to derive the Theorem
on special values alluded to above, and concludes with an axiomatic summary of what has
gone before, with a view to future generalization. An appendix sketches two proofs of the
most general ^-expansion principle.

My acknowledgments are of two sorts. It goes without saying that this work depends on
the previous efforts of many people, but a few should be mentioned specifically. The
Theorem on special values should be regarded in the context ofDeligne's conjecture [7] on the
relations between special values of zeta functions and periods of integrals. Since I don't
really understand what "motive" is attached to the zeta functions in question here, I can only
say that Corollary 7.3 is not clearly inconsistent with Deligne's conjecture. More
specifically, Theorem 7.1 and its proof are heavily indebted to the techniques introduced by
Shimura in [34]. Shimura's work in other contexts plays an important role in paragraph 4,
which is largely formulated, however, in a language based on that of Katz ([18], [19]). Of
course, were it not for the work of Andrianov and Kalinin, the title of this paper would have
been vacuous.

In the course of writing this paper, I have benefited from conversations with a number of
mathematicians, whom I take this opportunity to thank. A remark of D. Kazhdan directed
my attention initially to the significance of the canonical differential operators of
paragraph 6. The derivation of Corollary 7.3 from Corollary 7.2 is based on a suggestion
ofG. Shimura. In preparing the final version of this paper, I was grateful for the suggestions
of A. Mayer, J.-P. Serre, M. Vergne, and especially B. Mazur, who has encouraged me in this
project since its inception. Most especially, I am grateful to H. P. Jakobsen, who patiently
explained the theory of holomorphic representations to me; without his explanations, the
theory of paragraph 3, and this paper, would never have come into being.

Notation

The symbols Z, Q, R, and C have their usual meaning, as does GL(n, R) for any ring R;
M (n, R) is the algebra of n x n matrices with coefficients in R. The identity matrix is
denoted I; its dimension will always be evident. The 2n x 2n matrix J is given by:

j - f ° l}-l-i or
then, for any ring R, Sp (2 n, R) is the group of matrices g e M (2 n, R) such that g J g ' = J: Here
g ' is the transpose of g. When such a g is written:

/A B\
^[c D ) '

A, B, C, and D will always denote n x n matrices. The determinant (resp. trace) of an n x n
matrix g is written det ^(resp. Tr^).
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SPECIAL VALUES OF ZETA FUNCTIONS 81

The notation e(z) denotes ^27Ilz, for any complex number z. When G is a real matrix
group and X is an element of its Lie algebra, then exp(X) is the corresponding element
of G. Lie algebras are usually denoted by Gothic lower case letters.

If Y is a real symmetric square matrix, we write Y>0 (resp. Y^O) to indicate that Y is
positive definite (resp. semidefmite).

If V is a vector space over a field L of characteristic zero, we write either V®" or (g) {'V to
denote the n-fold tensor product of V with itself; in the former case, the field is
understood. The notation Sym "V denotes the n-fold symmetric tensor product ofV with
itself; A"V the n-th exterior power of V. We let V ( x ) o=Sym ( )V=AOV=L. If X^ and
X^eV, then define:

XioX^-^Xi^X^+X^X^eSyn^V;

similarly for higher symmetric powers. The symmetric algebra on V is
CO

S(V)= ® Sym"(V). In general, n can be a negative integer in the above notation; thus
n=0

V®-", for n>0, denotes (V*)0", where V* is the dual space to V.
IfX is a real manifold and V a complex vector space, C^ (X, V) is the space o f C / V-valued

functions on X. If X has a measure, then vol X is the volume of X with respect to that
measure (usually implicit). If X is a complex manifold, or an algebraic variety, then (9^ is its
structure sheaf.

We denote by ̂  a primitive N-th root of unity, for any integer N>0.
In paragraph 4, by a "section of the sheaf y we ordinarily mean a section of//' over some

open set, when the open set is not invoked explicitly.
IfG is a group, a representation ofGis denoted (p, Vp), where Vp is a vector space and p is a

homomorphism from G to the group of automorphisms of Vp.
The symbol 5^ is the Kronecker delta.

The field of all algebraic numbers, regarded as a subfield of C, is denoted Q.

1. Review of Siegel modular forms

The basic references for this section are [23], [31], and [2].

1.0. We denote by (3^ the Siegel upper half-space of degree n :

(S^= { Z = X + i Y e M ( n , C)|X, YeM(n, R), X=X^ Y=Y t , Y>0}.

The group G==Sp(2n, R) acts on S^ in the usual way: If g=( )eG, ZeS^, then:
\C Dy

^(Z)=(AZ+B)(CZ+D)-1 .
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82 M. HARRIS

I . O . I . The point f l belongs to S^; the map g\—^g{i\\ geG, induces an isomorphism:

G/K ̂  £,,

where K is the subgroup of G whose elements are matrices of the form ( ]. The
\B A /

group K is a maximal compact subgroup ofG, and is canonically identified with the unitary
group U(^) by the map:

(^ A")^8--

1.0.3. For any g = ( ) e G, Z e Sy,, we define the canonical automorphy jactor:

J (^Z)==CZ+DeGL(^ C).

If p : GL(n, C) -> GL(Vp) is a representation on some finite dimensional complex vector
space Vp, we let Jp(^, Z)=p(J(^, Z)). For any p, Jp satisfies the cocycle condition:

1.0.4. Jp(^ ̂  Z)=Jp(^i , 92 ZMp(^ Z).

We note that, for keK, the map 1.0.2 identifies k with J ( k , i\).

1.0.5. Given a point Z = X + i Y e 6 ^ , it is sometimes useful to know an explicit
representative for Z in G under the isomorphism G/Kc^ Q^. We let Y^2 be the positive-
definite symmetric matrix obtained by taking square roots of the eigenvalues of Y satisfying
(Yi/2)2^Y;then:

d^f/Y^2 XY-^
Qz-\^ o Y- 1 / 2 )

is a representative for Z in G.

1.1. Let F <= Sp(2 n, Z) be a subgroup of finite index. A Siegel modular jorm of weight k
jor F is a holomorphic function j : 6^ -> C such that:

I . I . I . /(yZMdet^Z^Z), yeF.

When n= 1 one adds the usual conditions of holomorphy at the cusps, which is automatic
when n > 1.

More generally, if p : GL(n, C)^GL(Vp) is a holomorphic representation, a Siegel
modular form of type p for F is a holomorphrc function/ : (5^ -> V such that:

1 - 1 ' 2 - / (yZ)=Jp(y,Z)/(Z) , yeF.
If / is a C^-function satisfying I . I . I (resp. 1.1.2), we say / is a C^ modular form (2) of

(2) This is in contradiction with the usual terminology, which imposes a growth condition at infinity. In
practice, this standard hypothesis will be satisfied, and this will be indicated. For holomorphic /, n = l , this
hypothesis is part of the definition.
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SPECIAL VALUES OF ZETA FUNCTIONS 83

weight k (resp. of type p) for r. The set of Siegel modular forms of weight k (resp. type p)
for r is denoted G^F) (resp. Gp(F)]; the C00 modular forms are denoted G^ (F), G^° (F).

We define, for any integer N, the subgroup F (N) <= Sp (2 n, Z) of matrices congruent to the
identity modulo N; ihejull modular group is r(l)==Sp(2 n, Z).

1.2. LetMeZ. We define:

^ = { N = N t e M ( n , Q ) | N ^ O , T r ( N N ' ) e Z , V N ' = N ' t e M ( ^ z , Z), N'=0(mod M)}.

Any/ eGp (F(M)) has a Fourier expansion:

1.2.1. ^ = I a(NMTr(NZ)), a(N)eVp;
N6^

moreover ^(ANA')=a(A) for any AeSL(n, Z). I fa (N)^0 implies that N>0, then/is a
CMSJ? /orm; the set of all cusp forms of weight k (resp. type p) for F(M) is denoted
S,(r(M))[resp.Sp(r(M))].

If/ i eSfe(r(M))j2^G? (HM)), we define the Petersson inner product of/i and/^ to be:

1.2.2. <y,^>^^^^(Z)y7(Z)(detY)-^^.

whenever this integral converges absolutely; here Q) is a fundamental domain for F (M) in ©„,
X and Y are the standard coordinates on ©„, and dX ̂ Y/(det Y)^1 is the G-invariant
volume form on ©„.

1.4. We now introduce some specific Siegel modular forms which arise in Andrianov's
theory. First, let Ne^i, N>0 and let ^ be a primitive Dirichlet character modulo some
positive integer m. We define the theta-series attached to N and ^:

1.4.1. Q^(Z, x)= Z X (det (M)MTr(MNM tZ))
MeM(n,Z)

this is a modular form of weight n / 2 for F (2 det (2 N) m2) (c/. [I], §5).
Let m be as above; let:

ro(m)=J(^ ^er( l ) |C==0(modm)l ;

^-{(^ ^6^(•)}•
For any feeZ, seC, and any (not necessarily primitive) character ^ modulo m, we define
(formally) the Eisenstein series:

I . Q i. ^ ^ v A^^ ^-^(Y))(ciet Y)-1.4.2. E,(Z,5,x)= Z de t ( J (y ,Z) ) . . . ^.2^
Yer,\ro(w) I061 J u ^ ^^1

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



84 M. HARRIS

where:

Z = X + f Y , ^(y)=det(D) if ^ ( A B}.
\^ u /

This Eisenstein series converges absolutely when A:+Re ( 2 . s ) > / ? + 1 to an element of
def

G f c { r { m ) ) . When s=0 and ^ > n + l , /c even, E/, ( Z , / ) = E ^ (Z, 0, 7) belongs
to G^(r(m)), and its Fourier coefficients are rational if m=l , cyclotomic in general ([40],
[51]).

For any k, ̂ , E^ (Z, s, ^) can be continued to a meromorphic function in s which satisfies a
functional equation i f m = = l ([2]; Prop. 3.2). The poles o f E ^ ( Z , s , ^ ) have yet to be
completely determined (but cj. Prop. 3.2 of [2]); in any event, we will mainly be concerned
with those s for which the defining series converges.

1.5. The E^(Z, s, ^) for different (fe, s), are connected with one another by a differential
operator which was first introduced by MaaB in [22], and which will reappear in various
guises throughout this paper.

Let d / d Z be the matrix (((1 +5^)/2).(5/^Z^.)), where the subscript ij refers to the matrix
entry in S^. For any oceR, a ^ 0, we define a differential operator on S^, following
Maap, [23] :

1.5.1. M„=MJZ)=det(Z-Z) ( ("+ l ) / 2 )- adetf-^-)det(Z-Z) a- ( ("- l ) / 2) .
\dZ]

We now define:

S^SJZ^f-^Y^detY)-^.
V 471 /

It follows immediately from the results of MaaB on M^ in [23], § 19, that if:

£"(a)=a(a-10•••(a-MiA)'
1-5.2. 5^(Z, s, 30=^"^E^(Z, s-1, x)

and, if we write:

(j\g,){Z)=det^(g,Z))-'J(gZ), geG, /eC°°(S^C),
that:

1.5.3. 8jyi0j=(8«y)1^2, /eC°°(^,C), geG.

In particular, for k e Z, §^ induces a map:

5,: Gnr)^G^(r)

for any subgroup F <= F(l) of finite index.
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SPECIAL VALUES OF ZETA FUNCTIONS 85

1.6. For any holomorphic representation (p, Vp) of GL(n,C), we define the
G-homogeneous vector bundle <^p over 6,,:

1.6.1. ^p = S^ x Vp, with G action defined by:

^(Z,F)=^(Z),Jp(^,Z)u); ^eG, Ze^, reVp.

That this is indeed a G-action follows from the cocycle condition 1.0.4. For any subgroup
r <= G, <^p descends to a bundle denoted <^p(r), over F\S^. Then there are
isomorphisms, assuming F acts without fixed points on S,:

i.-. H^e..,,n,̂ ;̂ }̂ <r,

..6.3. H.,r̂ 6.,/,n)S{G•0^7J^^^^
Here it is assumed that r is of finite index in r (1); when n = 1 we impose the usual cuspidal

condition on the left-hand side in 1.6.3.
When p=det\ we write (^, <^(r) instead of^p, ^p(F).

1.6.4. By the very definition of <f , we see that each vector ve\ gives rise to a global
"constant" section v of <^p over 6^: At every point Ze£^, ?(Z)=(Z, v) in the
trivialization 1.6.1.

2. Lifting to the group

2.0. Let 9 be the Lie algebra of G, T that of K. We write the Cartan decomposition
g=f©p, where [f, p] c p, [p, p] <= k. Let 9c=9®RC; define tc, PC. etc.,
correspondingly. The adjoint action of K on gc induces a decomposition:

2.0.1. (k-fcep^P'
as follows: We identify K with U {n) as in 1.0.2. The inclusion U (n) -> GL (n, C) is called
the standard representation ofK, and is denoted. St: it extends to the identity representation

def

Kc=GL(yi,C) -> GL(n,C), also denoted St. The dual of St, denoted St*, takes the

matrix k = ( ) e K to the matrix A — B i e GL (n, C). Now 2.0.1 can be defined by
\B A /

requiring that, under the adjoint representation of K:

p^Sym^St*), p-^Sym^St).

We may represent p + c: gc <= M (2 n, C) [resp. p- c: M (2 n, C)] as the set of matrices of the
form:

2.0.2.
^ ( a ) - ! 0 ' l a ) , o^eM^C),

2 \ i a — a /

r r e s p . p _ ( a ) - f a ~^\ a^eM^, C)1.
2 \ -;a -a 7
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86 M. HARRIS

If k is as above, then:

AdMp-^aO^aA-BOo^-B^))
Adk(p.W)=p_((A-{-Bi)ai(At-}-Bti)).

We note that p+ and p~ are Abelian Lie subalgebras of gc-

2.1.0. We identify fc with ^e set of matrices;

^-(^ ^)-
oc^-a, P^P, a,peM(n,C).

Let fp be the set ofpo(a, P) with a, p e M ( M , Q), as in 2.1.1; Let:

PQ (resp. p Q ) = = { p + ( a ) | a e M ( n , Q), a==a1} (resp. p- (a) |aeM(n, Q), 0=0'].

Then 9Q=^Q®p$©pQ is a Q-Lie algebra such that 9Q®QC=gc- Under the linear
transformation X -> CXC~1, where:

c=f- ^ I 1}[ ,1 ,I/
QQ is taken to the Lie algebra $p(2 n, Q) of Sp (2n, Q), embedded in the canonical way in
sp(2n,C).

2.2. Let (p, Vp) be any holomorphic representation of K^=GL(n, C);
p : Kc -> GL (Vp). If cp e C00 (G, Vp) satisfies:

2.2.1. (pte^pWcpto), keK, goG,

we say (p is of type p with respect to K. The space of all such (p is denoted C^ (G, Vp)p. If
p=det^ for some integer X, we say (p is of type X, and write V^, C00 (G, V^, etc., in place
of Vp, etc.

If yeC^.Vp), define:

2.2.2. ^te)=^,p(^)==Jp(^ il)-1/^!)), ^eG;

then (p^eC^ (G, Vp)p. Conversely, given any (peC^ (G, Vp)p, we may define.

2.2.3. ^(Z)=^p(Z)=Jp(^n)(p(^), Ze^,

where ^eG is any element such that g(il)==Z; evidently j^ is well defined. This
correspondence, denoted simply y<-^(p, is a one-to-one correspondence:

C-^.Vp^C^G.Vp)?.

| 4e SERIE - TOME 14 - 1981



SPECIAL VALUES OF ZETA FUNCTIONS 87

We make the following well-known observation:

2.2.4. Let r c= F(l) be a discrete subgroup of finite index. Then, \i) <-^(p:

jeG^(Y)^ (peC^rYG.V^,

where the latter condition signifies, in addition to 2.2.1, that (p (y g ) = (p (g) for all y e F, ̂  e G.
If (peC^ (G, V) for any complex vector space V, and if Xeg, we define:

2.2.5. X i , ^ > = d j ( g e x p ( t X ) ) \ ^ Q .
at

This action extends linearly to 9^, and to its enveloping algebra U(c^).
2.3. PROPOSITION. — The function f is holomorphic on S^ if and only (/'X * (p == 0/or all

X e p ~ (we r/ian say (p f5 o/holomorphic ^pe).
Proo/. - We first observe that this is essentially Lemma 5.7 of [4]; we sketch the proof

briefly.

By the product rule:

x*(p(^)=(x*(Jp(a, n^VtoO-i^+Jp^ iir^x*/^!)).
Now one can compute directly, using the methods of 6.2 below, that X * J p (a, i I) ~ " 1 = 0 for
all X e p " : One checks this first for p=St, then uses the chain rule for general p. It thus
suffices to check that:

2.3.1. /is holomorphic <=> Xi^f(g (i I)) = 0, for all X e p ~ we may as well assume Vp = C.
Let Xkj=p- (a^.), where a^eM(n, C) has zeroes in all'except the kj andjTc places, and

where the kj and jk entries are (l+§j^)/2:

( ^
2.3.2. a,, < \A k^ . /c, ;=l, . . . . n .

\2 /

-( 1 ) k = j .

Let D / be the symmetric n x n matrix whose kj entry is (1 + 8kj)/2 (8 j /5Z^), where Zj,jls ̂ e
coordinate in ©„.

Since an analogous computation will be carried out in paragraph 6 for p'^, the following
computation will be merely sketched. First, to verify the right hand assertion of 2.3.1, it is
enough to check the case g=g^ for Z = X + f Y (cj. 1.0.5). One then computes that:

2.3.3. -^X^.*/ (^zO'I)) = {kj coordinate of the matrix Y^2 DJ \112}.

Since Y^2 is an invertible matrix, 2.3.1, and consequently the proposition, follow
from 2.3.3.
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2.4. We mentioned in 1.6 that the elements ̂  eGp° (F) can be identified with global C00

sections j of the holomorphic vector bundle ^p(F) over r\6^. We may construct <^p in
another way: Let K act on the product G x V p by the formula:

2.4.1 . (g,v)k=(gk,p(krlv), geG, keK, reVp.

The quotient (GxVp) /K, with G acting on the first factor, is then easily seen to be
equivariantly equivalent to the homogeneous vector bundle ^p on (5^; r\GxVp/K is
equivalent to ^p(F). The formula 2.4.1 makes manifest the correspondence of 1.6.2
between (p e C^ (F\G, Vp)p and global sections ] e H°^ (F\^, <Tp (F)). Of course (p is of
holomorphic type if and only if ] is a holomorphic section (by Prop. 2.3). We summarize
our three one-to-one correspondences:

2.5. PROPOSITION . — Let r be a discrete subgroup of G, ojjinite index in F (1). There is a
one-to-one correspondence between:

(a) junctions jeG^(T) [resp.J eC^G, Vp)];
(b) Junctions (p e C- (P\G, Vp)p [resp, (p e C- (G, Vp)p];
(c) sections j eH°,(r\6^ ^p(F)) (resp., C^ sections j of <fp over SJ. This

correspondence is compatible with tensor products, direct sums, and duality. Finally j is
holomorphic <=> (p is of holomorphic type oj is holomorphic.

The correspondences are symbolized j ̂ ^.j ^-> j, ̂ ^ j ^ j ^(p, etc.

2.6. We now suppose r=-T(M), for some integer M>0. Let dg be the left-invariant
measure on G such that, for ally eL1 (G/K):

f - f . dXd^
^9= ^ZJ-TxT^TT-J G Je/(detYr1-

Let^eSjr), ^eG^(r), ^<->(pi. Then we have the formula, whenever the integrals
involved converge absolutely:

1 ( ___ ^
2-6.1. <JiJ2>k=—T7r^~r^ <Pi(60<P2^)^ =(<Pi . (P2)(L 2 inner product).voi(r\G) jp^G

This interpretation has the following advantage: The center Z (c^) of U (9^) is spanned over C
by elements ^ which are self-adjoint with respect to ( , ) (cf. [43], pp. 268-269): that is,

2.6 .2 . K*(pi, ̂ ^i. S*<P2). Y^i . (p2eL2(^\G).

2.6.3. LEMMA. — Suppose )^ is a (holomorphic) cuspjormjor F of weight kj^ ^-> (p^. Let
j^ eG^ (r),^ ̂ ^'2 sucn tnat ^'2 ls an automorphic jorm in the sense of Harish-Chandra [5];
i.e., (p2 is Z(Q^)-finite and slowly increasing at infinity. Suppose ^eZ(c^) satisfies
2.6.2. Then:

((;*(pl,(p2)=((pi, (;*(();).
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Prooj. - It follows from Chapter I of [13] {cj. especially Lemma 14 and the proof of
Lemma 15) that both Fi=(^*(pi) . (p2 and F^cpi.^*^) are bounded on P\G. Let
Ui c U^ <= . . . c:U^c: . . . c: r\G be a sequence of relatively compact open subsets of
F\G such that 1J U^=F\G. Since F\G has finite volume, it follows that:

K*(pi, (p2)= lim Fi,
n-^oc Ju,,

( (p i ,^*(p2)= lim ¥2
n^oc JU,,

But since the function obtained by cutting off (p^ outside U^ is in L2 (P\G), it follows from

2.6.2 that, for each n, F\= F^. The Lemma follows immediately.
Ju,, Ju,,

2.6.4. COROLLARY. — Under the above hypotheses, let (pi be an eigenjunctionjor Z (go), the
n

center o) U^), with character ̂ . Let (p2= E <Pi, p ̂ ^? (p2, i ^ ̂  eigenjunction with
1=1

character ^Jor Z(QQ), SKC^ ^a? ^i^^jjor i^j. Then:

(<Pl. <P2)=(<Pl. <P2,l)-

Proo/. — We have only to note that, since Z(9o) and the space of self-adjoint elements in
Z(gc) both span Z(gc) over C, two characters which agree on one of these subalgebras
necessarily agree on the other.

2.7. Let U=U(9c). We have defined an action of U on C^G, V) for any complex
vector space V. Now \cij be a holomorphic automorphic form of type p for F, and let
j <-^ (p e C^ (G, Vp)p. The cyclic representation generated byj is the representation (n^, Vf )
of U on the space of functions:

^{A*^^^^^,^).

In the language of [42 a], (n^, i^ ^ ) is an admissible (9, K)-module, which is to say that K acts
on V ^ (by right translation) in a manner compatible with the action of g, and that the
representation is K-finite: Every vector vei^j- is contained in a finite dimensional
K-in variant subspace.

Assume p is an irreducible representation of K^. Let Vo be the smallest K-invariant
subspace of ̂  ̂  containing (p. One checks, using Proposition 2.3, that:

2.7.1. X*i;o=0. Xep-, i?oeVo.

2.7.2. The representation of K on Vo is equivalent to the representation (p*, V^)
contragredient to (p, Vp).

We say that Vo is the highest K-type subspace of V j (sic).
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It follows from 2.7. F and 2.7.2 that:
2.8. LEMMA. — As a U {^-module, V ^ is isomorphic to a quotient o):

Dp=U(ciJ®^p-^;

here tc operates on V^ by the (differential of the) representation p*, and p ~ acts trivially on V^.
p

The properties of the representations Dp are discussed in the next section.

3. Properties of antiholomorphic representations

3.0. When p is a representation of Kc, we frequently denote by p the corresponding
representation of fc as well.

We have identified T( with c\\(n, C). in paragraph 2. Let h be the diagonal Cartan
subalgebra of tc; 1) is also a Cartan subalgebra of go We identify characters of I) in the usual
way with n-tuples of complex numbers. We may thus index the finite dimensional
irreducible representations p of Kc by n-tuples of integers o^ ̂ o^ .. . ̂ a^, where
(a^ , . . .,a^), as a character of I), is the highest weight of p relative to the standard orde-
ring of the roots of I) in fc - With this indexing, p* corresponds to
— a ^ ^ — a ^ _ i ^ . . . ^ — a i . For example, the adjoint action of Kc on p~ (resp. p+)
corresponds to the yi-tuple 2^0^ . . . ^0 (resp. 0^ . . . ^0^ -2).

Let bo =^ t) be the Borel subalgebra of fc corresponding to the above ordering of the roots;
then b = bo ©p ~ is a Borel subalgebra of go. The character 5 = half the sum of the positive
roots of gc (with respect to t) and b) corresponds to the n-tuple (n, n— 1, . . . , 2, 1).

We shall make frequent use of the following proposition, which is a special case of a result
of Schmid:

3\ 1. PROPOSITION [30]. — The adjoint representation o/Kc on S (p + ) = U (p + ) decomposes
into the direct sum of the finite-dimensional representations corresponding to n-tuples
(Xi ̂  . . . ^a,, where o^ ^0 and each a, is an even integer. Each such representation occurs
with multiplicity one. Finally, the representation corresponding to o^ ̂  . . . ^a^ occurs in
Symm(p+) where: i

^=-^(a i+ . . . +a,).

3.2. In 2.7 we defined the representation Dp, for any finite-dimensional holomorphic
representation (p, Vp) of Kc. We call Dp the antiholomorphic representation of U = U (gc)
with highest K-type p*. As a representation ofK, Dp=S(p+)®c^p t• When p=detfc, we
write Dfe instead of Dp. It follows from Proposition 3.1 that.

3.2.1. The representations of Kc which occur in D^ are those of the form
— ^ c + a i ^ . . . ^ — ^ c + a ^ , where o^, . . . , a^ are as in 3.1; furthermore, each such
representation occurs with multiplicity one.

Since every holomorphic representation p* of Kc corresponds to a rational representation
(p*(Q), Vp*(Q^) of fg, unique up to isomorphism, we may define in the obvious way:

Dp.Q=U(clQ)®u(tQ©pQ)Vp.(Q);
then Dp^D,, y®yC.
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More generally, if (3 is a nonzero complex number, we let
QQ p = IQ® P RQ © P ~ 1 p Q ^ . Then g<^ p is a Q-form of Qc- We define Dp, Q p in the obvious
way, and let Up=U (QQ,p), Zp=the center of Up.

3.3. LEMMA. — As a subalgebra of 'U (gc), Zp is independent of the choice of P.

Proof. - Choose Q-bases { X ^ , . . . , X,}, { ¥ „ , . . . , Y,} for RQ and p p ,
respectively. T h e n { p X i , . . . , R X ^ } (resp. { P~ 1 Yi, . . . , P"^}) is a Q-basis for P?Q
(resp. P~ 1 po). It is well known (cf. [31], pp. 10-05, 10-06) that any element ^eZp can be
written:

3.3.1. ^=Ko. o+ Z (PX)^,. .(P^Y)", K, ,eU(iQ);
wi. n

here m, n run over the set of ^-tuples ofnonnegative integers, not all of whose entries are zero,
and (PX)"" is multi-index notation. We know further that:

3.3.2. Kg o is in the center of U (fg);

3.3.3. K^^0^|m|=|n|,

where | m \ is the sum of the entries of m. The Lemma follows from 3.3.3.
We write Z = Z p for any P.

3.4. PROPOSITION. — Assume p is irreducible. The algebra Z acts on Dp through a
character ̂  : Z -> Q.

proof. - Since Dp is generated over U by Vo, it is enough to show that Z acts as required
on Vo. We write (; e Z as in 3.3.1. If v e Vo, then, by the definition of Dp:

^F)=Ko,o(^) .
The Proposition is reduced, by 3.3.2, to the statement that the center of U (IQ) acts through a
rational character on the irreducible K^-space Vp*; this is well known.

We call /p, or its linear extension to Z(gc), the infinitesimal character associated
to D,. As indicated in the proof of 2.6.4, /,, is determined by its restriction to the
R-subalgebra of selfadjoint elements of Z(iv ).

3 .5 . In the notation ot 3.0, let ^ : () —> C be a linear form, and define the Vermu module'.
M(?i)=LJ®^C,

where b acts on C through the character ̂  of 1). If ^ is the highest weight (relative to bo) of the
representation p* of f^, then Dp is naturally isomorphic to a U-quotient of M(^);
furthermore, Z(c^) acts on M(^) through the character ^p (cj. [8], Chap. 7).

3.5.1. PROPOSITION. — Suppose pi, p2 are representations of K^ corresponding to n-tuples
a}^ . . . ^a^, a^ . . . ^a^, respectively, such that a^y?,j=l, 2. Then 7p^=7p^ ij and
only if p i=p2 .

Proof. — Let^=(—a;,, . . . , — a \) be the highest weight of p*, ^'==1, 2. By the preceding
remarks, we need only check that the infinitesimal characters of M(X^), i= 1, 2, coincide if
and only if ̂  =^2- Now for any characters ̂ i and ^2 oft), we know by 7.4.7 of [8] that the
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infinitesimal characters of M (k ^ ) coincide if and only if, for some w in the Weyl group W of ̂
(relative to I)), we have:

3.5.2. w(^+8)=?i2+6

with §=(n, n-1, . . . . 1) as in 3.0).
In our case W is the semidirect product of the symmetric group on n letters, acting on the

set of n-tuples, with the group generated by the reflections ( o ^ i — ^ — a p o^o^, j^i)
i = = l , . . . , n. We have to check that, if 3.5.2 holds for some weW, under the stated
hypotheses on the af , then ̂  =^3. This simple combinatorial exercise is left to the reader.

3.5.3. Remark. - If we assume that a^>n, then Dp is infmitesimally equivalent to the
space ofdifferentiable vectors in a square-integrable representation, the complex conjugate of
one of the discrete series representations constructed in [12].

3.6. The representations D^ have been investigated in some detail. As remarked in
paragraph 1 of [15], we have:

3.6.1. If k^n/2, then D^ is the infinitesimal representation arising from a unitary
representation of the group G. (To see this, take a^ -1/2 in 1.2.7 of [15]. Actually,
Jakobsen's paper deals with the complex conjugate "holomorphic type" representations, but
the results are equivalent.)

Furthermore, it follows from the methods of [28], or from the remarks in paragraph 2
of [16], that:

3.6.2. Dfc is irreducible for k^n/2.
Combining 3.6.1 and 3.6.2 with 2.6 of [16] and Proposition 3.1, we have:

3.7. PROPOSITION. — IJ k^ and k^ are integers ^n/2, then, as V-modules:

3.7.1. D^D^®0?-
p

where p runs through the components oj det/cl+/c2(2)Symr(p-)Jor all r^O. Each Dp occurs
with multiplicity one, and each p which occurs satisfies the hypotheses oj Proposition 3.5.1.

3.8. COROLLARY. — Under the hypotheses oj 3.7, we have:

3.8.1. D^Q^®QD^Q^®Dp^p
- p

as U ̂ -modules jor any complex number P, with p as in 3.7.
Proof. - It follows from 3.5.1 that the decomposition of 3.7.1 is the eigenfunction

decomposition ofD^ ®c D^ with respect to Z = Zp. By Proposition 3.4, the eigenvalues of
Z are all rational, which implies the Corollary.

3.9. COROLLARY. — Under the above hypotheses, suppose (peD^OO^^ satisfies:
(a) ^((p)==7p {Q ^jor all ^eZ (9^), where p=detkjor some integer k;
(b) (p is of type pjor K.

Then (p is of holomorphic type.
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Proof. — By (a), we see that (peD^ c: D^OOcD^; by (fc), (p is a highest K-type vector
in D^. Our conclusion follows immediately.

3.10. Given any complex number P and any holomorphic modular iormj of type p for
some subgroup F c= r (1) of finite index, we may define Y^ Q p to be the cyclic Up-module
generated by (p, where (p <-> j. Ifj^ is of weight k,; for F, f = 1, 2, such that k^n/2, then it
follows from 3.8 that, as Up-modules:

3•10•L ^Q^Q^Q^®1^^
p

where p runs through the same set as in 3.7.

We denote by R the restriction of functions on F\G x r\G to its diagonal
r\G. Elements of ^(^c^/, "^y ^e regarded in the usual way as functions on
r\G x r\G; we may thus apply R to such elements. The resulting functions are
automorphic forms in the sense of [5], by [13], Lemma 14.

3.11. LEMMA. — Letji be a holomorphic modular jorm oj weight k^n/2, f = = 1, 2,jor the
arithmetic subgroup T=V(^},jor some integer N >0. Let (p' eC00 (F\^G, V\)^ be R oj an
element oj ^,Q,p®Q^,Q,p J01' some complex number ? and some integer k; let
(p' ^-> j ' eG^ (F). Then there exists ^o6^/^,?®^?^/^,? suc^ tnat ^o'<~>^oe(Jk(^) Uo ls

holomorphic) and such that,jor any holomorphic cusp jorm j eG^{V):

3.11.1. <yJ / \=<yJo>. .
Proof. - Let j ^(peC00 (r\G, V^fe. Write (p^^R^cpp), with ( p p G D p Q p , as in

p
3.10.1. Since 3.10.1 is the eigenfunction decomposition with respect to Z (by 3.5.1), each

R((pp) belongs to C°°(r\G,Vfe)fe. Let (po=R((pp) with p=det\ By 3.5.1 and 2.6.4, we
have:

3.11.2. ((p, (?')==((?, (po),

which is equivalent (by 2.6.1) to 3.11.1. It remains to show (by 2.3) that (po is of
holomorphic type; but this follows from 3.9.

3.12. Remark. — When 0 ̂  k ̂  (n — 1 )/2, the representation D^ is no longer irreducible if
2 k e Z. (Here we may think ofD^ purely as a Lie algebra module, or else work with the two-
fold covering group of G.) The question naturally arises whether the cyclic representation
generated by a modular form of weight k is or is not irreducible when k^(n—1)/2. It is
shown in [52] that the results ofFreitag [9] and Resnikoff [27], to the effect that (holomorphic)
modular forms of these "singular" weights are annihilated by a certain class of differential
operators, are equivalent to the statement that the cyclic representations generated by these
forms are irreducible. It should be possible to prove such an irreducibility result
independently, and thus provide an alternate proof of the Theorem ofFreitag and Resnikoff.
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Assuming that (7i^, ̂ ) and (n^ ̂ ) are irreducible, wheny; is a holomorphic modular
form of weight k,-, i = 1,2, with (say) ̂  ̂  (n -1 )/2, is it still true that ̂  ®c ̂  is a direct sum
of irreducible representations of U ?

4. Review ot the algebraic theory

4.0. Any point ze<3^ corresponds to a symmetric M xn matrix (T^) whose columns are
denoted T^ , . . . , T^; the T; are vectors in C". If e^, . . . , (?„ are the columns of the nxn
identity matrix I (read from left to right), we let L^c=C" be the Z-lattice generated by
{ < ? i , . . . , e^ TI, . . . , T^ }. The complex torus ja^^C"/]-^ is an abelian variety, and there is
an analytic family of abelian varieties:

^
-i
^n

whose fiber over the point T is s^\.
If N^3 is an integer, F(N) acts without fixed points on ^\ the quotient is a smooth

algebraic family j^ of abelian varieties with level N structure over the quasi-projective
variety ^^=Y (N)\(3^. The family s^^l Ji^, with its canonical polarization (cf. 4.4
below) is (a connected component of) the universal family of principally polarized abelian
varieties of dimension n with level N structure; as such it is defined over Q(^)' For these
facts, and for much of what follows, the reader is referred to [3], [6], [25], [26], and the exposes
of Shimura in [31].

4.1. The fiber varieties ^ and ja^ gi^ rise to a series of vector bundles over ©„
and^N • For example, we have the relative algebraic De Rham cohomology bundles
(or sheaves) ^f^(^/(SJ and ^^ (^/-^s) of dimension 2 n over S^ and M^
respectively. The latter is an algebraic vector bundle, defined over Q (^). For any integer
N and an\ held L ^Q (^), let ̂ . L (^SP- -^N. L.) be ^N (^SP- ^^}. thought ol as a variety
over L. We then define ^f1 (N,L) to be the bundle (or sheaf) of L-rational sections of
^DR(^N,L/^N,L)- (For algebraic de Rham cohomology, cf. [11].)

The C^ vector bundle associated to Jf^p (over ^n or M^}ls denoted Jf^. It splits as a
direct sum:

( 4 . 1 . 1 ) . / / \ ^j^\- 0^.^0; 1 ;

this splitting induces the Hodge decomposition on the de Rham cohomology of each
fiber. The summand J '̂ ° is itself the C^ bundle associated to a holomorphic (or
algebraic) subbundle coc J^R; cois the bundle of relative 1-forms for either ^ / S ^ or
^N/^N-

The bundle of holomorphic 1-forms on (£„, or on M^, is denoted f}; the same symbol is
used to denote its associated C^ bundle.

4.2. We now define some global sections ofco, Q, and J^DR (^' l^n) over ^n- ^e denote
the standard coordinates ofC"byi^, . . ., u^ then { du^, . . . , du^} forms a basis for the fiber
(o^ of co over every point re S^.
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The fiber of ^DR^/SJ a^ the point T is naturally interpreted (via singular
cohomology) as the complex vector space Homc(L,(x)zC, C). Consider the sections
oc,, P ,6H O (^„ . .^ ,^ ( -c / /^„) ) , / = ! , . . . , / ? :

/ n n \ \

^( Z aJeJ+ Z ̂ J^
\ J = 1 J = l / f

OU ^ ̂ + ^ ^T, =6/,

( 4 . 2 . 1 ) V J - 1 ^-1 / ^overTee, .

P/ I ̂ + Z ̂ ^-^ ^
V . 7 = l J = l / /

The sections o^ and P, represent global relative 1-torms with constant periods along the
fibers of ^/£^ the sheaf ^R (^/2J is free over (9^ with basis { c x ^ , . . . , a,, pi, . . . ,
?„}. We have the obvious equalities:

(4.2.2.1) ^,=oc..+ f; Z,,P,,
j = i

(4.2.2.2) ^/ ,=oc,+ i z^P^ f = l , . . . , ^ .
^ = 1

4.2.3. As mentioned in 4.0, r(N) acts on ^/Qn and thus on ^DR^/^J. The latter
action extends to a right action of G on J^DR ( ^ / ^ n ) covering the standard action of G
on S^. Under this action, co is preserved, and the formula for the action ofGonco is given
by:

/ /^\\ / /^\ \
(4.2.3.2) g { Z, ( : I) =1 g(Z), (l(g, Z)')-' I • ||, geG, ZeS,,

d u j / \ \ du,,

(dul\
(c/- [3]? P- 346; [36]); here i . f is regarded as a column vector of n global sections

\duJ

of co. This action evidently gives rise, upon taking quotients by F(N), to the structure ofco
as a holomorphic vector bundle over ^i^. In particular, we see that co is holomorphically
equivalent to the bundle denoted ^^ in paragraphs 1 and 2. Moreover, the
2 n-dimensional complex subspace H1 c H° (6^, Jf^R (^/SJ), spanned by oci, . . . , a^,
Pi, . . ., ?„, is also preserved by G. One computes that, in terms of the basis oc^, . . . , oc^,

Pi , . . ., ?„, the element ( )eG has the matrix representation ( ] on
\^ u / ' \ "C D /

( A —BV
H1 . We note that _ j is again a symplectic matrix, and that every element

— C U j
of G arises in this way.

Finally, the coordinates Z^ on <$„ give rise to a trivialization ofQ with respect to the set of
everywhere linearly independent sections {dZ^} . Of course G acts on 6^, and therefore on
0 by functoriality; the formula for this action is given on p. 3-05 of [31]:

( 4 . 2 . 3 . 2 ) ^ (Z ,? ) )=^(Z) , ( J (^Zy) - l ^Z)J (^ ,Z) - l ) ;
here (ciZ) is the n xn matrix (dZ^), geG, Ze£^.
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Thus Q is holomorphically equivalent to ^sym^si)' over ^N. 0) ^d Q are respectively
equivalent to <^(r(N)) and ^symWH^)- In particular, Q is holomorphically
equivalent, as a homogeneous vector bundle over e^, to Sym2^; we define an algebraic
isomorphism in 4.4.

4.3. The extent to which the global sections du, of <o fail to have constant periods is
computed by the Gauss-Manin connection [20]:

v: ^(^/ej-^^^/ej®^ Q.
In terms of the isomorphism ^DR^/SJ^H1®^. V is just 1®^, where d is exterior
differentiation and 1 is the identity map on H1. In particular, by 4.2.2.1:

(4.3.1) V(^,)= t P,®^Z,,.
j = l

The important fact for our purposes is that V descends to a differential operator on
algebraic vector bundles over J^^, for any integer N^3:

V: ^DR(^/.^)-^^(^/^)®,^Q.

In fact, V may be defined in the algebraic category, as in [20]; it may then be verified (cj. [17],
4.1.2) that V lifts to the required connection over 6^.

The C^ vector bundles Jf^'0 and Jf0,'1 are generated over every point of 6^ by the sections
[du^ . . . , du^} and {du^ . . . , du^}, respectively. We denote by Split the projection
^f^ -> J^1^0 of 4.1.1, and define similarly, for each integer m^O:

Split: ( J ^ \ )®'"->(^0)®'\

Following Katz, [19], we define the differential operator:

^ : ^oo —>> ^oc' ^C^S^C)^
to be the composite: , .A ^1,0 i^i

^00 •———————————————————*- ^'oo

\ I:
\ ^oo ® C'tS^.C)^

\ [
\ Split (g) 1
\ ——
\
\

•^1,0 fo, r\
-^oc ^C^tS^C)1 6

We are here making use of the C^ versions of V and Q. Using (4.2.2.1) and (4.3.1), one
computes easily that:

(4.3.3) ^{du,)= ^ ((Z-Z)-1^),®^,, ^=1, . . . ,^

/^.
here ((Z-Z) 1 du)j is the 7-th entry of the column vector (Z-Z)

^«
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Of course, the Gauss-Manin connection may be extended by the product rule to an
algebraic connection:

V i ^ 1 \®?» __. / ̂  1 \®m ̂  o.
• V ^ D R ^ " ^ ^ D R ^ (x^/, --5

• " N

similarly for Sym"" J^DR, ^w ^DR? etc- Composing with Split, we may define the series of
differential operators:

& / i//? \ .Q \®m ( -^l,0\®w^ r\
- l^oc ) -^[^w ) ^C^e^C)"

and their analogues for A^'Jf^0, Syn^J^'0, etc. With this definition, we see that 8
satisfies the product rule:

^(a(S)b)=^(a)®b-^a®^(b),
4.4. The canonical principal polarization on the family J^^/^N g^ves rise to an

everywhere non-degenerate alternating form:

< . >DR: ^DR(^N/^N)®,^^DR(^N/^N)-^^-

This can be computed over 6^ in terms of the global sections a,, P(:

(4.4.1)
< P j . a f e > D R = ^ 8 , f e = - < o C f e , P,->DR, 7 ,^=1, . . . , ^

< P j . P f e > D R = < a , , ^ > D R = 0 , 7 ,^=1, . . . , n.

(The divergence by 1 /2 K i from the usual formula for the Chern class of the canonical theta
divisor on J^/^N? °f- [26], [44], is the divergence between cup products in algebraic
de Rham and singular cohomology.) We note that < , >DR. restricted to the space H1 , is
invariant under the action of G defined in 4.2.3.

We can now define a canonical isomorphism:

Sym2 (O^Q

as follows: For any abelian variety A let Lie (A) denote the Lie algebra of A, and let A' denote
the abelian variety dual to A. For any T e S^, let \|/^: H^p (A^) -> Lie (AJ be the composite of
the isomorphism, given by the polarization, of H^AJ with H^A^), followed by the
canonical surjection H^ (A^) -> H1 (A^, (9^) ̂  Lie(AJ. The set of maps \|/^ gives rise to a
map of algebraic vector bundles v|/: J^^R (^N/^N) ->> ̂ ^ ^or ^Y N ̂ 3. For any section
XeH°(U, 0*), for some open set UcJ^ consider the map:

^: H°(U, (o^WOJ, ̂ (^/^))^H°(U, (o*);

here V(X) is differentiation with respect to X and the connection V. The map:
Xi->v|/xeHom^(H°(U,co), H^U.o*))

gives rise by duality to the Kodaira-Spencer isomorphism of vector bundles over ^^:

(4.4.2) Syn^o^Q.

4.4.3. Using (4.4.1) and (4.2.2.1), we see that the isomorphism (4.4.2) identifies
27ii^.o^eH°(^, Sym2 co) with ^Z^.eH°(6^ Q).
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4.4.4. We reinterpret the map 8 as a C^ differential operator:

0 . ^'1.0 . ^'1,0/^x Qi/rt-»2 t ^l^\V T - ^oo ~^ Jrc-ao ^c^e^o^y111 V ^ o o )

using the isomorphism (4.4.2). In this way we may use the product rule to define higher
order iterates ^{m} of 8, as well as maps such as:

Qi/rrt^ Q, • ^'1,0 _. ^^liO/CN Cx/yft^ ^Ci7»-»-»2 / ^1.0\\^ym ^. jt ^ -)> ^oo ^c^e^o^y111 (ovm ( ^oc )^
etc.

4.5. For any field L=)Q(^), let

^(N,^=(^(N,^^,^(N,1.)= C ^(N,L).
w=0

The Gauss-Manin connection is a derivation of the sheaf of algebras ^(N, L) [thanks to
oo

(4.4.2)], for all N and L. Let^(N)= © (^ ̂  (we are thinking of ̂  as a sheaf over
w=0

^N), and let J^ (N) be the sheaf of two-sided ideals in ST ^ (N) generated by ̂ (u. We
have a natural inclusion (of sections) c^(N, C)(=^\ (N); let J(N)=^(N, C)n^ ,(N).

The map Split may be interpreted as an injection:

(4.5.1) Split: ^(N,C)/J(N) q: @ (^f^0)®".
w = o

The image of ^~(N, L) under Split is denoted ^(N, L), the sheaf of algebras of pseudo-
arithmetic modular jorms over L of level N. The map Split is compatible with the graded

00

structure on both sides of (4.5.1), and we write ^(N, L)= @ ^m(N, L), in the obvious
w=0

way. Since S (N) is horizontal with respect to V, the operator 8 is a derivation of the sheaf of
(9^ ^ algebras ^(N, L).

oc ,

Of course, there is an inclusion (of sections) @ CO^CI^CN, C), arising from the inclusion
m=0

of co in JfpR and the projection Split, and which takes the L-rational sections of co0^ to
00

^(N, L). A section of ^(N, C) which lies in the image of @ co®"1 is called simply
m=0

holomorphic, and the algebra ofholomorphic elements of^(N, C) may be identified with the
oc1 oo

algebra © co®"1. A section of © co®^ which is rational over L is called arithmetic
m=0 m=0

over L. We must check the following fundamental compatibility:

4.6 THEOREM. — 1) a section] o) ^(N, L), jor some L=>Q(^) 15 holomorphic, then ] is
arithmetic over L.
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Prooj. - We intend to find a dense subset I of Q-algebraic points of ̂  wltrltr^ following
properties:

(4 .6 .1) 1 is invariant under Gal(Q/Q(^)),

(4.6.2) the restriction 7i ol 7 to ^ ls rational over L.

This will prove the Theorem.
For I we take the set of points x e M^ such that the fiber A^ of^ at x is an abelian variety

(of dimension n) with complex multiplication by a totally imaginary number field k^ of degree
In over Q. Obviously 1 satisfies 4.6.1. Let ^ (resp. co^) be the restriction of
^DR (^N /^) (resp. o) to I; let H^ ,. (resp. co^ ^) be its fiber at x. When L' c C contains the
field of definition /c^ ofx, we let H^(L') and co^(L') denote the L'-rational subspaces of
Hs, ^ and (Os, x, respectively. Then H^(Q) is, under the natural action ofk^qQ induced
by the complex multiplication, a free rank one fe^®Q Q-module, and co^ ^ (Q) is the sum of n
distinct ^®Q<Q-eigenspaces of H^,-(Q). Let (O^(Q)' denote the direct sum of the
remaining n /c^OOoQ-eigenspaces of H^(Q).

Now Gal(Q/Q(^)) acts on ̂ , and the element T of Gal(Q/Q(^)) clearly takes the
fe^®QQ-eigenspaces oi'H^(Q)to the /c^®QQ-eigenspaces ofH^^(Q). But T also takes
^i x(Q) t o ^i T v ( Q ) - This implies that the subbundle o)̂  of H^, the Q-rational points of
whose fiber at x is co^ .(Q)', is actually defined over Q(^). an^ the bundle H^ splits
Q(^)-rationally as a direct sum ^==(o^©cos. But, for any xeS, ̂  , .v(Q) '®o C is
the fiber at x of ^1 (cf. [19], 5.1.27). Thus the projection Split, restricted to

00

@ (J^)®"", is just the projection modulo the sheaf of two-sided ideals generated by
m==0

co^. In particular:

(4.6.3) i fFis any section of ^~(N, L), then the restriction of Split (F) to Lis an algebraic
oc

L-rational section of ® co0"".
m=0

This implies 4.6.2, which implies the Theorem.

4.6.4. Remark. - We note that the statement 4.6.3, as interpreted by Katz in [19],
implies some of the rationality Theorems in Shimura's paper [32] for special values of certain
non-holomorphic automorphic forms.

A more general version of Theorem 4.6 will be proved in a forthcoming paper.

4.6.5. Let V be a finite dimensional vector space over a field L of characteristic zero; let
LocL be a subfield. We say a subspace Wc®^V, m^O, is defined by Lo-rational
symmetry conditions if there is an element n^ in the group ring LQ [PJ of the permutation
group P^ such that, under the natural action of Lo [PJ on OO^ V, n^ is a projection of (x)^ V
onto W. A classical Theorem of Weyl ([45], esp. Chapters III and IV) asserts that every
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GLL(V)-invariant subspace of ®^V is defined by L-rational symmetry conditions. The
same terminology may be applied to subbundles of co0"1:

4.6.6 COROLLARY. — Let H^ c co®"1 be dejined by L-rational symmetry conditions, jor some
L => Q (^); let n^ : O)0'" —> i^ be the corresponding projection operator in L [P^]. Let j be a
section of ^(N, L) such that K ^ ( j ) is holomorphic. Then TT^(^) 15 arithmetic over L.

Prooj. - If j = Split (F), for some section F of ^(N, L), then 71̂  (7)= Split (TI^-(F)),
where n^ acts on ^~^(N, L) in the obvious way. The Corollary now follows immediately
from Theorem 4.6.

4.7. Let V be an n-dimensional vector space over a field E of characteristic zero. We may
regard Sym" (Sym2 (V)) as the space of degree n polynomial functions in the values of
symmetric bilinear forms B on V*. One such function is

D(B): (Fi , . . . , r , , W i , . . . ,wJ=de t (B( i ; , ,w , ) ) , y;, u^.eV*, U=l, . . . . n.

As B varies, the set D(B) runs through a one-dimensional linear subspace
L c: Sym" (Sym2 (V)). The standard action of GL (V) on V gives rise to a natural action of
GL (V) on Sym" (Sym2 (V)); L is invariant with respect to this action, and the representation
of GL(V) on L is equivalent to det2. Furthermore, one checks (or else deduces from
Schmid's Theorem, Proposition 3.1) that L is the unique subspace of Sym" (Sym2 (V)) with
this property, and is even the only one-dimensional invariant subspace of
Sym" (Sym2 (V)). It is thus canonically a direct factor of Sym" (Sym2 (V)).

4.7.1. Using the identification Q ̂  Sym2 coof4.4.2,we may thus define a sub-line bundle
J^f c Sym" 0 by the above procedure; then ^ is an algebraic direct factor of Sym" Q (over any
e^^)? B^ as a homogeneous line bundle is isomorphic to ^^. It is globally trivialized over
S^ by the section det (DZ), where DZ is the matrix (dZ^), and where the multiplication in the
determinant is symmetric in the ^Z;,.

4.7.2. Let p be a holomorphic representation of GL(n, C). We have described a
correspondence j <-» j between Gp° (F) and H°o (F\S^, ^p(F)) in 1.6; this correspondence
is determined up to a constant factor, as long as p is irreducible. Now when F == F (N), each
^'p(F) can be given the structure of algebraic vector bundle, denoted <^p over M^\ indeed, if p
is realized as a canonical direct factor ofSl^, for some m e Z (which is always possible, by the
Theorem of the highest weight) then <^p is the corresponding algebraic direct factor of
co0^. Furthermore, the holomorphic sections of S (F(N)) are in one-to-one
correspondence with algebraic regular sections in H°(^N o ^p)» ^Y KL Theorem 10.14
(with the usual cuspidal condition when n= 1). We would like to know how to determine
the field of rationality of ] from properties ofj (for this, of course, the correspondence must
be normalized; i. e., the indeterminate constant must be specified.) In the remainder of this
section we carry this out when p=detk for an even integer fe; in the appendix we sketch a
general criterion.

4.7.3. We write p (x) k instead of p (x) det^. A meromorphic section of 6 p (F) is defined to be
a rational section j = g / n , where g is a holomorphic section of ^p^(F) and n is a
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holomorphic section of (^(F), for some integer k. The notion of meromorphic modular
form of type p for r is defined analogously; we write Ap(F) for the space of all such forms.

m
Now let j = 1 : j be a meromorphic modular form of type St_ tor F (N). We define the

\./n/

meromorphic section j of CD/J^ to be:
n

(4.7.4) . 7= E (2ni)jjdu,.
j = i

With this normalization we may define, for any j eA (T(N)), a meromorphic section ) of
(^p/cJ^ whenever <fp is represented as a direct factor ofco®^ for some m. The true theorem
is the following (cj. Appendix):

4.8. THEOREM (^-expansion principle). — Let L be a field containing Q(^). Let
/ eGp( r (N) ) correspond to the {algebraic) section /'eH0^/^ , c , ^ p ) by the above procedure,
jor some direct jactor ^p oj co0"'. Then j is rational over L ij and only ij j has Fourier
coefficients in L.

We denote by Gp(F(N), L) the set of j in Gp(F(N)) with L-rational Fourier
coefficients. We shall be content to prove the following:

4.9. THEOREM. - Let k be a positive even integer, and let j eG^(F(N)). In thenotation
of 4.7, let j be the corresponding section oj ^®kll. Then the conclusion oj Theorem 4.8
holds.

Prooj. — Under the procedure of 4.7, and the identification Sym2 o^Qof4.4,we see that:

(4.9.1) j=(2Ki)nk/2j(deiDZ)<s>kx2.

Our proof uses the methods of Shimura in [32]. Let g be any rational function on M^,
arithmetic over L. Then dg is a meromorphic section of Q, and as in 4.7 we may define
D(dg) as a section of ^ (cj. [33], p. 265): we find that:

1+8., eg
2 az,(4.9.2) D(^)=det ——IJ —L . det DZ=(det dg).(det DZ);

the latter equality is the definition of det d g .

As in [33], Theorem 3, we may write g ^ g ^ l g ^ where ^ ;eG^(r(N) , L), i = = l , 2, for an
integer ^0. Here we are using the fact that Shimura's canonical model for M^ is the
modular variety of [25]; cj. [6]. Let X be the divisor ofD(dg); it is rational over L. For any
positive integer H, denote by L (^ X, L) the linear system (over L) associated to (i X. Just as
in the proof of Theorem 6 of [32], we see that:

(4.9.3) (det dg^L^X, L)=G^(F(N), L).
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Since, as noted above, every function in L (^ X, L) can be written as a quotient of elements
ofG^r(N), L), ?i^>0, our theorem follows from (4.9.3), (4.9.1), and the Lemma:

4.9.4. LEMMA. - Suppose ^eGjr(N)) can be written j = g ^ / g ^ with
QleGk+^{^ , L),^eG,jr(N), L)Jor some integer 'k>0. ThenjeG^F^ , L).

Proof. - This is Lemma 1 of Baily's paper [3].

4.10. COROLLARY. - Ij 7eH°(^ ^(g)/(/2) is pseudo-arithmetic over L, then j
corresponds to an element j eG^(r(N), L) (by the procedure oj 4.7).

Proof. - We have only to remark that J^f, regarded as a subbundle of o02" via the
canonical embedding Sym^Sym^co)®2", is defined by Q-rational symmetry conditions
(c/. 4.6.5 and the reference there to Weyl). The Corollary now follows from 4.6.6 and 4.9.

4.11. In terms of the "good" basis {2nidUj}j=l, . . . , n, for co, we may rewrite the
formula (4.3.3) for 8:

1 " —
Q(2nidu^)=—— ^ ((Z-Z)- l(27lf^)),.®(27ll^)o(27ll^);

Z 7 1 1 j ^ ^

we have used the identification of 4.4.3.

5. Andrianov's zeta functions

5.0. In this section we state some of the Theorems obtained by Andrianov and Kalinin in
their investigation of zeta functions of Rankin-Selberg type attached to holomorphic cusp
forms for the Siegel modular group ([2], [49], [50]).

We do not state the most general Theorems, but rather those which can be expressed with a
minimum of notation.

5.1. Assume that j is a cusp form of weight f ee2Z for the full Siegel modular group of
genus n, and that j is an eigenfunction for the full Hecke algebra. We shall not go into the
details here, but Satake's theory provides, for each prime p , a (one-to-many) correspondence
between the set of characters ^p of the local Hecke algebra Hp and the set of n-tuples
(o^ p . . .oc^ p) of nonzero complex numbers. This correspondence is normalized in such a
way that two n-tuples give rise to the same character if and only if they differ by an element of
the Weyl group of Sp (2^i) , which operates on the set of (oii ^ . . . ,oc^ ^) in the obvious way (cf.
the proof of Proposition 3.5.1). For more details, cf. [29], [2]. If(oci p, . . . , a^ p) is one of
the n-tuples attached to the Hecke eigenform/for the prime p and \|/ is a primitive Dirichlet
character of conductor m (say), we define:

^,,^[(,-^)n(,-^)(,-1^)]-'
(this is evidently invariant under the Weyl group), and let:

( 5 . 1 . 1 ) L( , / , . s ,v ) / )=n !-„(./, .s-,<)/).
P
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This is the Euler product attached in Langlands' monograph [21] to ) and the standard
representation of the L-group SO (2 n +1) of G; in particular, it converges absolutely in some
right half-plane.

In the notation of 1.2, we write y for y\, and we assume j has the Fourier expansion
J . 2.1. Choose N e ̂ , N > 0, and define:

D ^ ( J , s , ^ ) = ^ ^(det tM^tMNM'KdenM))^-^ 1 ,
MeSUn.Z^Nr^.Z)

where M'^ {n, Z) is the subset of M{n, Z) of elements with posi t ive dc lmnin .ml . Let:

Z^(5, ^ )=Lf5+^ , ^^V h ' L ( 2 , + 2 f , ^2)
\ z / f = o

(a product ofDirichlet L-functions), where ̂  is the quadratic Dirichlet character defined in
[1] and [2]:

(5.1.2)

/ f _ n"/2 ^p+ 2N \
XN (d) = (sign d)^2 {——) , , , d odd (d, dot 2 N) = 1,

\ 1 ^ 1 /

XN(2)=((-lr2det2N) (2-det2N)=l-

XN(^)=O, p|det2N.

Here ( — ) is the Legendre symbol. As noted in [I], the conductor of 7^ divides
2det 2N. Of course Z^(s, v|/) has an Euler product Y[ ZN,?^, v|/):

p

z (s^d XN^^Kp)^'"?-1/. ^(p)M-1z.,(.^)-^i-^^^j n ^-^JJ •
The results of Andrianov and Kalinin may be summarized as follows:

5.2. T^ORFM. - Let cf=de\ 2 N . Let f ami v|; he as in 5 .1 :
1. j^r Re .s sufficiently large, D^ ( /, s, \|/) conrercjes a b s o l u t e l y / ( ^ (/ liolcifn ' r p h i c funelioii uj .s;
2. D^(y, s, v|/) /ias an Euler product:

DNO s, ^)= n D^a, ^ v|/).D^U, 5, ^),

w^^r^;
3- ^(P. ^)=L then:

and

p
(P,q}=\

L,{j\ s, v|/)-1 D^pO, s, ^)=Z^(5, vj/)- 1 ,

4. (n4(/. s, v|/)- ^.D^/; s, ̂ ) is a finite Dirichlet series B^(f, s, v|/)== ̂  fc^-\ L^r N
P l 9 d\q"

be such that, for any N'e^ with det N'<det N, we have ^(N')=0. 5nc/i an N is called
minimal for /.) Then

5 • 2 • 4 • L B^O, 5, ^ )=^(N)nB^ /,(./, ., v);),
pl^
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where B^ p ( J , 5, \|/) ^ a polynomial in p ~ 5 which divides (as a polynomial) the polynomial
^./^ ^)~1 in P ' 8 ;

5. the infinite product Jor L ( J , s, v)/) converges absolutely to a holomorphic junction jor
Re.s>^+l, and extends meromorphically to the entire complex plane.

This result is not stated as such in Andrianov's papers, but it follows immediately from
Proposition 8.3 of [49], formulas 5.40 and 5.41 of [50], Theorem 1 of [2], and formulas 5.1.3
and 5.1.4 of [54].

5.3. As far as this author knows, a functional equation for L (j, s, \^i) has only been proved
when v|/=\)/o is trivial and when, for some No e^, a (No) 7^0 and det (2 No) =1. In that case,
the functional equation is:

5 .3 .1 . ^a^t^-.^-rf^nrf^Vf-i^Va.,^)
\ , ^ / , = l \ z / \ ^ )

=^0,1-5).

The critical points for L ( / , >s, \|/o), in Deligne's sense, are the integers .s at which the F-factors
for ^P (j\ s ) and v? ( / , 1 -s) have no pole, and at which L [j\ s) has no pole. (That is, ij there
were a motive whose Euler product happened to be 5.1.1, and whose functional equation
happened to be 5. 3.1, then the critical points of that motive, in the sense of [7], would be
determined by the above considerations.) Now for Re5>(^+2)/2 the integral
representation given in 5.4 below for D^ (j, s, v|/) is holomorphic, so if there is an No e y with
a(No)^0 and det (2No)=l , then (c/. 5.3.3 below):

L(/; 5, VM= -7^-,ZNo(/; 5, ^o).D^(y; 5, ^o)
a{i\Q)

is holomorphic for Re 5>(n+2)/2. With this in mind, we define the critical set for /
(actually, half of the critical set) to be:

C ^ ^ ry ^+2 .- ) • - ) •^ • seZ, seven, — — < s < K — n + l .

Even if / is not known to have a functional equation, we may define, for any primitive
Dirichlet character \|/ such that \|/ (-1) = 1, the critical set for (/, v|/) to be the set 5.3.2. It
will be seen in 5.4, below, that DN (/, s, \|/) is holomorphic at such points for any N e y . It
then follows easily from Theorem 5.2 that L (/, 5, \|/) is also holomorphic at these points: one
has only to choose N minimal for /, such that a(N)^0.

Our methods allow us to study the values of L ( J , s, v(/) at such points.

5.4. We now describe the integral representation for D^(j, s, \|/). Fix N; let
q = 2 (det 2 N) m2, where m is the conductor of the (primitive) Dirichlet character v|/. Let Q)
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be a fundamental domain for F (q) in <^. Now the formulas in paragraph 2,4 of[2], and the
duplication formula for the gamma function yield the representation:

p ^.(n/2){s+k-(n/2)-l)
5 .4 .1 . D^s^)=2ns(dei2^2-o-^————————

nr(5+/c-20
i= 1

xJ^(Z)e^(Z^)E,_^^Z^(^-/c+5),^CN) (det Y^^^i ,

where ^Q^ ^ is the complex conjugate of v|/, and O^^^) and

^-(^(^ (l/2)(^-/c+,s), v|//^), the functions defined in 1.4, are C^ modular forms of
weights nil and fe - (n/2), respectively, with respect to F (^). Its is in the critical set, then the

nil

Eisenstein series is absolutely convergent and Y[ V (s + k - 2 i) e Qx , so, as in paragraph 2,5

of [2], DN (/, s, \|/) is holomorphic at 5. Moreover, at such 5, it follows from 5.4.1 and 1.5
that, for some s, eQ", we have:

D ^ ( J , S , } ^ ^ ) = E ^ K ( n / 2 ) ( ~ { 3 n i 2 ) + 2 k ~ l }

x ( ^Z)e^(Z,^)8^(E,(Z,^^))(det ̂ k d x d ^ ,
Jo- (06t Y )

=81 VOl (^)^/2)(-(3"/2)^-1)^ ̂ ^, V|7).5^^(E,(Z, X^.V|7))>,

in the notation of paragraph 1, where we have set r = k — n — 5,1 == k — (n /2) — r, and where, for
any positive integers a and fc, we write ^=6^+^-2- • ' ^ a + i ' 6 ^

By a Theorem of Siegel ([41], p. 57):

vol^)^^"-^2, ^eQ^

It follows that, when s is in the critical set, we have, for some eeQ",

5.4.2. D^a, 5, ̂ ETT^^-^O, Q^(Z, ^.a^^E^Z, x^.^))\.

5.5.1. We now make a few remarks that will be used in paragraph 7. First, if:

GQ.== {geM(2n, Q)\g]gt=v{g)^ some v(g)eQ, v(g)>0},

the Hecke operators can be defined on Gjjr(l)) by the action of double cosets r{l)g F(l)
with g e GQ. , as in [50]. Since GQ. preserves GJF (1), Q) (c/. [33], thm. 4), it follows that the
eigenvalues of the Hecke operators are algebraic numbers.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



106 M- HARRIS

5.5.2. Similarly, let k, NeZ, and let Gfe(N)cGfc(r (N)) be the orthogonal complement
to Sfe(r(l)) with respect to < , \. The projection map:

7 i : G,(r(N))^G,(r(i)),
n(j )(Z)=[F(1) : F(N)]-1 ^ det (J(a, Z))-^ (o(Z))

(yerd) / r (N)

takes Gfe (F (N), Q) to G^ (F (1), Q) ([33], Thm. 4), and its kernel is contained in GJN), by the
invariance properties of < , \. Thus.if^eGJHN), Q), there is an /zeG^Hl), Q), such
that 0, ̂ \=a, /!>fe for all cusp forms ̂  eSjr(l)).

These remarks have obvious translations into the language of paragraph 4 above.

6. Canonical differential operators

6.0. All the differential operators introduced so far arise from the canonical differential
operators defined by the action of the universal enveloping algebra L^p^. Thus, let
W <= U (p + ) ̂  S (p + ) be a finite-dimensional subspace invariant under the adjoint action ofK;
let (p, Vp) be a finite-dimensional representation ofKc. Then there is a differential operator:

6.0.1. D^: C^G.Vp^C^G.V^W*)^;

here p(g)W* is the representation of K on Vp(x)W*. If we regard Vp®W* K-equivariantly
as Hom(W, Vp), then D^ is defined by:

6.0.2 Dw(./)(X)=X*yeVp, V^eC^G, Vp), XeW.

Such an operator will be called a transition operator; it commutes with direct sums
P^Pi©P2- Tne ̂ aslc transition operator, denoted D, corresponds to the case W= p+; all
the others are derived from symmetric powers D"=Sym"D for positive integers n. The
operator D acts via the product rule on tensor products p^p i®p2-

Of course, since every irreducible p is equivalent to a direct factor of S^®"1 for some
(possibly negative) integer m, all the maps 6.0.1 are determined by the product rule from the
single map:

6.0.3. D,,^D : CO C(G,Vs,)st^CO C(G,Vs.(2)(P+)*)s^syn. .St)•

6.1. We recall that Proposition 3.1 completely describes the representations oc^ ̂  . . . ̂  a^
that occur in L^p^. The case o^ = . . . =a^= -2k, for some positive integer k,
corresponds to the representation det"2^ ofKc' and occurs in Sym^ (p + ) with multiplicity
one. When k= 1, the corresponding subspace ofSym^p^ is just the one-dimensional sub-
space denoted L in 4.7, where we take the space V of 4.7 to be Vsi*. In general, we may
regard L®^, k=0, 1, 2, . . ., as a subspace of Sylii"^?^, on which Kc acts through the

46 SERIE - TOME 14 - 1981



SPECIAL VALUES OF ZETA FUNCTIONS 107

representation det 2 k. It follows from Proposition 3.1 that D| ®k is the unique transition
operator Irom C' (G, V p ) p to C / (G, V^)^, in the notation ol 4 .7 .3 .

6.2. We want to compute the map D^. For this, suppose (peC^ (G, VsJ^; we
represent (p, as in 2.2, as a product ^ ( g ) = ] { g , il)~1 j (g(il)), foF "some
j eC^(Q^ V^). I f^( i" I )=Ze£^, we write ^ uniquely as a product,

6.2.1. g==g^.k for ̂  as in 1.0.5 and keK.
Let p+ (a) be as in 2.0.2. To compute Dcan(<p), it is enough to know p+ (a)* (p for all

symmetric aeM(n, C); we may even assume aeM(n, R). We write p+ ( a ) = X ^ + f X ^ ,
where:

Y o V a 0 \ 1/0 a-
^"AO -J' ^ ^ a 0

Then:

6.2.2. ( p + ( a ) ) * ( p ( 6 f ) = , [ ( p ( 6 r e x p ( ? X ^ ) ) + ( t p ( 0 e x p ( » X ^ ) ] f ^ ( ) •

- 1Using the product rule, we may as well work out 6.2.2 for f(g{ii)} and ] [ g , i l )
separately.

Now J(gexp(tp+ (a)), i l )" ' 1 makes sense as a complex matrix, at least for t sufficiently
small; we need not split p+ (a) into real and imaginary parts. By 6 .2 .1 , we have:
](g.exp{tp^ (a)), H)-1 =J(^z(exp(rfep+ (a)fc-1))^, f l ) - 1

=J(/c, f l ) - 1 J (^z.(exp(r /cp+(oc)/c- 1)) , i l ) - 1

(by 1.0.4) = J ( ^ ^ ) - l . J ( ^ z • e x p ( ^ + ( / c ( o c ) ) ) , ^ ) - l

def
(by 2.0.3), where ^(a) = ( /c^)" 1 a /c" 1 is still symmetric. Lising 1.0.4 again, we get:

J(<7z.exp(^(/c(oc))),n)-1

=J(exp(rp+(/c(oc)), l l ) " l . J ( ^ z , e x p ( r p + ( ^ ( o c ) ) ( / I ) ) - l

=J(exp(rp+(^(a) ) , H) - 1 ^ 1 2 (<• / . 1 .0 .5) .
Therefore, if g=gzk as above, we have:

6.2.3. ^ ( o c ) * J ( < y , n ) - 1

=J(/c, H) - 1 f^J(exp(rp^ (^(oc)), H) ) - 1 Y1^ =^- 1 ( ^ (oc^Y^ 2 ,

as follows from a brief computation: we have identified^ with ] { k , i 1) as in 1.0.3.

Now we compute p+ (a)*7(^(H)). We have:

6.2.4.1. /(^exp(rXS)(n))=/(^exp(rX^J(n))

=/(^zO'exp(^(a)))=/(X+lY l / 2(exp(^(a)))Y l / 2)

^•(X+KY+rY^^oOY^+Otr2))
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whereas:

6.2.4.2. j {gexp{tX^(il})=J (^exp(rX^)(iI))
^(X+rY^^oOY^+iY+O^2)).

It is convenient to compute p+ (a)*^ (^z(1!)) when a=a^. as defined in 2.3.2. Let
d j / d Z be the symmetric n x n matrix whose Ij entry is ((1 + §^)/2) ( Q j / S Z ^ ) (which is itself a
column vector of length n). It follows from 6.2.4.1 and 6.2.4.2 that:

6.2.5. jp+(a^.)*^(^(il)) is the Ij entry of the matrix 2fY l / 2(^Z(Z))Y l / 2 .
Putting all this together, we see that we may represent D^ (p as an n x n symmetric matrix,

whose entries are column vectors of length n; if g=g^k, then:

6.2.6. D^(p(^=J(^lI)-1 .2fY l /2(fe t)- l f^(Z))k- lY l /2+A,
\ a z. )

where J (g, i I )~ ̂  acts on the column vectors which are the entries of the matrix, and where the
jl entry of A is the column vector k~ ̂  (k(aiji))\112 f(Z). The equality in 6.2.6 is with
reference to the chosen basis {p+ (oc^)} of p^

6.3. We have written D^ (p in terms of the dual basis to { p + (a^)}, and in terms of the
standard basis {e^ . . . , ^} of V^ . But D^ (p is of type S^®Sym2 (St_) with respect to K;
in other words, in the notation of paragraph 2, 2.2:

Dean (? = ̂ A ,̂,, /; St ®Sym2 (St )

for some function ^njeCGO(<Sn^st®(P+)*)' We may compute A^an/ explicitly: By
definition:

6 . 3 . 1 . Aean/(Z)=Jst®Synr(St)(^ ^' l )Dcan<P(^)

^ Q^Qzk for any ^ceK. When we unwind the action ofJst^syn^si^ l!). we find that:

6.3.2. A,,J(Z)=2/^(Z)+A /,

where the jl entry of A' is the column vector:

Y-1^,)^);

i.e., if we think of A' » a function from ©„ to Hon^P'^, V^), then
^(Z)(p+ (aj j ))=Y~ 1 (oiji)j (Z). This computation is carried out most easily using 6.2.3,
and recalling the convention that if weHom(Vp^, VpJ, fceGL(y?, C), ^ e V p ^ , then:

fc(w)(l;)=p2(fc)w(p^ l(/c)^).

6.4. As in 4.0, let e^, . . . , e^ be the standard basis for C". As in 1.6.4, we may define the
global sections e, of the homogeneous vector bundle ̂ i over ^n • 1̂  as above, we choose an
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j e C^(©„, V^), we may identify the corresponding global section j of <f^ (c/. 2.5) with the
sum:

7= iy.^
where j^eC^ (Sy,, C) is the f-th component of^ / .

As explained in 4.7, the good trivialization of the\ector bundle co is given by the global
sections 2ni du^, . . . , 2 n i d u ^ . The map which sends ej to 2 n i dtij, j = 1, . . . , n, identifies
] as defined above with / as defined in 4.7.4, and defines an isomorphism of homogeneous
vector bundles:

^i - /^ ^ ^ i. o
/ I • ^St —> M- ^ '

We have identified ^sym^si) with <^(p+)*, the homogeneous vector bundle associated to the
adjoint representation ofKon (p+ )*. The dual basis in Sym2 (St) to the basis { p + (oc^)} of
p + is denoted { Y ^ } . We have also identified ^sym^si) with Q. The map (notation 1.6.4):

^-(i^)2711^
is easily seen to define an isomorphism of homogeneous vector bundles:

V 2 - - ^Sym-(St)^.^

Of course Y ^ = Y^. The two isomorphisms y^ and 72 are compatible with one another, in
view of 4.4.3.

The formula 6.3.2 is a computation of A^[7"(Z)) in terms of the global trivialization
{ ^ O O Y ^ } , ij, k=l, . . . , nj-^k. On the other hand, we have computed the differential
operator 8 in 4.3; it follows from 4.11 that:

^(^j^nidu,))
\ j = i /

= i(2nidu^dj^ E/^.K2-7)"1^^)^^

"i^^^^,^
+ ^ J-L-( ^ (Z-ZVlnidu} W^idZ^

j=l27ll \ j = l ) k

An elementary computation, using the symmetry of the matrix Z, now yields:

6.5. THEOREM. - The following diagram is commutative:

<^St —————————————'-———————————-Jf1'0--u 1.
4" t f

a (T> tP 7 i<2)Y2 -^l.0 (^\ 0
o^^ C'(S„C)6Sym2(S^) ————————————————^ JT ^9 C1 (S^C)^6
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where A^ is the differential operator on sector bundles corresponding (via 2.5) to the
differential operator A^ of 6.3.

6.6. The above theorem suggests that we define the arithmetic Q-form of 9^, to be, in the
notation of 3.2, c^ = QQ p , with (3 == — 1 /4 TC. We let UQ = U (go), the enveloping algebra of
QQ over Q. We define the transition operators D^ Q analogously. Through the
correspondence (p <->y of 2.5 [with the conventions (4.4.2) and (4.7.4)], the operators D^ Q

00

act on the sheaf of algebras @ (J^oo0)^- Using the product rule, it follows from
m=0

Theorem 6.5 that:
6.6.1. COROLLARY. — Let W be as in 6.0. The action oj the operator D^ Q on

00

@ (^f^0)^ preserves ^(N, L)jor any integer N and any field L^Q(^).
m=0

6.7. The formula 1.5.3 states that the MaaB operator 8^ corresponds to a homogeneous
differential operator on the line bundles over ®^:

§ „ : <^->^+2. aeZ

commutes with the action ofG. It follows from general nonsense (cf. [42], 5.4.11), that
there is an element 8^eU(c^) such that, under the correspondence cp^->/of 2.5:

(6.7.1) S^cpeC^G, V^) corresponds to bJeH°(Q^ 6\+^.
Now suppose ) is a holomorphic modular form of weight a, corresponding to a function

(peC^G, V^)^ of holomorphic type. Then, for each integer r>0, there is an element
S^eL^p^suchthat:

(6.7.2) 8^ ̂ ^ (5^*0?
simply because U( fc©P~) acts through a character on (p.

On the other hand, it is clear that, for a ̂  n/2, 8^(r) is uniquely determined by 6.7.2. In
fact, by 3.6.2, Da is irreducible; thus i^j- is free of rank one over U (p + ) (cf. 2.7). It follows
that 8^(r) is a transition operator of type det2'' (with respect to the adjoint action of K). On
the other hand, in terms of the bases of V^ and (p + )* introduced in 6.2 and 6.3, we may
express the operator D^ of 6.1 explicitly as an operator:

4: C^G.VJ^C^G.V^a^.

It follows from the remarks in 6.1 that:

(6.7.3) 8^= ̂ ^L, for some peC-.

We want to check that 8" (r) e UQ for all r. For this it suffices, by 6.7.3, to check that
P e Q x . I fXis any differential operator, let X (0) be its term of highest degree. We have to
see that:

^^^^•——^^^ for some peQ-.
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Now we have computed that A^(0) is B ^ l i d / d Z . The same method shows that, if:

Ap.ean: C-(6, , Vp) - C-(6, , Vp(g)(? + )*)

is the operator corresponding (via 2.5) to the operator D of 6.0, then:

Ap,ean(0)=B for all p.

Consequently, we see that:

(6.7.4) L^^O^etf—V).
\ \a^//

On the other hand, one sees from the expression for the MaaB operator on p. 309 of [23] that:

(6.7.5) 8^(0)=((^ydet(^)y.

Combining (6.7.4) and (6.7.5), we see that |3=1 in (6.7.3); we have proved:

6.8. THEOREM. — Let j be a holomorphic modular jorm oj weight a ̂  n/2jor V (N),^or some
integer N. Let r be a positive integer. Then there is an operatorWl^e\J(p^) such that,
under the isomorphism:

G^(r(N)) ̂  C- (F(N)\G, V^),^,

the junction 6^ j corresponds ro9K;,*(p, where (p = (p ̂  e C°° (F (N)\G, V^.
Of course, the subscript "a" of 90?^ is irrelevant.

6.9. COROLLARY. — Under the above hypotheses, assume j has Fourier coefficients in the

subjield LcC. Then 8(Qr) j is pseudo-arithmetic over L.

Proof. — This follows from Theorems 4.9 and 6.8 and Corollary 6.6.1.

6.10. Remarks. — 1. Actually, it follows from a density argument, based upon the fact
that 8 descends to Jf^0/^^ tnat ^ ls a homogeneous differential operator. Thus the
computation of6.2-6.4 need only have been carried out for the highest order term, as in 6.7.

2. It's worthwhile explaining what Corollary 6.9 really means. By the ^-expansion
principle, modular forms are rational over L if their Fourier coefficients lie in L. Now the
C00 modular forms produced by the Gauss-Manin connection and the map Split, or by the
transition operators, acting on holomorphic modular forms, have Fourier series whose
coefficients a(N) are rational functions of the coordinates of Y=ImZ. Those which are
pseudo-arithmetic over L are those for which, in a natural sense, the "constant term" ofa(N)
lies in L for all N. The "meaning" of 6.6 and 6.9 is simply that, when you differentiate a
Fourier series with respect to Z^, a rational multiple of 2 n i comes out as a coefficient of each
term in the series; this explains the division by 2 TIL
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The point is that, when a polynomial in L-pseudo-arithmetic modular forms turns out to
be holomorphic (as happens in the next section), it automatically has L-rational Fourier
coefficients; this is the meaning of Theorem 4.6.

All the algebraic geometry introduced in paragraph 4 could have been dispensed with, and
the Fourier coefficients used throughout. But this has two disadvantages: (1) The
computations become long and complicated; (2) From some points of view, the algebraic
geometry serves as an explanation of the phenomena encountered when studying Fourier
coefficients.

7. Special values of zeta functions

7.0. NOTATION. — We let j be a non-zero cusp form of even weight k for the full Siegel
modular group F( l ) acting on the Siegel upper half space 6^; we assume 41 n. Assume j is
an eigenform for the Hecke algebra, and define the functions L(/, 5, \|/) and D^ (/, s, v|/) as in

del
paragraph 5, where N e ^ = { A e ^ J A > 0 } . When we choose a point s in the critical
set 5.3.2 for (j, \|/), we let r==k—n—s and l=k—(n/2)—r; then r and I are even
integers. To Ne^ we attach the Dirichlet character ^ as in 5.1.2. We choose a
primitive Dirichlet character \|/ of conductor m, and assume that \|/ ( — 1) = 1. For N e c99, let
^=(?N=2(det2N)m 2 . The functions 02N(Z, ^ ) and E;(Z, v)/^)' defined as in 1.4, are,
respectively, modular forms of weight n / 2 and J, for F (q). Finally, we define the differential.
operator ^rl2) as in 5.4.

7.1. THEOREM. — Let s be in the critical set/or {j, \|/). There is a holomorphic modular
form f^ ^ , oj weight kfor F (^), and depending on r, k, v|/, and N, such that, for every cusp form
g of weight kfor V(a), aeZ:

<^©^(Z,^).5^2>(E,(Z,^N))>.=<^JN^>.

and such that f^ ^ has cyclotomic Fourier coefficients. If q^ = 1, then the Fourier coefficients
°f YN are f^tional.

7.2. COROLLARY. — Let s satisfy the condition of 5.3.2, and let f be as in 7.0. Jhenjor
some eeQ^

D^O, 5, ̂ =^n/2)(2k~(n/2))<fJ^^,.
Corollary 7.2 is an immediate consequence of Theorem 7.1 and the formula 5.4.2.
Let V^cGfc(F(l)) be the subspace of Hecke eigenforms with the same eigenvalues

as /. If we assume that A ; > 2 n + l , then it follows from Theorem 2.5 of [55] that every
element of V^ is a cusp form. Of course, for any ffeVf,L(f\ s, v|/)=L(y, s, \|/). The
proof of the following corollary was suggested by Shimura.
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7.3. COROLLARY. — Assume k > 2 n + l . Let j, \|/, an^f 5 ^ ^5 in 7.1; J^
^=(n+l ) ( s+ /c )—A: . J/ f has algebraic Fourier coejficients, then:

^7 -̂
Prooj o /7 .3 (assuming Theorem 7.1). - For any ^eV^., we write its Fourier expansion:

^(Z)= ^ a(^,NMTr(NZ));
Ne^

this is possible because, by our hypothesis on /c, Vy consists of cusp forms. By 5.5.1 we
know that Vy is spanned by elements with algebraic Fourier coefficients.

Assume L (j, s, v|/)7^0 (this is true for s > n + l , by 5.2.5); otherwise we have nothing to
prove. Since the Hecke operators are Hermitian with respect to < , \, it follows from
5.5.1 and 5.5.2 that V N e S , 3^,v|/£V^n Gjr(l), Q) such that, in the notation of
Theorem 7.1:

<^./N,v);\^<^ ^N^>fe. ^^.y

Now let NQG^ be minimal for every geVj-, in the sense of 5.2.4, with the additional
requirement that a(j, N0)7^0; in order that this be possible, we may have to replace j by
another element ofV^. By Corollary 7.2 and Theorem 5.2, we then have:

a(g^o) n ^p^5^)1^5 '^)
p | d e t 2 N o

=^n^2k-^( n z^^r^z^^K^,^
p | d e t 2 N o

for some seQ", V ^ e V ^ .
Let 6 /o=^N, ,v) / - At the s m question, Z^p(s,v|/) and B^^(s,\|/) are non-zero and

algebraic for all p; since ̂  (- 1) = \|/ (- 1) = 1 (c/. 5.1.2), the well-known formulas for the
special values of Dirichlet L-functions imply that, for some £^ ^ ( g ) e Q x :

(7.3.2) a(g. No) L(g, s, ̂ )=^^(g) n\g, ̂ \, V ^ e V ^ .

Since we have assumed L (g, s, \|/)^0, it follows that the space:

^{^v^K^o^-o}

is the space { g e V^. | a (g. No) = 0}. By hypothesis, g^ ̂  V^-, so go ̂  0. Since V^ is spanned
by elements with Q-rational Fourier coefficients, the above characterization of^o implies
that gQ is also spanned by elements with Q-rational Fourier coefficients. Furthermore
(7.3.2) implies that:

(7.3.3.0) Lq,5,^) ^ L(^,^) ̂
^<go.9o>k ^<go^o>k
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Now let NI e^ be minimal for all the elements in g^ and such that 3 /i eg^ such that
^(/i.NJ^O. Define ^i =^N^. Again, g^O. Repeating the above argument, we find
that:

(7 .3 .3 .1 ) ^ LO,^) M^^)^
^ <64^i>fe 71 <^i^i>fe

Continuing in this way, we find a basis ^o? ^ i» • • • ? ^ ^or ^/ over C, such that
^eGfc(F(l), Q) for f=0, . . . . u, and such that:

(7.3.3. i ) . ^^,^^-.Q, ,.»,...,,.
^ <^^\ ^ <9i^i>k

In particular:

(7.3.4) ^"^eQ, i,;=0,...,u.
< 9 p Q j > k

Thus, since ̂  has algebraic Fourier coefficients:

(7.3.5) ^^eQ for all ^eV^nGJF(l) , Q).
\JU /k

The Corollary follows immediately from 7.3.5 and 7.3.3.1.
Remark. — The relation 7.3.5, pointed out to me by Shimura, may be of independent

interest. Note that it depends on the hypothesis k>2n+1, and the existence, under this
hypothesis, of a special point s (namely, 5=n+2), such that L(/, s, \|/)^0.

7.4. Proof of Theorem 7.1. — For simplicity, we write © for ©^(Z, \|/), and E for
Ej (Z, 7^ \|/). We define the representations VQ and Vg as in 2.7. The weights of © and E
are even, and both at least n / 2 by hypothesis.

def def

We let © <-> (p© = (pi, E <->- (RE = (p2, and let VQ,Q and V^Q be the UQ subrepresentations of

Ve and Vg generated by (pi and (p^ respectively. In the notation of 3.10: ;

V —V • V —Vy@,Q~ '0,0, -1/47C? "E.Q" - E . Q , -1/4TC-

By 6.8 there is an element aM^^cp 2 £VE,Q which corresponds to 8^/2-^(E) (under the
correspondence of 2.5). Everything except the assertions about Fourier coefficients now
follows from Lemma 3.11, with F=F(^).

Let K denote the extension of Q (^ ) generated by the Fourier coefficients of ©
and E. By the description of the Fourier coefficients of © and E given in 1.4, K is a
cyclotomic field; thus we see that Theorem 7.1 is implied by the assertion that^ . has
Fourier coefficients in K, or even in K(^) for all integers a^3 (3). Now we know, by
Theorem 4.9, that the sections © and E of ^n/4/^^ and ^wl~w}~{r ̂  I M ̂
respectively, are both rational over K(^) for any integer a ̂ 3.

(3) The results of Karel [51] seem to imply that KcQ (^ ).
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As in 6.4, we may identify <^(p^ with Q; we denote this identification:

y;: <^^Q

The maps Sym' (y^) thu's identify ^(sym^))* with Sym'Q, r=0, 1, 2, . . . Now we may
define, for each integer t^O, sections:

D I©=Dsy^^),Q<(pl) and D^E = Dsym'(p-) ,Q(<P2)
of:

^Sym'^)*)®^ ana ^Sym'Kp^*)®^-^^)-^

respectively, with the obvious notation, by combining the operators of 6.6 with the

identification 2.5. Using the maps Sym^ (y^), ̂  © and D1 E may be regarded, respectively,
as C^-sections of ^"^Syn^Q and ^^-^-^(aSym^Q over M^ a ̂ 3. These
sections are, moreover, pseudo-arithmetic over K(^), by 6.6.1. We regard ^ and Q as
subbundles ofco02" and o®2, respectively, as in paragraph 4, and we consider the algebra ^
of global sections of ^(q^ a, K(^)) (notation as in 4.5) generated by sections of the form
D^O and D^E, t = 0, 1, 2, . . . It follows from Lemma 3.11 that the section^ ^ of ^®k/2 is
the image of an element of.^ under the natural projection ofco0^" onto its direct summand
^@k/2. Since j^f®^2 c= co0^" is defined by Q-rational symmetry conditions, it follows from
Corollary 4 .6 .6^ that ^N v|/ ls arithmetic over K(^). The Theorem now follows from
Theorem 4.9.

7.5. Question. - The functions^ v|/are effectively computable in terms of derivatives of©
and E. Do their Fourier series have a simple expression? In this context, the work of
Manin-Panchishkin [24] and Zagier [46] on the one-dimensional case may be relevant.

7.6. It is worthwhile reviewing the key ingredients of the proof of Theorem 7.1, in order
to indicate how the arguments may be generalized.

7.6.1. First we need a theory of "arithmetic automorphic forms", as discussed by
Shimura in [38]. Such a theory has to be consistent with Shimura's theory of arithmetic
automorphic functions, and has to include holomorphic Eisenstein series and theta series as
special cases (c/. §7 of [38]).

7.6.2. The theory in 7.6.1 has to be connected with the tautological theory of arithmetic
automorphic forms (such as in described in our case in 4.1, more or less) by a variant of the
"^-expansion principle". Alternatively, one has to show that the automorphic forms which
are arithmetic with respect to a given moduli problem have "arithmetic" Fourier-Jacobi
series.

7.6.3. The MaaB operators should be defined in terms of the enveloping algebra
directly. It should then be proved that they transform the simplest Eisenstein series (those
modelled on E^(Z, s), but with values in representations p of dimension greater than one, in
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general) among one another, up to well-determined scalar factors. This cannot be
completely trivial, since it seems likely that the scalar factors, which should depend on p, will
contain information about the unitarizable degenerate representations beyond the analytic
continuation of the discrete series.

7.6.4. The remaining steps-namely those discussed in paragraphs 3 and 6-should be
reducible either to tautologies or to tautological consequences of possibly deep general facts
about representations, homogeneous vector bundles, and so on.

Appendix

THE q -EXPANSION PRINCIPLE

We briefly sketch two proofs of Theorem 4.8. Our terminology is as follows: A*section
(regular or meromorphic) of^p c= co^ ̂ is said to be Ar1-arithmetic over L if it is arithmetic
in Shimura's sense—i.e., if it is a quotient of two modular forms (of appropriate types) with
Fourier coefficients in L; it is Ar^arithmetic over L if it is rational over L with respect to the
L-rational structure on oo/J^ defined in 4.0. We also refer to Ar1 and Ar2 as "theories of
arithmetic automorphic forms"; sub-theories include the theories of arithmetic automorphic
functions, etc. Theorem 4.8 asserts that these theories conicide.

FIRST PROOF.

STEP I. — The subtheories oj Ar1 and Ar2 of arithmetic automorphic junctions coincide.
Prooj. - This is Theorem 3 of [33].

STEP 2. — Assume the space oj meromorphic forms oj type p which are Ar1-arithmetic over L
15 non-trivial. Then:

dim^Gp (r(N), L)=dm^H°(^^ ^p).

Prooj. - Both subspaces of Gp(r(N),C) generate Gp(F(N), C) under our hypotheses: the
former by Proposition 5.2 of [38], the latter by general facts about vector bundles.

STEP 3. — The theories Ar1 and Ar2 coincide jor the spaces oj meromorphic sections oj ̂ m

for all m {i.e., they coincide over the generic point oj J^^).

Proof. - It is enough to check this for m=l . Consider the matrix labeled P in
Proposition 1.2 ofShimura's paper [36]; let pi, . . . , ? „ be the columns of P. Shimura proves
that:
1- Pi. ' • • . Pn are meromorphic modular forms of type St.
2. They are generically linearly independent.
3. They are Ar1-arithmetic over Q.
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In view of Step 1, it is enough to check that p ^ , ...', ?„ are Ar^arithmetic over Q(^). But
this fact is implicit in the original construction (e.g., in Shimura [31] or Baily [3]) of arithmetic
models of M^ by means of theta-functions.

STEP 4. — End oj the sketch.

In view of Step 2, it is enough to show that every global section /e H° ( . / / ^ , . ^ p ) comes
from an / 'eGp(r(N), L). We know that/is Ar1-arithmetic as a meromorphic modular
form by Step 3. The ^-expansion principle now follows from Lemma 4.9.4.

SECOND PROOF.

We show that the Ar^arithmetic forms are Ar1-arithmetic (for any L, any p). Since the
L-dimension of the Ar^arithmetic forms (over L) is, for trivial reasons, at least as great as the
L-dimension of the Ar1-arithmetic forms, this is sufficient to prove the Theorem.

To prove that (in shorthand) Ar^Ar^ we interpret the Fourier expansion of an
automorphic form, just as in the one-dimensional case (c/. [18]), as the value of the
automorphic form at the generic fiber of a "degenerating family" of abelian varieties over a
certain scheme S, constructed according to Mumford's article [48]; the value is taken relative
to a trivialization of o over S.

Let:
KO==Q[^-, ^•1; f ,7 '=l , . . ., n\l{qij-q^ ^ J ^ l , . . ., ^).

n

Let Kg denote the (infinitely generated) Q-subalgebra generated by products ]~[ (^TS
t , j = i

a^j e Z. such that the matrix (1 /2 [a^ + a^)) is positive semi-definite. Let R^ ̂  Ro be a finitely
generated Q-subalgebra of Ko, with fraction field Ko, and such that Ri is integrally closed
in Ko. [Such RI correspond to polyhedral cones with rational sides and non-empty interior,
contained (except for the origin) in the open cone in Sym2 (R"*) of positive definite symmetric
matrices; cf. Kempf et al., Toroidal Embeddings, Lecture Notes in Mathematics, 339,
1973.] Let R be the completion ofRi at the maximal ideal generated by the non-constant
monomials in R ^ . Let I be the unique maximal ideal ofR, and let K be the fraction field ofR;
we have Kc:Q((^: / , . /=1 , . . ., n))/(^-^,: i.j= 1, . . . , n ) .

Let G=G^/R==SpecR[r i , r i~ 1 , . . .,^,r;1]. Consider the subgroup Yc=G(K), the
image of the morphism:

a: Z"=Z^® . . . ©Z^^G(K)

such that tj (oc (<^)) = q^. The theory of Mumford allows us to construct an abelian variety
A/K, with a group theoretic isomorphism P: G (K)/Y -> A (K). In fact, as is proved in [48],
we need only check that Y has a polarization, i. e. a map (p from Y to the character group
X = < ^ , . . . , ^ > o f G , such that:

(i) (p(^)(2)=(p(z)(^) for^zeY;
(ii) (pOQ(}QeIfora l l^ey ,}^L

[In fact, A extends to a semi-abelian scheme over Spec (R), but we don't need to know this.]
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For (p we take the map which sends a (^)eY to ^.eX. Condition (i) follows from the
equality (?ij==^ in K. Condition (ii) follows from the evident fact that (p(^)(^), for any

y E Y, is a monomial ]~[ (q^^ such that the matrix (a^) is symmetric positive semi-definite;
i , j = i

this monomial is constant only for y = 1.
A K-basis for the space co^ of invariant differential forms on A (K) is given by the forms dv^

such that p* (dVi) = ̂ /^.. Given any element^ of the space cof^o L, where L is any field
containing Q, we may writer as a sum:

^ZA,...,^ • • • d v ^ h. . . . ,^=1,

where p^ ,^eK®QL. If ^ comes from an automorphic form for F(l), it follows
immediately by base change to C that the set { p , , } is the Fourier series expansion off,
written as a vector via the identification of 4.7.4, and where we have identified q,- with
e(z^). (Of course, dvj becomes Inidup in our previous notation, after base change
to C.) The inclusion Ar2 cAr1 is just the statement that each ^ ^ is a power series in
{ ̂ u} with L-rational coefficients. (That our abelian variety A/K is principally polarized,
hence a suitable test object for our automorphic forms, follows from the fact that (p is an
isomorphism.)

This completes the sketch of the proof of Theorem 4.8 in the case of level one. The
abelian variety A obtains a level N structure over the field K^ = K (^N, ^)» the level N case
of Theorem 4.8 is proved over K^ in the same way as the level one case.

It should be mentioned that, in an unpublished set of notes, M. Rapoport has generalized
Mumford's construction to the case where G is a semi-abelian scheme (of constant torus
rank), rather than simply a torus. Using this construction, one should be able to interpret
the "arithmetic Fourier-Jacob! series" of Shimura's paper [38] in an algebraic way.
A similar idea has been suggested by J.-L. Brylinski in [53].
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Note added in proof: The author has carried out the program of 7.6, in the general context of Shimura varieties
parametrizing "families ofabelian varieties of Hodge type". These results will appear in a forthcoming series of
papers. It should be added that J. Sturm has recently obtained results which refine and generalize our
Corollary 7.3; his methods differ substantially from ours.
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