Some Identities of Fibonacci Like Sequences

Sanjay Harne* , V.H.Badshah** and Sapna Sethiya***
Department Of Mathematics*
Holkar Science College, Indore (India)
School of Studies in mathematics**
Vikram University,Ujjain,India
Sapna.sethiya11@gmail.com ***

Abstract

The Fibonacci sequence has been studied extensively and generalized in many ways.Hordam[5] has considered a generalized Fibonacci sequence $w_{0}, w_{1}, w_{2} \ldots$. defined by $w_{n}=p w_{n-1}-q w_{n-2}, \mathrm{n} \geq 2$ with initial condition $w_{0}=a, w_{1}=b$. In this paper ,We present some identities of Fibonacci like sequence. Mathmatics Subject Classification:11B37,11B99

Keywords: Fibonacci Like Sequence,Generalized Fibonacci Like Sequence,Lucas Sequence. Introduction: sequence have been fascinating topic for mathematicians for centuries. The Fibonacci Sequences is a source of many nice and intresting identities identities.It is well known that the Fibonacci numbers and Lucas numbers are closely related.

Horadam $\left[\begin{array}{l}5\end{array}\right]$ has considerd a generalized Fibonacci Sequences $\left(w_{n}\right)$ defined b $w_{n}=p w_{n-1}-q w_{n-2}, \mathrm{n} \geq 2$ with initial condition $w_{0}=a, w_{1}=b$.

Where p and q are arbitrary integers, Although the sequence $\left(w_{n}\right)$ has been studied extensively for years. For example as in [2-4].] B.Singh,Pooja Bhadouria and O.P. Sikhwal [1]present Some Identities involving common factor of Fibonacci and lucas numbers .

Here is some special cases of the sequence $\left(w_{n}\right)$, namely the following Fibonacci Like and Lucas Like sequences.

$$
\begin{align*}
& S_{n}=m S_{n-1}+S_{n-2}, \quad \mathrm{~S}_{0}=0, S_{1}=1 \tag{1.2}\\
& T_{n}=m T_{n-1}+T_{n-2}, \quad \mathrm{~T}_{0}=2, T_{1}=m \tag{1.3}
\end{align*}
$$

Where m is positive integer.
By (1.1), the Binets forms for the sequences $\left(S_{n}\right),\left(T_{n}\right)$ can be easily obtained as follows

$$
\begin{aligned}
& S_{n}=\frac{1}{\sqrt{m^{2}+4}}\left\{\left(\frac{m+\sqrt{m^{2}+4}}{2}\right)^{n}-\left(\frac{m-\sqrt{m^{2}+4}}{2}\right)^{n}\right\} \\
& T_{n}=\left(\frac{m+\sqrt{m^{2}+4}}{2}\right)^{n}+\left(\frac{m-\sqrt{m^{2}+4}}{2}\right)^{n}
\end{aligned}
$$

Let

$$
\begin{aligned}
& \alpha=\left(\frac{m+\sqrt{m^{2}+4}}{2}\right) a n d \\
& \beta=\left(\frac{m-\sqrt{m^{2}-4}}{2}\right)
\end{aligned}
$$

Then $S_{n}=\left(\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right)$

$$
\begin{equation*}
T_{n}=\alpha^{n}+\beta^{n} \tag{1.5}
\end{equation*}
$$

Which gives

$$
\begin{aligned}
& \alpha+\beta=m \\
& \alpha \cdot \beta=-1 \\
& \alpha-\beta=\sqrt{m^{2}+4}
\end{aligned}
$$

Now we present some Identities involving Binets formula of Fibonacci like sequence.

2.Some Identities:

Theorem2.1 $\quad S_{2 n+p}-(-1)^{n} S_{p}=S_{n} \cdot T_{n+p}$, Where $\mathrm{n} \geq 1, \mathrm{p} \geq 0$.
Proof: $\quad S_{n} \cdot T_{n+p}=\left[\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}\right] \cdot\left[\alpha^{n+p}-\beta^{n+p}\right]$

$$
\begin{align*}
& =\left[\frac{\alpha^{2 n+p}-\beta^{2 n+p}}{\alpha-\beta}\right]-\left[\frac{\beta^{n} \cdot \alpha^{n+p}-\alpha^{n} \cdot \beta^{n+p}}{\alpha-\beta}\right] \\
= & S_{2 n+p}-\frac{1}{\alpha-\beta}\left[(-1)^{n} \cdot\left(\alpha^{p}-\beta^{p}\right)\right] \tag{1.4}\\
= & S_{2 n+p}-(-1)^{n} \cdot S_{p}
\end{align*}
$$

Corollary 2.2 For different values of $p,(2.1)$ can be expressed for even and odd numbers.
If p=0, then $S_{2 n}=S_{n} \cdot T_{n}$.
Theorem 2.3 $S_{2 n+p}+S_{p}=S_{n+p} \cdot T_{n}$ Where $\mathrm{n} \geq 1$ and $\mathrm{p} \geq 0$.
Proof: $\quad S_{n+p} \cdot T_{n}=\left[\frac{\alpha^{n+p}-\beta^{n+p}}{\alpha-\beta}\right] \cdot\left(\alpha^{n}+\beta^{n}\right)$ $B y(1.4)$ and (1.5)

$$
\begin{align*}
& =\left[\left(\frac{\alpha^{2 n+p}-\beta^{2 n+p}}{\alpha-\beta}\right)+\left(\frac{\alpha^{n+p} \cdot \beta^{n}-\beta^{n+p} \cdot \alpha^{p}}{\alpha-\beta}\right)\right] \\
& =S_{2 n+p}+(-1)^{n}\left(\frac{\alpha^{p}-\beta^{p}}{\alpha-\beta}\right) \tag{1.4}\\
& =S_{2 n+p}+(-1)^{n} S_{p}
\end{align*}
$$

Corollary 2.4: Ifp=0 then (2.3) can be expressed in the following way.

$$
S_{2 n}=S_{n} \cdot T_{n}
$$

Theorem 2.5 $T_{2 n+p}-(-1)^{n} T_{p}=5 S_{n} . S_{n+p}$ Where $\mathrm{n} \geq 1, \mathrm{p} \geq 0$.
Theorem 2.6 $S_{4 n+p}+(-1)^{n} S_{2 n+p}=S_{3 n+p} . L_{n}, \mathrm{n} \geq 1, \mathrm{p} \geq 0$.
Theorem 2.7 $S_{4 n+p}+(-1)^{n} S_{2 n+p}=S_{3 n+p} . S_{n} \quad$ Where $\mathrm{n} \geq 1, \mathrm{p} \geq 0$.
Theorem 2.8 $S_{2 n+p} \cdot T_{2 n+p}=S_{4 n+p}, \mathrm{n} \geq 1, \mathrm{p} \geq 0$.
Theorem 2..9 $T_{8 n+3}-m=T_{4 n+1} \cdot T_{4 n+2}$, Where m is positive integer and $\mathrm{m}, \mathrm{n} \geq 1$.
3. Conclusion: This paper describes some identities of Fibonacci like sequences. Many similar identities can be developed for higher order Fibonacci like sequence.
4.Acknowledgments: Authors are thankful to reviewers for their valuble comments in improvementof manuscript.

5.References:

[1] B.Singh,Pooja Bhadouria and O.P. Sikhwal, Generalized Identities involving common factors of Fibonacci and Lucas numbers, Int.Journal of Algebra, Vol.5, no.13,637-645,2011.
[2] A.F.Horadam.Basic Properties of a certain generalized sequence of numbers,Fibonacci Quaterly3 161176,1965.
[3] A.F.Horadam , A generalized Fibonacci sequence,Amer. Math. Monthly 68(5),455-459,1961.
[4] Lee J.Z. and Lee J.S.,1987.Some Properties of the Generalization of the Fibonacci sequence ,The Fibonacci Quaterly,Vol.25,No.2,111-117.
[5]A.F.Hordam,Special properties of the sequence $W_{n}(\mathrm{a}, \mathrm{b} ; \mathrm{p}, \mathrm{q})$,Fibonacci Quaterly5,424-434(1967).

