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Abstract 

The intended objective of this paper is to extend the Hermite polynomials 
based on hypergeometric functions and to prove basic properties of the extended 
Hermite polynomials.  
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1.  Introduction 

Hermite Polynomials and its applications have been studied for long and 
still attract attention. One can refer a long list of books and journals for advanced 
knowledge of Hermite polynomials and its extensions, for example [7] and [6], 
for books and [2], [4] , [5], [7], [8], [9], [10] and [11] for journals. Based on a 
generalized hypergeometric function, we introduce here a generalization of the 
Hermite polynomials that provide natural extensions of basic results involving 
the Hermite polynomials as a study of the Laguerre polynomials in [3].  
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 For a positive integer p , the set  { }, ( )p nS x  generated by the function 

( )( , ) exp pG x t pxt t= −  is to be known as the generalized Hermite polynomial 

set. Note that for 2p = , it reduces to the known generating function for the 
Hermite polynomials. We first deduce an explicit expression for this generalized 
Hermite polynomials.  

                          
Theorem 1: 

For a non-negative integer n  and a positive integer p , we have 
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A use of a variation of Lemma 11 pp. 57 of [6] with n

p  in place of 2
n  leads to 
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which implies that   
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We now determine a few recurrence relations for the generalized Hermite 
polynomials. 
 
 
Theorem 2: 
 

For all finite x , t , a positive integer p  and a non-negative integer n ,  
(i) ( )( ) ( ), , , 1( ) ( ) 1 2 2 ( )p n p n p n pxS x nS x n n n n p S x− +′ ′− = − − − +L , (1.2) 
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Proof: 
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These relations give rise to   

( )1 0p F Fx t t
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and consequently 
 1( ) ( ) ( )n n n pxf x nf x f x− +′ ′− = .         

Since by taking
ppxt tG e −= , ( )nf x = , ( )

!
p nS x
n

, we  finally get  

 ( )( ) ( ), , , 1( ) ( ) 1 2 2 ( )p n p n p n pxS x nS x n n n n p S x− +′ ′− = − − − +L .  
Similarly, we can prove (ii).  
                                
Theorem 3: 
 

For any real number c  and a positive integer p , we have 
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Proof: 
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Starting with 
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Following traditional theory, we can prove orthogonality, integrals and expansions 

involving the Hermite polynomials and its relations with other polynomials. We 

can also consider q −Hermite polynomials and prove corresponding results.  
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