Common Factors of Generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas numbers

V. K. Gupta \& Yashwant K. Panwar
Department of Mathematics, Govt. Madhav Science College, Ujjain, India
E-mail: dr_vkg61@yahoo.com
Department of Mathematics, Mandsaur Institute of Technology, Mandsaur, India
E-mail: yashwantpanwar@gmail.com

Abstract

In this paper, we present identities involving common factors of generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas numbers. Binet's formula will employ to obtain the identities.

Keywords: Generalized Fibonacci numbers, Jacobsthal numbers, Binet's formula.

1 Introduction

It is well-known that the Fibonacci sequence is most prominent examples of recursive sequence. The Fibonacci sequence is famous for possessing wonderful and amazing properties. Fibonacci numbers are a popular topic for mathematical enrichment and popularization. The Fibonacci appear in numerous mathematical problems. The Fibonacci numbers F_{n} are terms of the sequence $\{0,1,1,2,3,5, \ldots\}$ wherein each term is the sum of the two previous terms, beginning with the values $F_{0}=0$ and $F_{1}=1$.

2 Generalized Fibonacci Sequences

Generalized Fibonacci sequence [8], is defined as

$$
\begin{equation*}
F_{k}=p F_{k-1}+q F_{k-2}, k \geq 2 \text { with } F_{0}=a, F_{1}=b, \tag{2.1}
\end{equation*}
$$

where $p, q, a \& b$ are positive integers.
For different values of $p, q, a \& b$ many sequences can be determined.
We focus two cases of sequences $\left\{V_{k}\right\}_{k \geq 0}$ and $\left\{U_{k}\right\}_{k \geq 0}$ which generated in (2.1).
If $p=1, q=a=b=2$, we get
$V_{k}=V_{k-1}+2 V_{k-2}$ for $k \geq 2$ with $V_{0}=2, V_{1}=2$
The first few terms of $\left\{V_{k}\right\}_{k \geq 0}$ are $2,2,6,10,22,42$ and so on.
Its Binet forms is defined by
$V_{k}=2 \frac{\mathfrak{R}_{1}^{k+1}-\mathfrak{R}_{2}^{k+1}}{\mathfrak{R}_{1}-\mathfrak{R}_{2}}$
If $p=1, q=a=2, b=0$ we get
$U_{k}=U_{k-1}+2 U_{k-2}$ for $k \geq 2$ with $U_{0}=2, U_{1}=0$
The first few terms of $\left\{U_{k}\right\}_{k \geq 0}$ are $2,0,4,4,12,20$ and so on.
Its Binet forms is defined
$U_{k}=4 \frac{\mathfrak{R}_{1}^{k-1}-\mathfrak{R}_{2}^{k-1}}{\mathfrak{R}_{1}-\mathfrak{R}_{2}}$
The Jacobsthal sequence [1], is defined by the recurrence relation

$$
\begin{equation*}
J_{k}=J_{k-1}+2 j_{k-2}, k \geq 2 \text { with } J_{0}=0, J_{1}=1 \tag{2.6}
\end{equation*}
$$

Its Binet's formula is defined by

$$
\begin{equation*}
J_{k}=\frac{\mathfrak{R}_{1}^{k}-\mathfrak{R}_{2}^{k}}{\mathfrak{R}_{1}-\mathfrak{R}_{2}} \tag{2.7}
\end{equation*}
$$

The Jacobsthal-Lucas sequence [1], is defined by the recurrence relation
$j_{k}=j_{k-1}+2 j_{k-2}, k \geq 2$ with $j_{0}=2, j_{1}=1$

Its Binet's formula is defined by

$$
\begin{equation*}
j_{k}=\mathfrak{R}_{1}^{k}+\mathfrak{R}_{2}^{k} \tag{2.9}
\end{equation*}
$$

where $\mathfrak{R}_{1} \& \Re_{2}$ are the roots of the characteristic equation $x^{2}-x-2=0$.

3 Identities for The Common Factors of Generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas Numbers

There are a lot of identities of Fibonacci and Lucas numbers described in [3]. M. Thongmoon [5], defined various identities of Fibonacci and Lucas numbers. B. Singh, P. Bhadouria and O. Sikhwal [7], present some generalized identities involving common factors of Fibonacci and Lucas numbers. In [8], V. K. Gupta, Y. K. Panwar and O. Sikhwal have defined generalized Fibonacci sequences. In this paper, we present identities of common factors of generalized Fibonacci, Jacobsthal and Jacobsthal-Lucas numbers.

Theorem 3.1 If V_{k} and U_{k} are the generalized Fibonacci numbers and j_{k} is Jacobsthal-Lucas numbers, then
(i) $V_{2 k+1} j_{2 k+1}=V_{4 k+2}-4^{k+1}$
(ii) $V_{2 k+2} j_{2 k+1}=V_{4 k+3}-4^{k+1}$
(iii) $U_{2 k+1} j_{2 k+1}=U_{4 k+4}-4^{k+1}$
(iv) $U_{2 k+2} j_{2 k+1}=U_{4 k+1}$

Proof (i).

$$
\begin{aligned}
V_{2 k+1} j_{2 k+1} & =2\left(\frac{\mathfrak{R}_{1}^{2 k+2}-\mathfrak{R}_{2}^{2 k+2}}{\mathfrak{R}_{1}-\mathfrak{R}_{2}}\right)\left(\mathfrak{R}_{1}^{2 k+1}+\mathfrak{R}_{2}^{2 k+1}\right) \\
& =2\left(\frac{\mathfrak{R}_{1}^{4 k+3}-\mathfrak{R}_{2}^{4 k+3}}{\mathfrak{R}_{1}-\mathfrak{R}_{2}}\right)+\frac{2}{\left(\mathfrak{R}_{1}-\mathfrak{R}_{2}\right)}\left(\mathfrak{R}_{1} \Re_{2}\right)^{2 k+1}\left(\mathfrak{R}_{1}-\mathfrak{R}_{2}\right) \\
& =V_{4 k+2}-2\left(\mathfrak{R}_{1} \mathfrak{R}_{2}\right)^{2 k+1} \\
& =V_{4 k+2}-4^{k+1}
\end{aligned}
$$

This completes the proof.
Proof (ii). It can be proved same as Theorem1: (i)

Proof (iii).

$$
\begin{aligned}
U_{2 k+1} j_{2 k+1} & =4\left(\frac{\Re_{1}^{2 k}-\mathfrak{R}_{2}^{2 k}}{\Re_{1}-\mathfrak{R}_{2}}\right)\left(\mathfrak{R}_{1}^{2 k+1}+\mathfrak{R}_{2}^{2 k+1}\right) \\
& =4\left(\frac{\mathfrak{R}_{1}^{4 k+3}-\Re_{2}^{4 k+3}}{\mathfrak{R}_{1}-\Re_{2}}\right)+\frac{4}{\left(\Re_{1}-\Re_{2}\right)}\left(\Re_{1} \Re_{2}\right)^{2 k}\left(\Re_{2}-\Re_{1}\right) \\
& =U_{4 k+4}-4\left(\mathfrak{R}_{1} \Re_{2}\right)^{2 k} \\
& =U_{4 k+4}-4^{k+1}
\end{aligned}
$$

This completes the proof.
Proof (iv). It can be proved same as Theorem1: (iii)

Corollary 3.2:

(i) $V_{2 k+1} j_{2 k+1}=2 J_{4 k+3}-4^{k+1}$
(ii) $V_{2 k+2} j_{2 k+1}=2 J_{4 k+4}-4^{k+1}$
(iii) $U_{2 k+1} j_{2 k+1}=4\left(J_{4 k+3}-4^{k}\right)$
(iv) $U_{2 k+2} j_{2 k+1}=4 J_{4 k}$

Following theorems can be solved by Binet's formulae (2.3), (2.5), (2.7) and (2.9)

Theorem 3.3: If $V_{k} \& U_{k}$ are the generalized Fibonacci numbers and $J_{k} \& j_{k}$ are Jacobsthal and jacobsthal-Lucas numbers, then
(i) $V_{2 k+1} j_{2 k+2}=2 J_{4 k+4}$
(ii) $V_{2 k+1} j_{2 k}=2\left(J_{4 k+2}+4^{k}\right)$
(iii) $U_{2 k+1} j_{2 k}=4 J_{4 k}$
(iv) $U_{2 k+1} j_{2 k+2}=4\left(J_{4 k+2}-4^{k}\right)$

Corollary 3.4:

(i) $V_{2 k+1} j_{2 k+2}=V_{4 k+2}$
(ii) $V_{2 k+2} j_{2 k}=V_{4 k+1}+2^{2 k+1}$
(iii) $U_{2 k+1} j_{2 k}=U_{4 k+1}$
(iv) $U_{2 k+2} j_{2 k+2}=U_{4 k+3}-4^{k+1}$

Theorem 3.5:

(i) $V_{2 k+2} j_{2 k}=V_{4 k+2}+3\left(2^{2 k+1}\right)$
(ii) $V_{2 k} j_{2 k}=V_{4 k}+2^{2 k+1}$
(iii) $U_{2 k+2} j_{2 k}=U_{4 k+2}+4^{k+1}$
(iv) $U_{2 k} j_{2 k}=U_{4 k}+2^{2 k+1}$

Corollary 3.6:

(i) $V_{2 k+2} j_{2 k}=2\left(J_{4 k+3}+3\left(4^{k}\right)\right)$
(ii) $V_{2 k} j_{2 k}=2\left(J_{4 k+1}-4^{k}\right)$
(iii) $U_{2 k+2} j_{2 k}=4\left(J_{4 k+1}+4^{k}\right)$
(iv) $U_{2 k} j_{2 k}=2\left(2 J_{4 k-1}+4^{k}\right)$

Theorem 3.7:

(i) $V_{2 k-1} j_{2 k+1}=V_{4 k}-2^{2 k+1}$
(ii) $\quad V_{2 k-1} j_{2 k-1}=V_{4 k-2}-4^{k}$
(iii) $U_{2 k-1} j_{2 k+1}=U_{4 k}-3\left(4^{k}\right)$
(iv) $U_{2 k-1} j_{2 k-1}=U_{4 k-2}-4^{k}$

Corollary 3.6:

(i) $V_{2 k-1} j_{2 k+1}=2\left(J_{4 k+1}-4^{k}\right)$
(ii) $V_{2 k-1} j_{2 k-1}=2 J_{4 k-1}-4^{k}$
(iii) $U_{2 k-1} j_{2 k+1}=4 J_{4 k-1}-3\left(4^{k}\right)$
(iv) $U_{2 k-1} j_{2 k-1}=4 J_{4 k-3}-4^{k}$

Theorem 3.8:

(i) $V_{2 k} j_{2 k+1}=V_{4 k+1}$
(ii) $V_{2 k-1} j_{2 k}=V_{4 k-1}$
(iii) $U_{2 k} j_{2 k+1}=U_{4 k+1}+2^{2 k+1}$
(iv) $U_{2 k-1} j_{2 k}=U_{4 k-1}-4^{k}$

Corollary 3.6:

(i) $V_{2 k} j_{2 k+1}=2 J_{4 k+2}$
(ii) $V_{2 k-1} j_{2 k}=2 J_{4 k}$
(iii) $U_{2 k} j_{2 k+1}=2\left(2 J_{4 k}+4^{k}\right)$
(iv) $U_{2 k-1} j_{2 k}=4 J_{4 k-2}-4^{k}$

4 Conclusion

In this paper we have stated and derived many identities of common factors of generalized Fibonacci and Jacobsthal and Jacobsthal-Lucas numbers with the help of their Binet's formula. The concept can be executed for generalized Fibonacci sequences as well as polynomials.

References

[1] A. F. Horadam, "Jacobsthal Representation Numbers", The Fibonacci Quarterly, Vol.34, No.1, (1996), 40-54.
[2] A. Lupas, "A Guide of Fibonacci and Lucas Polynomials", Octagon, Math. Mag., 7(1999).
[3] Hoggatt, V.E. Jr., Fibonacci and Lucas Numbers, Houghton - Mifflin Co., Boston (1969).
[4] Hoggatt, V.E. Jr., Phillips, J.W. and Leonard, H. Jr., "Twenty-four Master Identities", The Fibonacci Quarterly, Vol.9, No.1, (1971), 1-17.
[5] M. Thongmoon, "New Identities for the Even and Odd Fibonacci and Lucas Numbers", Int. J. Contemp. Math. Sciences, Vol. 4, No. 7 (2009), 303-308.
[6] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York (2001).
[7] B. Singh, P. Bhadouria and O. Sikhwal, "Generalized Identities Involving Common Factors of Fibonacci and Lucas Numbers" International Journal of Algebra, Vol. 5, No. 13 (2011), 637-645.
[8] V. K. Gupta, Y. K. Panwar and O. Sikhwal, "Generalized Fibonacci sequences", Theoretical Mathematics \& Applications, Vol.2, No. 2 (2012), 115-124.

