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A COMBINATORIAL INTERPRETATION OF THE INTEGRAL
OF THE PRODUCT OF LEGENDRE POLYNOMIALS*

J. GILLIS?, J. JEDWAB, AND D. ZEILBERGER

Abstract. Denote by P,,(x) the Legendre polynomial of degree n and let

I_I,,,...,,k: P,,(x)...P,,k(x)dx.

I,,,...,n is written as a sum involving binomial coefficients and the sum is interpreted via a combinatorial
model. This makes possible a combinatorial proof of a number of general theorems concerning I,,,...,,k, not
all of which seem analytically straightforward, including a direct combinatorial derivation of the known
formula for Ia, b, and the expression of Ia, b,c,d as a simple finite sum. In addition, a number of apparently
new combinatorial identities are obtained.
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1. Introduction. We will be concerned with the Legendre polynomials, defined by

P,(x)=2-" Y (-1)(n)(2n-2a)x"-2’ (-l<=x=<l;n=0,1,2,...),
2 O

which may be written in the equivalent form [4, p. 38]

( e(x - } (x + (x -.
In (1), as in other combinatorial sums in what follows, we shall omit the limits of
summation where these coincide with the natural cut-offs implied by the fact that
() 0 wherever a, b are integers and b > a > 0 or a > 0 > b.

Let

(2) I,,,...,, Pnl(X) Pn (x) dx,
-1

where n, n are nonnegative integers. We will express I, ., ..,, as a sum involving
binomial coefficients and use a combinatorial interpretation of this sum to derive a
number of analytical and combinatorial results.

To simplify notation, write (n, , n) and a (a, , a). It is convenient
to write x 2y- in (1) to obtain

y (-- (0yl,

which on substitution in (2) gives

1 k

nl nk (-1 (i)(ni-i)[
(3) =2fv_ (l+ni)
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Now consider a set of elements of k different types, ordered by type number
(i 1,..., k) and, within each type number, by a serial number r (r= 1,. ., n). We
represent these by points and form a directed graph by connecting them, with one
edge going into and one coming out of each of the points. We then color each of the
n edges blue or yellow according to the following balance condition"

(*) For each the number of points of type at the beginning of blue edges, a
(say), equals the number at the end of blue edges.

Call each such colored graph a system, and let T denote the set of all possible
distinct systems. Class a system as even or odd according to the parity of the total
number of blue edges k: a. Let the difference between the number of even and odd
systems, in any subset E of T, be H(E). Clearly,

(l+En,). v (l+En,)’.
(-1

al ak
()

by (3).

2. Some elementa considerations. Denote the set of distinct graphs formed by
omitting the coloring of each system, in any subset E of T, by E*. We will refer to
an edge beginning at a point of type and ending at a point of type j (1 i, j k) as
"an j edge," calling it pure if =j and mixed if j. Where desired we will indicate
the edge color by j or L j.

We recall that any veex is characterized by a pair of natural numbers (i, j) where
is the number of the type to which it belongs and j (1 j n) is its serial number

in that type. If two points P, P’ are characterized by (i, j), (i’,j’), respectively, then P
is said to be of lower rank than P’ if

either i<i’

or i=t, j<j’.

Now let P be the set of systems containing at least one pure edge. Given any
system in P, select from among the pure edges the one beginning at the point of lowest
rank and change its color. This leaves the balance condition (*) satisfied but produces
a new system of opposite parity, so that the two systems together give a canceling
contribution to Hv(T). Since this process defines a (1, 1) parity-changing map from P
to itself, H,(P)= 0. Writing TP U, say, this is equivalent to

n.(r) =n.(u);

thus, we may disregard P and count only the contribution of systems in U to Hv(T).
Now consider any graph belonging to U. Take the lowest ranking veex and call

it X. Since there is exactly one edge staing at each veex, there will be a uniquely
defined cycle of the form

(6) Xx’x...x-’x(=x).
Since there are no pure edges it follows that P2 and that each edge XX+ is
mixed. If this cycle does not cover the entire graph, let yO be the lowest ranking veex
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not lying on it. As before, we define a cycle

(7) yO -> y -> -> yq -> yq yO

and continue until the entire graph has been covered in this way.
Consider any such cycle, e.g., (6). It can be divided up into segments each of

which begins and ends with vertices of the same type as X. For example, if the cycle
(6) were

(1, 1) (2, 5) (3, 7) (1, 6)->(2, 4)-->(7, 1)--> (4, 3)--> (1, 2) (2, 1) (1, 1),

we should have the segments

(1, 1)-->(2, 5)-->(3, 7)-->(1, 6),

(1, 6)-->(2, 4) (7, 1)-> (4, 3)--> (1, 2),

(1,2)-->(2,1)->(1,1).

We can thus describe the graph structure by a set of segments, which we may
order by the ranks of their initial vertices. A segment will be called odd or even
according to the parity of the number of edges which compose it. Now let V be the
set of graphs whose structures contain at least one odd segment. Suppose such a graph,
G (say), contains the segment

(8) Z- Z -" - Z- - Zwhere r is odd, and suppose, moreover, that (8) is the lowest ranking such odd segment
in this graph. We change the graph, and its coloring, according to the following rules"

(a) Change the connecting edges of (8) to produce the segment

(9) Z -> Zr-1 -> Zr-2
--->" -> Z -> Zr.

(b) Color these new edges so that the ith edge of (9) (1 <- i-< r) has the opposite
color to that of the (r+ 1 i)th edge of (8).

Call the new system, with its coloring, G’. It is easily verified that G’ also satisfies
the rule (*). On the other hand, since r is odd, the graphs G, G’ will have opposite
parities. Moreover the transformation is clearly an involution. We thus have a (1, 1)
parity changing surjection of V onto itself. It follows that

(10) II_(V) 0.

Therefore if we write W U\ V we have

(11) II_(U) II_(W),

and therefore it is sufficient to construct the systems belonging to W and calculate
their contribution to II_, (T).

3. Application to the case k =3. We now apply these considerations to the
particular case k=3, writing _n=(a, b, c). Since the product Pa(x)Pb(x)Pc(x) is a
polynomial of parity equal to that of a + b + c, its integral will be zero for odd a + b + c.
We therefore limit the discussion to a + b + c 2s, where s is an integer. Moreover it
follows from the orthogonality of the polynomials that the integral will vanish unless
s ->_ max (a, b, c). We proceed to study the integral under these assumptions. Let G be
any graph of the set W*, let E be the number of even systems that can be constructed
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by coloring G, and let f be the number of odd systems. By the definition of W, each
such graph is made up of segments of one of the following forms:

(i) (2-* 3 -*)12,
(12) (ii) 1 -* (3-* 2-*)",3-* 1,

(iii) 1-*(2-.3-*)n,2-* 1,

where the 1, 2, 3 indicate the types to which the vertices belong and li -> 1, mi _-> 0, ni ->- 0.
Let the segments in each of these three classes be ordered by the rank of their initial
vertex.

For each i, j (i, j 1, 2, 3) denote by Eij the number of i-*j edges. In any segment
of type (i), (ii), or (iii) the number of i-*j edges equals that ofj-* edges and, hence,
for the whole graph Eij Ej. Since, by hypothesis, there are no pure edges, it follows
that

E2 E21 s-c,

(13) E13-- E31 s-b, and

E23 E32 s a.

To simplify the notation we write A, B, C for s- a, s- b, s- c, respectively. It is easily
seen that the only possible distributions of colors consistent with (*) must be as shown
in the following table:

2-*3

Blue

Yellow A-a-t A-o B-fl- C-y-t

where t, a, fl, / may take any values for which the table entries are all nonnegative
integers. Now the distribution of colors among the 2-* 3 and 3 -* 2 edges is determined
when we have chosen (a + t) of the 2-* 3 edges and A-a from the 3-* 2 edges, and

(A+t) ways. Similar results hold for 3 -* 1 and for 1 -* 2. Thethis can clearly be done in 23

total number of blue edges in any such coloring is 2(a +/3 + 3’)+ 3t-- (mod 2). Hence
the difference between the numbers of even and odd systems possible on any such
graph is

(14)

But

A+t B+t C+t

(B+C)!(C+A)!(A+B)!(-1 A+t B+t ] C+t

(15) E(-1)t, A+t/ B+t/ C+t AvBCV

(For an elegant combinatorial proof of this known identity, see [3, p. 65].)
Substituting into (17), we obtain
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(16)

(2A) (2B) (2C) (A + B + C)
(B + C)!(C + A)!(A+ B)! A!B!C!

(2s 2a) (2s 2b) (2s 2c)!s!
a!b!c!(s-a)!(s-b)!(s-c)!

(2:-2aa) (2:-2bb) (2:-c) s!(s-a),(s-b),(s-C)!a!b!c!
In particular the number is the same for all the graphs of W*. It remains to determine
how many such graphs there are.

Consider (12). Since there are B edges of type 1 3 in the graph, this will also
be the number of segments of type (ii). Similarly there will be C segments of type
(iii). Hence the total number of m’s and r/i’S is B + C a. If we write L= Eli we see
we have to determine the numbers L, {m}, {n}. Since L+ Ern + En equals the number
of 2 - 3 edges, i.e., A, it follows that L, {mi}, {t/j} are the nonnegative integer solutions of

a+l

Y xi=A
i=1

and this number is known to be (aa+a)= ().
The number of possibilities with the segments in each of (ii) and (iii) ranked in

order is therefore ()/(B! Ct). If the segments of forms (ii), (iii) are connected via
veices of type 1 (and this may be done in a ways), the graph will be determined
except for the numbers l and the ranks of the veices. The veices not involved in
segments of form (i) may be ranked in a(bt/Lt)(Ct/Lt) ways while it is easily seen
that the remaining pairs of (1, 2) points may be connected in cycles and ranked in
(L)z ways. Hence the total number of possible graphs in W* is

(17) {(s)/(B,C,)}.a’. {a’b’c,} =s’a’b’c
a AIBICI"

It follows from (5), (16), and (17) that

2 (2:-2aa) (2:-2bb) (2:-:c)(2:) -1

(18) L.b,--(a+b+c+l
This result was first obtained by Adams [1]. His approach was to evaluate the

integral for some low values of the subscripts and, on the basis of this, to guess a
general formula, which he then proved by induction. For a succinct history of the
problem see Askey [2, pp. 39-40]. In the special case a b= c= 2A, (18) becomes

(19) {P (x)} dx_, (6A +1)!
Substituting (18) into (4), we get the binomial identity

E (-1)++v
c a+b+c

(20)

f (2_2aa)0 (2: 2bb) (2:- c)(2;)-1
In the special case a b c 2A, this becomes

(2tA) 2(2A)2(2A)2( 6A )-1 (2AA)3(6A-I(21) E (-1)’+t+’

for a + b + c 2s,

for a+b+c odd.
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4. The case k =4. Since the product P,,, P,,2...P,,,, is a polynomial, it may be
written in the form

(22)

where the C,,...,,k,

P,,(x)P,(x)" p,(x)=E c.,.,...,,,,,,P(x)

are constants. Now if we apply the well-known relation

2
(23) Pm(X)P.(X) aX-

2m+l

we get

2
(24)

2a + 1
C,,,,,2,...,,,,,,, I,,,,,,...,,,,,,,.

Now let a, b, c, d be nonnegative integers. By (23) and (24)

(25)
P.(x)P(x)=Z (o
P(x)Pd(x) E fl +- Icd,t3Pt3(x).

Hence,

and

L,,,,,,, Po(x)P,,(x)P(x)P,,(x) dx
-1

( I_Y, o + fl + I,,b,o,Ic,d,t P,(x)Pt(x dx
o,fl

(26) _, a+ + IbLa by(22),

Since I,b,,e =0, unless a + b+ c+ d is even, we may assume in (26) that a + b
c+ d (rood 2). Thus we may write

I,b,,e=(2,+)I,b,I,a, if a+bc+dO (mod2)

(7

=(2,)Ia,b.2,+llc.d,2+l ifabcdl (rood 2).

Moreover, since I,,,a is clearly symmetric in the subscripts, we see that

(28) ( a +) Ia,b,Ic,d,a ( fl W) Ia,c,Ib,d,

A special case of some interest arises if we take a b c d. By (27) we get

I,,., 2 + I,,,

(29)
-1

[p,(x)]4dx=2(4y+l){ [(a+Y)[]2 (2:)2(2a-2y)’)}:z.
v (2a+2y+l) a
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