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1. Introduction

Fix a positive integer n ≥ 2, and let

v = (v0, v1, . . . , vn−1)

be a row vector in Cn. Define the shift operator T : Cn → Cn by

T (v0, v1, . . . , vn−1) = (vn−1, v0, . . . , vn−2) .

The circulant matrix associated to v is the n×n matrix whose rows are
given by iterations of the shift operator acting on v, that is to say, the
matrix whose k-th row is given by T k−1v, k = 1, . . . , n. Such a matrix
will be denoted by

V = circ{v} = circ{v0, v1, . . . , vn−1} .

Special cases of this type of matrices (see Theorem 3) appeared in one
of the authors’ recent work [7] based on [3]. They seem to be prevalent
in certain parts of mathematics (see, for example, [5]). For reference
purposes, we point the reader to the elegant treatment given in [4,
§5.2], and the monograph [1] devoted to the subject.

Our work was originally motivated by the need to derive a specific
result (Theorem 3) to be applied in the investigation of theta constant
identities. Recently, our Theorem 3 has also been applied, in [6], to
the theory of optimization in the field of management and information
sciences.

Many facts about these matrices can be proven using only basic linear
algebra. This makes the area quite accessible to undergraduates looking
for “research problems.” Our note presents a general view of these type
of matrices, and hopes to illustrates the latter point by including in it
a number of problems that may be of interest to students.

In our presentation, we concentrate on the discussion of necessary
and sufficient conditions for circulant matrices to be nonsingular. This
single goal allows us to lay out a rich mathematical structure surround-
ing these matrices, though this is by no means, an exhaustive treatment
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of all the properties they have. We have tried to make the note acces-
sible to a wide audience by supplying rather full details in most of the
arguments. When faced with the possibility of presenting a short ar-
gument or a longer one that requires less prerequisites, we have chosen
the latter approach. At times the shorter, more elegant, argument is
outlined in a remark.

The paper is organized as follows. We begin in §2 by evaluating the
determinant of a circulant matrix, and computing some of its invari-
ants. In §3, we discuss the space of such matrices, and show that it has
the structure of a finite dimensional commutative algebra. Symmetries
of circulant matrices are discussed briefly in §4. All this material is
well known. Not so readily found in the literature is the remaining
material. In §5, we determine necessary and sufficient conditions for
a circulant matrix to be nonsingular provided n is prime. The case of
real matrices is discussed in §6. We end our note by establishing, in
§7, a relationship between the determinant of a circulant matrix and
the rational normal curve in complex projective space. This material
is not as elementary as the rest of our note, but illustrates the fact that
circulant matrices have a strong presence in various parts of modern
(and classical) mathematics. The interested reader may find a simpler
illustration of this fact in [8].

It is a pleasure for Irwin Kra to thank Yum-Tong Siu, with whom he
had enlightening conversations during a recent visit to Vietnam. Siu
brought to his attention another, more elementary, proof of formula (1),
and helped generate interest in the further study of circulant matrices.
He also thanks Paul Fuhrmann for bringing to his attention a number
of references, and for the helpful criticism of an earlier draft of this
manuscript.

2. The general case

Theorem 1. Let v = (v0, v1, . . . , vn−1) be a vector in Cn, and V =
circ{v}. If ε is a primitive n-th root of unity, then

(1) det V = det


v0 v1 · · · vn−2 vn−1

vn−1 v0 · · · vn−3 vn−2
...

...
. . .

...
...

v2 v3 · · · v0 v1

v1 v2 · · · vn−1 v0

 =
n−1∏
l=0

(
n−1∑
j=0

εjlvj

)
.

Proof. We view the matrix V = circ{v0, v2, . . . , vn−1} as a self map
(linear operator) of Cn. For each integer l, 0 ≤ l ≤ n − 1, let xl ∈ Cn
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be the transpose of the row vector 1√
n
(1, εl, ε2l, . . . , ε(n−1)l) and1

λl = v0 + εlv1 + · · ·+ ε(n−1)lvn−1.

A calculation shows that
v0 v1 · · · vn−2 vn−1

vn−1 v0 · · · vn−3 vn−2
...

...
. . .

...
...

v2 v3 · · · v0 v1

v1 v2 · · · vn−1 v0




1
εl

ε2l

...
ε(n−1)l

 = λl


1
εl

ε2l

...
ε(n−1)l

 .

Thus λl is an eigenvalue of V with normalized eigenvector xl. Since
{x0, x1, . . . , xn−1} is a linearly independent set, we conclude that

det V =
n−1∏
l=0

λl .

�

Problem 1. Investigate the connection of the above result to the spec-
tral mapping theorem.

Corollary 1. The characteristic polynomial of V is

pV (x) = det (xI − V ) =
n−1∏
l=0

(x− λl).

Corollary 2. The nullity of V is the number of zero eigenvalues λl.

Corollary 3. We have
∑n−1

l=0 λl = nv0.

Proof. Since
n−1∑
l=0

eil =

{
n for i = 0
0 for i = 1, ..., n− 1

,

we see that
n−1∑
l=0

λl =
n−1∑
l=0

n−1∑
i=0

elivi =
n−1∑
i=0

(
n−1∑
l=0

eli

)
vi = nv0.

�
1We reserve the symbols λl and xl for this eigenvalue and eigenvector throughout

the manuscript. We use the convention, unless otherwise specified, that all vectors
are column matrices. However, we will often write them as row matrices without
mentioning that we are considering the transpose of the column vector. This iden-
tification should not cause any confusion. In a sense, it was already used in defining
the shift operator T . In line with this convention, matrices, when viewed as linear
operators, multiply column vectors on the left.
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Remark 1. The last corollary also follows from the identity
∑n−1

l=0 λl =
trace V .

3. The space of Circulant matrices

Definition 1. We define Circ(n) to be the set of all n × n complex
circulant matrices.

We record a number of consequences of the last theorem.

Corollary 4. Circ(n) is an n-dimensional commutative subalgebra of
the algebra of n× n matrices with the usual matrix operations of addi-
tion and multiplication. Furthermore, transposes of circulant matrices
and inverses of nonsingular circulant matrices are also circulant. All
elements of Circ(n) are simultaneously diagonalized by the same uni-
tary matrix.

Proof. Let C be the n×n matrix that represents the linear transforma-
tion sending the l-th unit vector el (this is the vector (0, ..., 0, 1, 0, ..., 0)
with the 1 in the l-th slot) to xl:

C :=
1√
n


1 1 · · · 1 1
1 ε · · · εn−2 εn−1

...
...

. . .
...

...

1 εn−2 · · · ε(n−2)2 ε(n−1)(n−2)

1 εn−1 · · · ε(n−2)(n−1) ε(n−1)2

 ,

and let DV be the diagonal matrix with diagonal entries λ0, λ1, . . .,
λn−2, λn−1, respectively. Then

C−1V C = DV .

The remaining conclusions of the corollary follow readily now. �

If we let
W = circ{0, 1, 0, . . . , 0},

then it is seen easily that

circ{v0, v1, . . . , vn−1} =
n−1∑
i=0

viW
i.

Remark 2. With respect to the standard basis of Cn, the shift oper-
ator T is represented by the transpose of the matrix W ; that is, by
circ{0, 0, . . . , 0, 1}.

Corollary 5. The map that sends W to the indeterminate X estab-
lishes an isomorphism of algebras between Circ(n) and C[X]/(Xn−1).
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Definition 2. Given a circulant matrix V = circ{v0, v1, . . . , vn−1}, we
define its representer as the polynomial PV (X) =

∑n−1
i=0 viX

i.

Corollary 6. For l = 0, . . . , n− 1, we have that λl = PV

(
e

2πı
n

l
)
.

Corollary 7. Let V be a circulant matrix with representer PV (X). The
following are equivalent:

(a) The matrix V is singular.

(b) PV

(
e

2πı
n

l
)

= 0 for some l ∈ Z.

(c) The polynomials PV (X) and Xn − 1 are not relatively prime.

Remark 3. The nullity of a circulant matrix V with representer PV (X)
is the degree of the greatest common divisor of PV (X) and Xn − 1.

Remark 4. For each n×n circulant matrix V , we have two polynomials:
its representer PV of degree ≤ n− 1 and its characteristic polynomial
pV of degree n. We can describe these polynomials rather explicitly in
terms of the eigenvalues λl of V .

The characteristic polynomial pV is the unique monic polynomial of
degree n that vanishes at λl, l = 0, 1, . . . , n− 1. The representer PV is

the unique polynomial of degree ≤ n− 1 whose value at e
2πıl

n is λl for
l = 0, 1, . . . , n− 1.

The roots of the characteristic polynomial of an arbitrary n × n
matrix V (these are the eigenvalues of the matrix V ) are obtained by
solving a monic n-degree polynomial equation. However, in the case
of circulant matrices, the roots of pV are easily calculated using the
auxiliary companion polynomial PV . Thus if a given polynomial p is
known to be the characteristic polynomial of a known circulant matrix
V , its zeroes can be readily found. This remark is the basis of [5]. It
is thus of considerable interest to determine which monic polynomials
are characteristic polynomials of circulant matrices. Further, if we are
given that p = pV for some circulant matrix V , can we determine V ,
or equivalently PV , directly from p?

We can obviously recover V from its representer. If λ = (λ0, . . . , λn−1)
is an ordered set of eigenvalues, then there is a unique circulant matrix
V = circ{v} = circ{v0, v1, . . . , vn−1} whose ordered eigenvalues are λ:

v =
√

nC−1λ .

Thus there are at most (n− 1)! (see Corollary 3) circulant matrices V
with characteristic polynomial pV . In particular, every monic polyno-
mial p is the characteristic polynomial of some circulant matrix V .

But the argument above avoids completely the issue of finding the
roots of p, as the given construction of V from p started by assuming
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we had the roots of the polynomial. So the more difficult question is
the construction of V (or equivalently, it representer PV ) in terms of
the coefficients of the polynomial p.

Problem 2. Describe the finite set of circulant matrices with fixed char-
acteristic polynomial.

Problem 3. Let P be the space of polynomials of degree ≤ n − 1. We
have seen that P is canonically isomorphic to Circ(n) and thus, for
each p ∈ P, there exists a unique V ∈ Circ(n) such that p = pV . Let
M be the space of monic polynomials of degree n. We obtain a map
λ : P 7→ M by sending p to pV .

We know that λ is surjective. The last problem asked for a descrip-
tion of λ−1(p) for arbitrary p ∈ M. We now want to study the induced
differential map dλ.

We have shown that for q ∈ M,

q(x) =
n−1∏
i=0

(x− λi) = xn +
n−1∑
i=0

aix
i ,

and if for p ∈ λ−1(q),

p(x) =
n−1∑
i=0

vix
i ,

we must have

nv0 =
n−1∑
i=0

λi = an−1 .

We can represent an arbitrary p ∈ P by its coordinates v ∈ Cn as in
Definition 2. We represent a point in M by its roots as in Corollary 1.
In these coordinates, the differential of λ is given by

dλ =

[
∂λl

∂vj

]
=
[
e

2πılj
n

]
=
√

nC.

It is constant and invertible. Thus the map λ is always a local homeo-
morphism. But it is not globally injective.

Does λ have a splitting map σ? In other words, is there a map
σ : M 7→ P such that λ ◦ σ is the identity?

Corollary 8. If for some k, |vk| >
∑

j 6=k |vj|, then the circulant matrix

V = circ{v0, . . . , vn−1} is nonsingular.
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Proof. Let PV (X) be the representer of V . If PV

(
e

2πı
n

l
)

= 0 for some

l ∈ Z, then for η = e
2πı
n

l,

vkη
k = −

∑
j 6=k

vjη
j.

In particular

|vk| ≤
∑
j 6=k

|vj|,

which contradicts the hypothesis. �

Corollary 9. Let d|n, d ≥ 1, and assume that the vector v consists
of n

d
identical blocks (that is, vi+d = vi for all i, where indices are

calculated modulo n). Then λl = 0 whenever dl is not a multiple of n;
hence V is singular and its nullity is ≥ n− d.

Proof. For all l,

λl =
n−1∑
i=0

εlivi =

n
d
−1∑

j=0

d−1∑
i=0

εldj
(
εlivi

)
=

1− εnl

1− edl

d−1∑
i=0

εlivi,

provided dl is not a multiple of n. In particular, λl = 0 for 1 ≤ l < n
d
.

In general there are n− d integers l such that 0 ≤ l < n and dl is not
a multiple of n. �

Remark 5. In this case

PV (X) =

(
d−1∑
i=0

viX
i

)(
Xn − 1

Xd − 1

)
and the polynomial Xn−1

Xd−1
of degree n−d divides both PV (X) and Xn−1

(see Corollary 7).

Corollary 10. Let d|n, d ≥ 2, and assume that the vector v consists
of n

d
consecutive constant blocks of length d (that is, vid+j = vid for

i = 0, 1, . . . n
d
− 1 and j = 0, 1, . . . , d− 1). Then λl = 0 whenever l 6= 0

and l ≡ 0 mod n
d
, hence V is singular and its nullity is ≥ d− 1.

Proof. In this case

λl =
n−1∑
i=0

εlivi =

n
d
−1∑

j=0

εldjvdj

d−1∑
i=0

εli =
1− εld

1− εl

n
d
−1∑

j=0

εldjvdj,

provided l > 0. In particular, λl = 0 for all l = αn
d
, with α =

1, 2, . . . , d− 1. �
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Remark 6. In this case

PV (X) =

n
d
−1∑

i=0

viX
id

(Xd − 1

X − 1

)
and the polynomial Xd−1

X−1
of degree d−1 divides both PV (X) and Xn−1

(see Corollary 7).

4. Symmetries of Circ(n)

It is easy to see that

det circ{v0, v1, . . . , vn−1}

= (−1)k(n−1) det circ{vk, vk+1, . . . , vn−1, v0, . . . , vk−1} .

We also have that

det circ{v0, v1, . . . , vn−1} = (−1)n−1 det circ{vn−1, vn−2, . . . , v1, v0} .

However, there is no obvious general relation between
det circ{v0, v1, . . . , vn−1} and det circ{vσ(0), vσ(1), . . . , vσ(n−1)}

in the case where σ is an arbitrary permutation of n elements.
Given an invertible scalar a, we also have the relation

det circ{v0, v1, . . . , vn−1} = a−n det circ{av0, av1, . . . , avn−1} .

Problem 4. Investigate the action of the permutation group on n letters
on Circ(n).

5. The case of n prime

Theorem 2. Let n ∈ Z>0 be a prime. Assume that V has entries in
Qn. Then

det V = det


v0 v1 · · · vn−2 vn−1

vn−1 v0 · · · vn−3 vn−2
...

...
. . .

...
...

v2 v3 · · · v0 v1

v1 v2 · · · vn−1 v0

 = 0

if and only if either λ0 = 0 or all the vi are equal.

Proof. If all the vi’s are equal, then λl = 0 for all l > 0. We already
know that the vanishing of some λl implies that det V = 0. Conversely
assume that det V = 0 and that λ0 6= 0. Then λl = 0 for some positive
integer l < n.
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Again we take ε = e2πi/n. By our formula for λl, we see that εl is a
root of the polynomial

p(x) =
n−1∑
i=0

vix
i.

However, since n is prime, εl is a primitive n-th root of unity, so the
minimal polynomial of εl over the rationals is the cyclotomic polynomial

q(x) =
n−1∑
i=0

xi.

Therefore p is a constant multiple of q. Consequently all vi are equal,
as desired. �

6. Real points

Theorem 3. If {vj}0≤j≤n−1 is a weakly monotone sequence (that is, a
nondecreasing or nonincreasing sequence) of nonnegative or nonpositive
real numbers, then the matrix V = circ{v0, v1, ..., vn−1} is singular if
and only if for some integer d|n, d ≥ 2, the vector v = (v0, v1, . . . , vn−1)
consists of n

d
consecutive constant blocks of length d.

In particular, if the sequence {vj}0≤j≤n−1 is strictly monotone and non-
positive or nonnegative, then V is non-singular.

Proof. If the matrix V were singular, then its representer PV (X) =∑n−1
i=0 viX

i would vanish at an n-th root of unity, say ε. We can
easily see that it is sufficient to prove the theorem in the case when
{vj}0≤j≤n−1 is a nonincreasing sequence of nonnegative real numbers;
all other cases reduce to this one, by replacing ε with 1

ε
or by ap-

propriately changing the signs of all the vi’s (see also the symmetries
discussed in §4). We may thus assume in the sequel that

v0 ≥ v1 ≥ . . . vn−1 ≥ 0.

Now PV (λ) = 0 means that

v0 + v1ε + · · ·+ vn−1ε
n−1 = 0

and hence also
v0ε + v1ε

2 + · · ·+ vn−1ε
n = 0,

which yields

(2) v0 − vn−1 = (v0 − v1)ε + (v1 − v2)ε
2 + · · ·+ (vn−2 − vn−1)ε

n−1.

Observe that if z1, . . . , zm are complex numbers such that

(3)
m∑

i=1

zi =

∣∣∣∣∣
m∑

i=1

zi

∣∣∣∣∣ =
m∑

i=1

| zi |,
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then zi ≥ 0 for all i = 1, . . . ,m. Since |ε| = 1, it follows from (2) that
zk = (vk−1 − vk)ε

k, k = 1, . . . , n − 1 satisfy (3), and thus for each k
either vk−1 = vk, or εk = 1. The latter holds only if ε is actually a d-th
root of unity, for some divisor d ≥ 2 of n, while k is a multiple of d,
and the conclusions of the theorem follow easily now.

Indeed, to be specific, choose the smallest positive integer d such
that εd = 1. Then d ≥ 2, d|n and εk = 1 for 1 ≤ k ≤ n if and only if
k = d, 2d, . . . or n = n

d
d. It follows that vk = vk−1 = . . . = vk−(d−1). �

Remark 7. (a) With an argument similar to the one in the proof above,
one can show that if the sequence {vj}n−1

j=0 is non-increasing and vn−1 >

0, then P (X) =
∑n−1

i=0 viX
i is non-zero for any X on the unit complex

disk |X| < 1. This result can be applied to show that if P (X) =∑n−1
i=0 viX

i is a polynomial whose coefficients vi are positive, then its
zeros λ all lie in the annulus m ≤ |λ| ≤ M , where

m = min

{
vi

vi+1

; i = 0, 1, . . . , n− 2

}
and

M = max

{
vi

vi+1

; i = 0, 1, . . . , n− 2

}
.

(b) The circulant matrices formed from the vectors (−3,−1, 0, 2, 2)
and (−4,−1, 0, 2, 3) show that certain parts of the hypothesis cannot
be weakened.

(c) For a real circulant matrix, λl = 0 if and only if λn−l = 0.

Problem 5. Investigate generalizations of the last theorem to the com-
plex case.

We end this section with the related

Problem 6. Let V = Cn and let G be a finite group of order n that acts
by permutations on the coordinates of Cn; that is, for v = (v1, ..., vn) ∈
V and g ∈ G,

g(v1, ..., vn) = (vg(1), ..., vg(n)).

Then the fixed point set

VG = {v ∈ V; g(v) = v for all g ∈ G}
is a nontrivial subspace of V since it contains the vector (1, ..., 1). It is
reasonable to conjecture that

(4) dim VG |G .

• Construct an example to show that the conjecture as it stands is
false.
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• Can one add some hypotheses concerning the action of G on V so
that the divisibility property (4) holds?
• Let V = {y1, y2, ..., yr} be a finite collection of vectors in V and let

G(V ) be the span of the vectors {g(yi); g ∈ G, i = 1, 2, ..., r}. Can one
compute the dimension of G(V ) in terms of invariants of the group G
and collection V ?
• In particular, if r = 1, viewing y = y1 as a row vector and ordering

the elements of G as {g1, ..., gn}, we form an n × n matrix M whose
k-th row is gk(y). Under what conditions is M nonsingular?

7. Circulant matrices and rational normal curves

There is an alternative, more complicated but more geometric, proof
of Theorem 1. We present it in this section, which also shows the
usefulness of circulant matrices in algebraic geometry, and that one
can also study other invariants, besides the determinant, of (generic)
circulant matrices; for example, their lower order minors.

Let us begin by recalling that complex projective n-space Pn is the
set of one-dimensional subspaces of Cn+1. A point p ∈ Pn is usually
written as a homogeneous vector [z0 : . . . : zn], by which is meant the
complex line spanned by (z0, . . . , zn) ∈ Cn+1 \ {0}.

A polynomial f ∈ C[z0, . . . , zn] does not in general descend to a
function on Pn. However, if f is a homogeneous polynomial of degree
d, we can perfectly talk about the zeroes of f in Pn because we have the
relation f(λz0, . . . , λzn) = λdf(z0, . . . , zn). The rational normal curve
Cd ⊂ Pd of degree d is defined to be the image of the map P1 → Pd,
given by

[z0 : z1] 7→ [zd
0 : zd−1

0 z1 : . . . : z0z
d−1
1 : zd

1 ] = [Z0 : . . . : Zd] .

This set is easily seen to be the common zero locus of the polynomials
pij = ZiZj − Zi−1Zj+1 for 1 ≤ i ≤ j ≤ d − 1. The ideal of Cd,
I(Cd) := {f ∈ C[Z0, . . . , Zn] | f ≡ 0 on Cd} is actually generated by
this family of polynomials.

In general, an algebraic subset X ⊂ Pn is defined to be the zero locus
of a collection of homogeneous polynomials, and its ideal I(X) consists
of the set of polynomials that vanish on X.

Let us now think of {v0, . . . , vn−1, . . . , v2n−2} as a set of 2n − 1 in-
dependent variables, and consider the matrix (beloved by invariant
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theorists) with constant antidiagonals given by

M :=


v0 v1 · · · vn−2 vn−1

v1 v2 · · · vn−1 vn
...

...
. . .

...
...

vn−2 vn−1 · · · v2n−4 v2n−3

vn−1 vn · · · v2n−3 v2n−2

 .

This matrix is called the (generic) n × n catalecticant matrix. By the
above observations, the 2×2-minors of M define the ideal of the rational
normal curve C = C2n−2 ⊂ P2n−2 of degree 2n− 2,

P1 3 [z0 : z1] 7→ [z2n−2
0 : z2n−3

0 z1 : z2n−4
0 z2

1 : . . . : z2n−2
1 ] ∈ P2n−2 .

The other ideals of minors of M have geometric significance too.
Since the sum of m matrices of rank one has rank at most m, it follows
that for each k ∈ {2, . . . , n} the ideal Ik of k× k-minors of M vanishes
on the union of the (k−1)-secant (k−2)-planes to the rational normal
curve C ⊂ P2n−2. Actually, it turns out that the ideal Ik of k×k-minors
of M defines the (reduced) locus of these (k− 1)-secant (k− 2)-planes
to C (Raymond Wakerling, unpublished Ph.D. thesis, Berkeley 1939;
see [2] for a modern complete proof).

Note that the restriction of the matrix M to the (n−1)-dimensional
linear subspace Λ ⊂ P2n−2 defined by

Λ = {vn − v0 = vn+1 − v1 = · · · = v2n−2 − vn−2 = 0}

coincides up to row permutations with the (generic) circulant matrix

V = circ{v0, v1, . . . , vn−1}.

(Here we say that a circulant matrix V is generic if {v0, . . . , vn−1} are
considered independent variables.)

On the other hand the intersection Λ ∩ C, consists of the n points
whose coordinates [z0 : z1] ∈ P1 satisfy the equations

(zn−2
0 , zn−3

0 z1, . . . , z
n−2
1 ) · (zn

0 − zn
1 ) = 0 ,

or equivalently zn
0 − zn

1 = 0. If ε is as above a primitive n-th root of
unity, these n points have coordinates in Λ[v0 : . . . : vn−1]

pi = [1 : εi : ε2i : · · · : ε(n−1)i], i ∈ {0, . . . , n− 1}.

It follows that the restriction of Ik to Λ vanishes on the union of (k−2)-
planes ⋃

i1,i2,...,ik−1∈{0,...,n−1}

span(pi1 , pi2 , . . . , pik−1
).
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In particular, the determinant of the generic circulant matrix V van-
ishes on the union of the n distinct hyperplanes⋃

i∈{0,...,n−1}

span(p0, p1, . . . , p̂i, . . . , pn−1),

where (as usual) in the last union, the symbol p̂i denotes that pi does
not appear. But the union of the above n distinct hyperplanes is defined
by a single polynomial of degree n (product of linear forms vanishing on
each of the hyperplanes), while the determinant of the generic circulant
matrix V is also a polynomial of degree n. Thus, by degree reasons
these polynomials must agree up to a non-zero scalar, ans hence the
hypersurface {det V = 0} ⊂ Λ must coincide with this union of hyper-
planes. Since span(p0, p1, . . . , p̂i, . . . , pn−1) is the zero-locus of

λn−i = v0 + ε−iv1 + · · ·+ ε−i(n−1)vn−1,

we deduce that det(V ) factors as in the statement of Theorem 1.
A similar but slightly more involved argument shows that for all

k ∈ {2, . . . , n}, the ideal of k×k-minors of the generic circulant matrix
V = circ{v0, v1, . . . , vn−1} defines the (reduced) union of (k− 2)-planes⋃

i1,i2,...,ik−1∈{0,...,n−1}

span(pi1 , pi2 , . . . , pik−1
)

(in contrast with case of the generic catalecticant matrix, where all
ideals of minors are prime).
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