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Abstract 
The Legendre-Stirling numbers were discovered by Everitt, Littlejohn and Wellman in 2002 in a 
study of the spectral theory of powers of the classical second-order Legendre differential operator. 
In 2008, Andrews and Littlejohn gave a combinatorial interpretation of these numbers in terms of 
set partitions. In 2012, Mongelli noticed that both the Jacobi-Stirling and the Legendre-Stirling 
numbers are in fact specializations of certain elementary and complete symmetric functions and 
used this observation to give a combinatorial interpretation for the generalized Legendre-Stirling 
numbers. In this paper we provide a second combinatorial interpretation for the generalized Le-
gendre-Stirling numbers which more directly generalizes the definition of Andrews and Littlejohn 
and give a combinatorial bijection between our interpretation and the Mongelli interpretation. We 
then utilize our interpretation to prove a number of new identities for the generalized Legendre- 
Stirling numbers. 
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1. Introduction 
The Stirling numbers of the second kind have long played an important role in many areas of combinatorics and 
have a nice combinatorial interpretation in terms of set partitions (for example, see [1]). For a good discussion of 
the Stirling numbers of the second kind, the interested reader can reference Stanley’s book on Enumerative 
Combinatorics [2] and Mansour’s book on Combinatorics of Set Partitions [1]. In 2002, a generalization of the 
Stirling numbers of the second kind, called the Legendre-Stirling numbers, was given by Everitt, Littlejohn and 
Wellman [3]. They discovered these numbers as a result of the study of the classic second-order Legendre 
differential equation. 
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[ ]( ) ( ) ( )( ) ( ) ( ) ( )( )2: 1     1,1kl y x x y x ky x y x xλ′′= − − + = ∈ −  

In 2008, Andrews and Littlejohn [4] found a combinatorial interpretation of the Legendre-Stirling numbers in 
terms of certain generalized set partitions. In 2012, Mongelli [5] used a specialization of certain symmetric func-
tions to develop a combinatorial interpretation of generalized Legendre-Stirling numbers that doesn’t appear to 
directly generalize the combinatorial interpretation for Andrews and Littlejohn’s Legendre-Stirling numbers. 

In this paper, we build on Andrews and Littlejohn’s combinatorial interpretation of the Legendre-Stirling 
numbers to give a second combinatorial interpretation of these numbers. 

This paper is organized as follows. In Section 2 we review the basic combinatorics related to the Stirling 
numbers of the second kind. We also review the Legendre-Stirling numbers and then discuss both the combina-
torial interpretation given by Andrews and Littlejohn and the combinatorial interpretation of the generalized Le- 
gendre-Stirling numbers given by Mongelli. In Section 3, we give our combinatorial interpretation for the gene-
ralized Legendre-Stirling numbers using colored set partitions, which is based on the interpretation of Andrews 
and Littlejohn for Legendre-Stirling numbers. We give an explicit bijection between our interpretation and the 
Mongelli interpretation to show that these are equivalent. In the final section, we use our combinatorial interpre-
tation to state and prove a number of interesting identities satisfied by the generalized Legendre-Stirling num-
bers. 

2. Background 
Let [ ]n  denote the set { }1,2, ,n . A set partition of [ ]n  is a partition of [ ]n  into disjoint, non-empty 
subsets which are called blocks of the set partition. For example, there are 15 set partitions of [4] .  

1234 12 34 1 4 23
1 234 13 24 2 3 14
2 134 14 23 2 4 13
3 124 1 2 34 3 4 12
4 123 1 3 24 1 2 3 4

− − −
− − − −
− − − −
− − − − −
− − − − − −

 

Definition 2.1 The number of set partitions of [ ]n  into k  blocks is called the Stirling number of the 
second kind and is denoted by ( ),S n k .  

From the above example, one can see that ( )4,1 1S = , ( )4,2 7S = , ( )4,3 6S =  and ( )4, 4 1S = . It should 

be noted that several authors use the notation 
n
k
 
 
 

 to refer to the Stirling number of the second kind [6]. 

The Legendre-Stirling numbers were first defined in 2002 as the coefficients of integral composite powers of 
the Legendre expression in Lagrangian symmetric form. Andrews and Littlejohn [4] proved that these Legendre- 
Stirling numbers satisfy the following slightly more general recurrence relation:  

( ) ( ) ( ) ( )LS , LS 1, 1 1 LS 1,n k n k k k n k= − − + + −  

In that same paper, Andrews and Littlejohn gave a combinatorial interpretation of the Legendre-Stirling 
numbers in the following manner. Let [ ] { }1, 1,2, 2, , ,n n n=  , ordered 1 1 2 2 n n< < < < < < . We will 

call i  and i  a pair. Then ( )PS ,n k  is the number of set partitions of [ ]n  into 1k +  blocks with the 
following restrictions: 

1) One block, called the zero block is distinguishable from the others and is the only block that may be empty. 
The zero block may not contain an element and its pair.  

2) The other k  blocks are indistinguishable, each must be non-empty, and the smallest two elements of each 
block must form a pair, while no other two elements in a block may form a pair.  

In 2012, Mongelli [5] noted that the Legendre-Stirling numbers are a specialization of certain symmetric 
functions and gave the following combinatorial interpretation of these numbers for any fixed polynomial with 
only integer roots and nonnegative coefficients, ( )( ) ( )1 2 rf x a x a x a= + + + , 1 2 ra a a≤ ≤ ≤ , and for 
fixed j , n , k ∈ . 
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Consider r  labeled copies of the numbers 1 ,  , n , i.e.  

1 2 1 2 1 21 ,1 , ,1 , 2 , 2 , , 2 , , , , ,r r rn n n     

Consider a pair ( )( )1π, , ,
raP S S=   where π  is a set partition of a subset of { }11 , , rn  into j  blocks 

and 1, ,
raS S  are subsets of { }11 , , rn . We say that P  is f -Stirling of order ( ),n j  if P  is a partition 

of the set of r  labeled copies of the numbers 1 through n  into raj +  subsets such that  
1) The subsets in π  are nonempty and each one contains the minimum number with all its indices; 
2) One of the subsets in π  contains 1 21 ,1 , ,1r ; 
3) Each im , ( )1 ,1m n i r≤ ≤ ≤ ≤  is in one of the first ij a+  subsets. 

If we specify ( )( ) ( )1 2 1f x x x x j= + + + −  so that 1 0a = , 2 1a = ,  , 1ja j= − , then we define the 

Mongelli generalized Legendre-Stirling numbers ( )MLS ,r n j  as the number of set partitions satisfying the 
above conditions. 

Mongelli notes that when 2r = , so ( )1f x x= + , there is a straightforward bijection between his combina-
torial interpretation and that of Andrews and Littlejohn. 

3. Generalized Legendre-Stirling Numbers, ( )LSr n, j  
At the time of publication of the Mongelli paper, the authors of this paper had developed a second combinatorial 
interpretation of the generalized Legendre-Stirling numbers and used this second interpretation to prove a num-
ber of generalized combinatorial identities for these numbers. In this section we give this second combinatorial 
interpretation for the Legendre-Stirling numbers and describe a bijection between the Mongelli interpretation 
and this second interpretation (which, as it turns out, is not a generalization of the bijection that Mongelli gives 
for the special case of 2r = ). In the following section, we use this new interpretation to prove several new 
combinatorial identities for the generalized Legendre-Stirling numbers. 

To begin, we define [ ] { }1 2 1 2 1 21 ,1 , ,1 , 2 , 2 , , 2 , , , , ,r j rrn n n n=     , ordered  

1 2 1 1 21 1 1 2r rn n n< < < < < < < < <   . One can think of this set as a set of r  colors of the elements 1 
through n . 

Definition 3.1 The generalized Legendre-Stirling numbers, ( )LS ,r n j , are the number of set partitions of 

[ ]rn  into 1j r+ −  blocks with the following restrictions: 
1) There are 1r −  distinguishable zero blocks which may be empty and which may contain no more than 

one color of any element. 
2) The remaining j  nonzero blocks are indistinguishable, must be non-empty and must contain all r  col-

ors of the smallest element in the block. No more than one color of any other element is allowed in these blocks. 
Theorem 3.2 ( ) ( )MLS , LS ,r rn j n j= . 
Proof. We will show that our combinatorial interpretation of ( )LS ,r n j  is equivalent to the Mongelli inter-

pretation by giving a bijection between the set partitions described in each interpretation. Recall 
( )( ) ( )1 2 1f x x x x j= + + + −  so 1 0a = , 2 1a = ,  , 1ja j= − . We first note that the subsets in π  in 

the Mongelli interpretation correspond to the j  nonzero blocks in our interpretation. In both interpretations, 
each of these subsets must be nonempty and must contain the minimum number with all its indices. In the Mon-
gelli interpretation, one of the subsets in π  must contain 11 ,  , 1r . In our interpretation, since there are 

1r −  zero blocks, at least one color of 1 is contained in one of the j  nonzero blocks, thus all colors of 1 must 
occur in this nonzero block. 

The conditions that we need to show are equivalent are condition 3 of the Mongelli description (that each im ,
( )1 ,1m n i r≤ ≤ ≤ ≤  is in one of the first ( )1j i+ −  subsets) and our condition that no more than one color of 
any element is allowed to be in the same block, other than the minimum element in the nonzero blocks. 

Let P  be a set partition that satisfies the Mongelli conditions with ( )( ) ( )1 2 1f x x x x j= + + + − . Order 
the subsets in π  in decreasing order from left to right, according to the minimal element in the set. To create a 
set partition Q  that satisfies our criterion, place the minimal elements in the same subsets as in P . For each 
m  which is not a minimal element in one of the subsets of π , let l  be the subset containing rm , counting 
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from left to right. Then in Q , place rm  in the ( )r j l+ − th available block, counting from right to left, where 
a block is considered available if it does not already contain any labeled copies of m . Repeat the process for 

1rm − , then 2rm −  and so on until all labeled copies of m  have been placed. Do this for all m  that are not the 
minimal element in one of the subsets of π . The result will be a set partition in which none of the colors of m , 
for m  not a minimal element in one of the zero blocks, is contained in a block with another color of m , thus 
giving us a set partition Q  which satisfies our criterion. 

To see that this procedure is a bijection, we can create the inverse map. Begin with a set partition Q  that 
satisfies our criteria. We will order the blocks by putting the j  nonzero blocks first, ordered in decreasing 
order of minimal element, followed by the zero blocks. To form P , place the minimal elements in the same 
blocks as in Q . For m  not a minimal element in a nonzero block, begin with rm . Let l  be the number of 
blocks to the right of the block containing rm  that either do not contain a labeled copy of m  or contain an 

im  with i r< . Place rm  into the ( )1r l+ − th block of P , counting from left to right. Repeat the process for 
1rm − , then 2rm −  and so on until all labeled copies of m  have been placed. Do this for all m  that are not the 

minimal element in one of the nonzero blocks. 
Example 3.3 Let 3n = , 5r =  and 2j =  and suppose we have the following Mongelli set partition  

{ } { } { }{ }1 2 3 4 5 5 1 2 3 4 5 1 2 4 32 , 2 , 2 , 2 , 2 ,3 , 1 ,1 ,1 ,1 ,1 ,3 ,3 ,3 3 , , ,P = ∅ ∅ ∅  

To form Q , we will place the 1’s and the 2’s in the same blocks as P . Then for 53  we have 1l = , for 43  
we have 2l = , for 33  we have 3l = , for 23  we have 2l =  and for 13  we have 2l = . Thus our resulting 
Q  partition that satisfies our criteria is  

{ } { } { } { } { } { }{ }1 2 3 4 5 5 1 2 3 4 5 4 2 3 12 , 2 , 2 , 2 , 2 ,3 , 1 ,1 ,1 ,1 ,1 3 , 3 , 3 , 3Q =  

4. Identities for ( )LSr n, j  
The Stirling numbers of the second kind satisfy a number of interesting identities which can be found nicely 
stated in Benjamin and Quinn’s book [6]. Our combinatorial interpretation of the generalized Legendre-Stirling 
numbers suggests several analogous identities which we state and prove below. We put the number of the 
identity from the book that is being generalized in parentheses in the following theorems. In several of the 
proofs in the section, we use the abbreviation LME to refer to the largest element which is a minimum in its 
block. We will also utilize the notation of Stanley [2] that ( ) ( )( ) ( )1 2 1kx x x x x k= − − − + . 

Theorem 4.1 (201) Let ,  m n  be non-negative integers with n m≥  and let r  be a positive integer. Then,  

( ) ( ) ( )
1 1

1
LS 1, LS 1, 1

n n k
r rr

k m
k m m r n m

+ + −

= +

 − + = + + ∑  

Proof. The right hand side counts the number of partitions of [ ]1 rn +  into ( )1m +  nonzero blocks and 
1r −  zero blocks. For the left hand side, let k  be the largest minimum element that appears with its r -tuple 

in a block all by itself. Then the elements 1 through 1k −  can be distributed into the remaining m  nonzero 
blocks and 1r −  zero blocks in ( )LS 1,r k m−  ways. The elements 1k +  through 1n +  must be distributed 
into the 1r −  zero blocks and the 1m +  nonzero blocks so that none of the r  colors of the same element 
appear together. Since the 1m +  nonzero blocks all contain smaller elements at this point, they can now be 
considered distinguishable. Thus we can begin by first distributing the r  colors of 1k + , then the r  colors of 

2k + , etc. To distribute the r  colors of 1k + , there are ( ) ( )1 1m r m r+ + − = +  choices for the block to place  
( )11k +  in, 1m r+ −  choices to place ( )21k +  in, and so on. This is accounted for by ( )rm r+ . Since we 

must do this for each of the remaining 1n k+ −  elements, this is a total of ( ) 1n k

rm r
+ −

 +  . 

Theorem 4.2 (199) Let ,  m n  be non-negative integers and let r  be a positive integer. Then, 

( ) ( ) ( )
0

LS 1, 1 LS ,
m

r rr
k

m n m k r n k k
=

+ + = + − +∑  

Proof. The left hand side of this identity counts the ways to distribute the elements of the set [ ]1 rm n+ +  into 
1m r+ −  blocks with m  nonzero blocks. For the right hand side, consider the ways to distribute the elements 
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of the set [ ]1 rm n+ +  into 1m r+ −  blocks with m  nonzero blocks where the elements 1m n+ + , m n+ , 
1m n+ − ,  , 2n k+ +  each appear in a block with its r -tuple and nothing else and the element 1n k+ +  

does not appear in a block with its r -tuple. To count the ways to create a distribution like this, first place the 
elements 1m n+ +  through 2n k+ +  in nonzero blocks alone with their r -tuples. This leaves 

( ) ( )( )1 2 1m m n n k k− + + − + + + =  nonzero blocks for the remaining elements. Since 1++ kn  does not 
appear in a block with its r -tuple, the r  colors of this element must each appear in a different block which 
can be counted by ( )( ) ( ) ( )1 2 1 1 rk r k r k k k r+ − + − + = + − . The remaining n k+  elements are distributed 
into the k  nonzero blocks and the 1r −  zero blocks with the usual restrictions, which can be counted by 

( )LS ,r n k k+ . 
Theorem 4.3 (208) Let ,  m n  be non-negative integers with n m≥  and let r  be a positive integer. Then,  

( ) ( ) ( ) ( ) ( ) ( )
1 1 11 11

1
1 0 1

1
LS 1, 1 1 LS 1, 1

n n i nn i n in i k kk
r rr r

i m k i m

n i
i m r m r m r i m m r

k

+ + − ++ − + −+ − −

−
= + = = +

+ −     − + − × + − = − + −      
∑ ∑ ∑  

Proof. We will show that both sides count the ways to partition [ ]1 rn +  into ( ) ( )1 1m r m r+ + − = +  blocks 
with the LME in a block by itself. To begin, we look at the right hand side. Let i  be the LME and let it appear 
in a block by itself, i.e. with only its r -tuple and no other elements. Then partition the 1i −  smaller elements 
into the remaining 1m r+ −  blocks in ( )LS 1,r i m−  ways. The remaining 1n i+ −  larger elements must then 
be distributed to 1m r+ −  blocks since they can be in any block except the block with i . In addition, all r  
colors of a given element must appear in different blocks. Thus for a given element k , there are 1m r+ −  
choices of block for the first color of k , 2m r+ −  choices of block for the second color of k  and so on, 
giving ( )1 rm r+ −  ways to distribute the r  different colors of the element k . Since there are in −+1  

elements distributed in this way, this contributes ( ) 1
1

n i

rm r
+ −

 + −   to the sum. Finally, since the LME can 
range from 1m +  to 1n +  we get the sum on the right hand side. 

Since the left hand side has an alternating sign in the summation, we will describe what the terms count and 
then give a sign reversing involution on the terms that will leave us with only the partitions of [ ]1 rn +  into 

( )m r+  blocks with the LME in a block by itself. Again we will let i  be the LME in any of the 1m +  regular 

blocks. We partition the 1i −  smaller elements into the remaining 1m r+ −  blocks in ( )LS 1,r i m−  ways. 
Next choose k  elements from the remaining 1n i+ −  elements to be put in the block with i  and to be 
considered barred elements. For each of these k  elements we have r  choices of which color element is 

included giving us a total term of 
1 kn i

r
k
+ − 

 
 

. We then have 1r −  colors of each of these k  elements to be 

distributed into the other 1m r+ −  blocks so that no two of the same type are in the same block. This can be 

done in ( ) 11
k

rm r
−

 + −   ways. The remaining 1n i k+ − −  elements can be distributed into any of the m r+  
blocks as long as no two elements of the same type appear in the same block. If any of these elements are in the 
block with i  they are considered to be unbarred elements. This distribution can be done in ( ) 1n i k

rm r
+ − −

 +   

ways. Summing over possible choices of k  and i  gives us the summation on the left hand side. The ( )1 k−  
term gives a 1−  for every barred element in the block containing i . 

For the sign-reversing involution, let l i>  be the smallest element in the block containing i , if such an 
element exists. If l  is barred, remove the bar. If l  is unbarred, add a bar. This changes the sign on the 
corresponding term and gives a sign-reversing involution. The fixed points are those partitions with i  in a 
block by itself. 
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