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We determine the q-orthogonal polynomial solutions to the difference equation
DqPnðxÞ ¼ gnPn21ðxÞ, where Dq is the Askey–Wilson divided-difference operator,
using an approach that does not appear in the literature. To accomplish this, we
construct a polynomial expansion via a Chebyshev basis, which ultimately allows
explicit formulas to be derived for the recurrence coefficients of PnðxÞ above. From
there, we obtain our solutions and discuss some future research.
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1. Introduction

In this paper, we determine all of the q-orthogonal polynomial solutions fPnðxÞ}1n¼0 to the

difference equation:

DqPnðxÞ ¼ gnPn21ðxÞ; ð1Þ

where gn is a function of n that is independent of x and Dq is the Askey–Wilson degree-

lowering, divided-difference, linear operator defined by

Dq f ðxÞ :¼
�f q1=2z
� �

2 �f q2ð1=2Þz
� �

�e q1=2z
� �

2 �e q2ð1=2Þz
� � ; ð2Þ

with z ¼ eiu, �f ðzÞ ¼ f ðxÞ ¼ f ðcos uÞ, for any function f and eðxÞ ¼ x. For details regarding

the development and vast applicability of this operator, consider [1,3,4,11], as well as [8]

and the additional references therein.

For the remainder of this section, we first discuss the motivations behind analysing (1)

and then outline the details of this paper.

In [2], all classical orthogonal polynomial solutions were obtained from the

differential equation

pðxÞ d
dx

PnðxÞ ¼ ðanxþ bnÞPnðxÞ þ gnPn21ðxÞ; n ¼ 1; 2; 3; . . . ; ð3Þ

where pðxÞ is a polynomial of degree at most 2. A unified derivation of (3) appears in

[7, p. 167], and is accredited to Tricomi. The paper [2] describes all sequences of monic

orthogonal polynomials fPnðxÞ}1n¼0 that solve (3) and satisfy a three-term recurrence
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relation (a necessary and sufficient condition for orthogonality) of the form

Pnþ1ðxÞ ¼ ðxþ BnÞPnðxÞ2 CnPn21ðxÞ; n ¼ 0; 1; 2; . . . ;

P21ðxÞ ¼ 0; P0ðxÞ ¼ 1; Cn – 0; n ¼ 1; 2; 3; . . . :
ð4Þ

Since pðxÞ ¼ ax2 þ bxþ c is at most quadratic, (3) only needed to be analysed for the

following cases:

pðxÞ ¼
1;

x;

x2 þ c:

8>><
>>: ð5Þ

Any other form of pðxÞ can be achieved via a linear change-of-variables.

The methodology used to obtain the orthogonal polynomial solutions for each case is

essentially as follows. First, differentiate (4) and multiply the result by pðxÞ. Then, use (3)
to eliminate pðxÞP0

n21ðxÞ, pðxÞP0
nðxÞ and pðxÞP0

nþ1ðxÞ. From there, utilize (4) to remove

Pnþ1ðxÞ. This results in an equation relating the coefficients of pðxÞ and recursion

coefficients in (3) and (4). Therefore, several difference equations can be obtained from

which expressions for the recursion coefficients Bn and Cn can be determined. These

expressions contain arbitrary parameters, which when chosen judiciously lead to the

sought-after classical orthogonal polynomial solutions.

Upon completing this for each case of pðxÞ in (5), which required a wealth of clever

algebraic manipulations, it was determined that the Hermite, Laguerre and Jacobi

polynomials are, respectively, the only orthogonal polynomial solutions. For each of these

polynomial solutions, orthogonality was defined on the real line with respect to a non-

decreasing real function. When considering polynomials orthogonal on the real line with

respect to a function of bounded variation, the generalized Bessel polynomials [12] were

also solutions in the limiting case c! 0 for pðxÞ ¼ x2 þ c.

In 2006, Datta and Griffin [6] discovered all q-orthogonal polynomial solutions to the

difference equation

pðxÞDqPnðxÞ ¼ ðanxþ bnÞPnðxÞ þ gnPn21ðxÞ; ð6Þ
where pðxÞ is a polynomial of degree at most 2, with the q-degree-lowering, divided-

difference, linear operator Dq, cf. [8], defined as

ðDq f ÞðxÞ :¼ f ðxÞ2 f ðqxÞ
x2 qx

:

Their work was the q-analogue of [2] because the differential operator d=dx in (3) was

replaced by Dq above. Datta and Griffin determined all of the q-orthogonal polynomial

solutions to (6) using essentially the same methodology as in [2], taking into account that

(6) does not remain invariant under the linear transformation x! axþ b. Therefore, the

following cases and sub-cases were considered:

pðxÞ ¼
1;

x; xþ c;

x2; x2 þ s; x2 þ rx; x 2 þ rxþ s:

8>><
>>: ð7Þ
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The Al-Salam–Carlitz I, the discrete q-Hermite I, the big and little q-Laguerre

polynomials and the big and little q-Jacobi polynomials were obtained – the q-Bessel

polynomials were achieved by taking appropriate limits.

We also mention that the recently submitted manuscript ‘q-Orthogonal polynomial

solutions to a class of difference equations’, by D.J. Galiffa and S.J. Johnston, presents an

analysis of the difference equation

pðxÞDq21PnðxÞ ¼ ðanxþ bnÞPnðxÞ þ gnPn21ðxÞ

with

ðDq21 f ÞðxÞ :¼ f ðxÞ2 f ðx=qÞ
x2 x=q

:

In this work, the authors obtained the Al-Salam–Carlitz II, the discrete q-Hermite II, the

q-Laguerre and the Stieltjes–Wigert polynomials, as well as q-orthogonal polynomials

that are currently not fully characterized, as solutions.

Indeed, much analysis has been conducted with regard to determining the classical and

quantum orthogonal polynomial solutions to the equation

pðxÞTðPnðxÞÞ ¼ ðanxþ bnÞPnðxÞ þ gnPn21ðxÞ; n ¼ 1; 2; 3; . . . ð8Þ

for the operators T ¼ d=dx;Dq;Dq21 , but not for the case when T ¼ Dq. Thus, our main

motivation for studying (1) is to develop a method analogous to those utilized in [2,6] in

order to conduct a preliminary analysis of (8), with T ¼ Dq. Namely, we consider Case 1

of (7) (pðxÞ ¼ 1), from which it follows that an ¼ bn ¼ 0 and hence (1). Cases 2 and 3

(with T ¼ Dq) do not appear in the literature.

Next, we mention that characterizing Case 1 of [2] is actually equivalent to

determining which Appell sets are also orthogonal. Similarly, characterizing Case 1 of [6]

is the same as determining the q-Appell orthogonal sets. Therefore, the secondary

motivation for this paper is to determine the Dq-Appell orthogonal sets in a way that is

entirely different from what has been established previously, i.e. [1,9].

Lastly, it is also important to address the following. There are two types of theorems in

this area: direct theorems and inverse theorems. For the classical orthogonal polynomials,

the direct theorems are illustrated by formula (3). For the Jacobi polynomials, (3) follows

from the contiguous relations discovered by Gauss (with earlier relations due to Euler and

a few others). The inverse problems are usually restricted to orthogonal polynomials, but

some are likely to hold in a more general context.

This paper is organized as follows. In Section 2, we alleviate the difficulty of directly

applying (2) to (1) by expanding our polynomials via a Chebyshev basis. These expansions

are needed for all of our subsequent results. We conclude Section 2 with a few preliminary

definitions that we use throughout this work. The crux of this paper is presented in

Section 3, where we develop explicit conditions that the recursion coefficients in (4) must

satisfy in order for PnðxÞ to solve (1). Finally, in Section 4 we determine all of our

q-orthogonal polynomial solutions and discuss some future research problems.

2. Expansion via Chebyshev basis polynomials

From the orthogonality relation of the Chebyshev polynomials of the first kind fTnðxÞ}1n¼0,

see [10], we form an orthogonal basis via the weighted inner product
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kf ; gl ¼
ð1
21

f ðxÞgðxÞwðxÞ dx

with wðxÞ ¼ ð12 x2Þ21=2. Thus, for a given set of monic orthogonal polynomials

fPnðxÞ}1n¼0, we have

PnðxÞ ¼
Xn
k¼0

f n;kTkðxÞ; with f n;k ¼ Pn; Tkh i
Tk; Tkh i : ð9Þ

From (4), we expect f n;k;Bn and Cn to be related. In this regard, we have the following

statement.

Lemma 2.1. For n ¼ 2; 3; . . . , with f n;k as in (9), we have

f nþ1;n ¼ 1

2
f n;n21 þ Bnf n;n: ð10Þ

For n ¼ 3; 4; . . . , we also have

f nþ1;n21 ¼ 1

2
f n;n þ f n;n22

� �þ Bnf n;n21 2 Cnf n21;n21 ð11Þ

with

f n;n ¼ 1

2n21
for n ¼ 1; 2; . . . : ð12Þ

Proof. The Chebyshev polynomials of the first kind satisfy the three-term recurrence

relation

xTkðxÞ ¼ 1

2
Tkþ1ðxÞ þ 1

2
Tk21ðxÞ for k ¼ 1; 2; 3; . . . :

By substituting (9) into (4) and using the above relation for the xTkðxÞ term, our result

follows from comparing coefficients. A

Next, we discuss a few relationships that are used throughout this paper. We let

fUnðxÞ}1n¼0 be the Chebyshev polynomials of the second kind [10] and recall that the

identity function is denoted as eðxÞ ¼ x via (2). We then see that DqðeÞ ¼ DqðT1Þ ¼ 1.

Lastly, we make much use of the definitions

nn :¼ qn=2 2 q2n=2

q1=2 2 q21=2
and mn :¼ qn=2 þ q2n=2

from which it follows that

DqðTkðxÞÞ ¼ nkUk21ðxÞ: ð13Þ

Remark 1. It is worth mentioning that mk and nk are important structures that appear

elsewhere in the literature. For example, in [5], ½n�q (called the q-numbers (in symmetric

form)) was used to denote our nn and aqðnÞ was used for our ð1=2Þmn term. A
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3. The recursion coefficients

We begin by obtaining expressions for the recursion coefficients Bn and Cn in terms of the

Fourier coefficients as in (9).

Lemma 3.1. For fPnðxÞ}1n¼0 to satisfy (1) and (4) for n ¼ 2; 3; 4; . . . , the recursion

coefficients Bn and Cn must satisfy

Bn ¼ 2n22ðnnþ1 2 nnÞ
nn

f n;n21;
Cn

2n22
¼ 1

2n
þ 1

2
f n;n22 þ Bnf n;n21 2 f nþ1;n21:

Proof. Using (1) and (9) we see that

Dq

Xn
k¼0

f n;kTkðxÞ
 !

¼ gn
Xn21

k¼0

f n21;kTkðxÞ:

Applying (13) to the left-hand side of the above expression and using the relation

TkðxÞ ¼ 1

2
UkðxÞ2 1

2
Uk22ðxÞ; k ¼ 1; 2; 3; . . .

on the right-hand side, we obtain

Xn
k¼0

f n;knkUk21ðxÞ ¼ gnf n21;0T0ðxÞ þ 1

2
gn
Xn21

k¼1

f n21;kðUkðxÞ2 Uk22ðxÞÞ: ð14Þ

Upon comparing the coefficients of Un21ðxÞ above, we see that

f n;nnn ¼ 1

2
gnf n21;n21;

which from (12) implies that

gn ¼ nn: ð15Þ

Similarly, by comparing coefficients of Un22ðxÞ, we obtain

f n;n21nn21 ¼ 1

2
gnf n21;n22; n ¼ 3; 4; 5; . . . :

From (15), we have

f nþ1;n ¼ nnþ1

2nn
f n;n21; n ¼ 2; 3; 4; . . . : ð16Þ

Substituting (16) into (10), we obtain Bn. The expression for Cn is obtained from the

expression for Bn and (11). A

We can now derive explicit forms for our recursion coefficients.
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Theorem 3.2. The recursion coefficients as in Lemma 3.1 have the following forms:

Bn ¼ ðnnþ1 2 nnÞB0; ð17Þ

which is valid for n ¼ 1; 2; 3; . . . and

Cn ¼ 1

4
1þ nnðnnþ1 2 nnÞB2

0 2 n2n
4G3

n2n3
2
Xn22

k¼2

1

nknkþ1

 !
þ nnþ1

nn21

" #
; ð18Þ

with G3 ¼ n3ðB0B1 2 C1 þ 1=4Þ, which is valid for n ¼ 4; 5; 6; . . . .

Proof. From P1ðxÞ in (4) and the definition of f 1;0, it is clear that B0 ¼ f 1;0. For ease of

notation, we define Fn :¼ f n;n21 and we see that F1 ¼ f 1;0 ¼ B0. Then, from (16), we have

the first-order difference equation

Fn ¼ nn
2nn21

Fn21 for n ¼ 3; 4; 5; . . . ;

which has the solution

Fn ¼ nn
2n22n2

F2: ð19Þ

Substituting this into (10), we have

nnþ1

2n21n2
F2 ¼ nn

2n21n2
F2 þ 1

2n21
Bn:

From considering (1) for n ¼ 2, it follows that

F2 ¼ n2B0 ð20Þ

and therefore,

Bn ¼ ðnnþ1 2 nnÞB0:

We next obtain Cn. Recalling (15), we compare the coefficients of Un23ðxÞ in (14) and

obtain

f n;n22nn22 ¼ 1

2
nn f n21;n23 2 f n21;n21

� �
; n ¼ 4; 5; 6; . . . : ð21Þ

Defining

Gn :¼ f n;n22; n ¼ 2; 3; 4; . . .

we achieve the first-order difference equation in Gn as follows:

Gn ¼ nn
2nn22

Gn21 2
1

2n22

� �
; n ¼ 4; 5; 6; . . . :

D.J. Galiffa and B.W. Ong6



Upon iterating this result, we see that the solution is

Gn ¼ nnnn21

2n21

4G3

n2n3
2
Xn22

k¼2

1

nknkþ1

 !
; n ¼ 4; 5; 6; . . . : ð22Þ

Via Lemma 3.1, for n ¼ 4; 5; 6; . . . we have

Cn

2n22
¼ 1

2n
þ BnFn þ 1

2
Gn 2 Gnþ1:

After substituting our expressions for Bn in Lemma 3.1 and Fn in (19), we further obtain

Cn

2n22
¼ 1

2n
þ nnðnnþ1 2 nnÞ

2n22n22
F2
2 þ

1

2
Gn 2 Gnþ1; n ¼ 4; 5; 6; . . . : ð23Þ

We next note that with the identity nnþ1 2 nn21 ¼ mn, ð1=2ÞGn 2 Gnþ1 can be further

simplified to

2
nnmn

2n
4G3

n2n3
2
Xn22

k¼2

1

nknkþ1

 !
þ nnþ1

2nnn21

: ð24Þ

Thus, we substitute (20) and (24) into (23), which leads to (18).

We now only need to determine the explicit form of G3. For n ¼ 3, we observe that

(14) becomes

X3
k¼0

f 3;knkUk21ðxÞ ¼ g3f 2;0T0 þ 1

2
g3
X2
k¼1

f 2;k UkðxÞ2 Uk22ðxÞð Þ:

Using (15) and n1 ¼ T0 ¼ U0 ¼ 1, we can compare the constant terms above to achieve

f 3;1 ¼ n3f 2;0 2
1

2
n3f 2;2;

which gives us the following expression for G3:

G3 ¼ n3 G2 2
1

4

� �
:

We next derive G2. By comparing the coefficients of P0ðxÞ, P1ðxÞ and P2ðxÞ in (4) and (9),
we have

F2 ¼ B0 þ B1; f 2;0 2 f 2;2 ¼ B0B1 2 C1:

Hence,

G2 ¼ f 2;0 ¼ B0B1 2 C1 þ 1

2
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and we see that

G3 ¼ n3 B0B1 2 C1 þ 1

4

� �
:

A

4. Conclusion and future directions

In light of the analysis of Section 3, we have the following statement.

Theorem 4.1. The continuous q-Hermite polynomials of Rogers are the only orthogonal

set of polynomials which satisfy the difference equation

DqPnðxÞ ¼ gnPn21ðxÞ:

Proof. From Theorem 3.2, we see that our recursion coefficients Bn and Cn contain three

free parameters: B0, B1 and C1. From Theorem 3.2, we also know that

Bn ¼ ðnnþ1 2 nnÞB0; n ¼ 1; 2; 3; . . . :

Thus, by choosing B0 ¼ 0 we immediately see that

Bn ; 0; n ¼ 0; 1; 2; . . . : ð25Þ
Next, from selecting C1 ¼ ð12 qÞ=4 and using (25), we observe that (18) becomes

Cn ¼ 1

4
12 n2n

q

n2
2
Xn22

k¼2

1

nknkþ1

 !
þ nnþ1

nn21

" #
:

Now notice that the above sum is telescoping:

Xn22

k¼2

1

nknkþ1

¼ ð12 qÞ
Xn22

k¼2

qk2ð1=2Þ

12 qk
2

qkþð1=2Þ

12 qkþ1

� �

¼ ð12 qÞ q3=2

12 q2
2

qn23=2

12 qn21

� �
:

Taking this into account and using some algebra, we obtain

Cn ¼ 1

4
ð12 qnÞ: ð26Þ

Hence, (25) and (26) are the recursion coefficients for the normalized Rogers’ q-Hermite

polynomials. A

To summarize, Theorem 3.2 establishes the general recursion coefficients (in terms

of the arbitrary parameters B0 and C1) that a polynomial set fPnðxÞ}1n¼0 must satisfy

in order to solve (1). Consequently, this theorem gives all of the q-orthogonal

polynomials that satisfy (1). Later, in Theorem 4.1, we concretely select B0 ¼ 0 and

C1 ¼ ð12 qÞ=4, leading to a special case of the general recursion coefficients in

Theorem 3.2. We do this because these selections lead to the standard normalized

D.J. Galiffa and B.W. Ong8



Rogers’ q-Hermite polynomials as they appear in contemporary literature, e.g. the

Askey scheme [10].

With regard to future research, we leave open for consideration the determination of

the q-orthogonal polynomial solutions to (8) (with T ¼ Dq) for Cases 2 and 3 of (7).

As discussed in Section 1, these characterizations do not appear in the literature.

We lastly mention that the Wilson operator, W, see p. 451 of [8], is defined as

�fðyÞ :¼ f ðxÞ for x ¼ y2;

ðh^f ÞðxÞ :¼ �f y^
i

2

� �
;

ðWf ÞðxÞ :¼ 1

2yi
ðhþf 2 h2f ÞðxÞ:

This degree-lowering, divided-difference, linear operator is connected with the Bethe

Ansatz equations of the Heisenberg XXX spin chain in quantum mechanics – cf. Section

16.5 of [8] for additional details. In addition,W also solves the Sturm–Liouville problem

of the form

PðxÞW2f ðxÞ þFðxÞðAWf ÞðxÞ ¼ rðxÞf ðxÞ;
with

PðxÞ ¼ 1

wðxÞAPðxÞ and FðxÞ ¼ 1

wðxÞWPðxÞ;

where wðxÞ . 0 is the weight function corresponding to fPnðxÞ}1n¼0 and A is the averaging

operator

ðAf ÞðxÞ :¼ 1

2
ðhþf þ h2f ÞðxÞ:

For polynomial solutions f ðxÞ, it is assumed that PðxÞ, FðxÞ and rðxÞ are polynomials of

degrees n, n2 1 and n2 2, respectively.

Thus, we also leave open for consideration the analysis of (8) with T replaced

by W, i.e.

pðxÞWPnðxÞ ¼ ðanxþ bnÞPnðxÞ þ gnPn21ðxÞ; n ¼ 1; 2; 3; . . . :

Acknowledgement

We thank the referee for the valuable feedback and suggestions.

References

[1] W.A. Al-Salam, A characterization of the Rogers q-Hermite polynomials, Int. J. Math. Math.
Sci. 18 (1995), pp. 641–647.

[2] W.A. Al-Salam and T.S. Chihara, Another characterization of the classical orthogonal
polynomials, SIAM J. Math. Anal. 3 (1972), pp. 65–70.

[3] R. Askey and J.A. Wilson, Some basic hypergeometric polynomials that generalize Jacobi
polynomials, Mem. Amer. Math. Soc. 54 (1985), no. 319, pp. iv+55.

[4] B.M. Brown, W.D. Evans, and M.E.H. Ismail, The Askey–Wilson polynomials and q-Sturm–
Liouville problems, Math. Proc. Cambridge Philos. Soc. 119 (1996), pp. 1–16.

Journal of Difference Equations and Applications 9



[5] R.S. Costas-Santos and F. Marcellán, q-Classical orthogonal polynomials: A general
difference calculus approach, Acta Appl. Math. 111 (2010), pp. 107–128.

[6] S. Datta and J. Griffin, A characterization of some q-orthogonal polynomials, Ramanujan J.
12 (2006), pp. 425–437.
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