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A FURTHER INVESTIGATION OF GENERATING

FUNCTIONS RELATED TO PAIRS OF INVERSE

FUNCTIONS WITH APPLICATIONS TO GENERALIZED

DEGENERATE BERNOULLI POLYNOMIALS

Sebastien Gaboury and Richard Tremblay

Abstract. In this paper, we obtain new generating functions involving
families of pairs of inverse functions by using a generalization of the Sri-
vastava’s theorem [H. M. Srivastava, Some generalizations of Carlitz’s
theorem, Pacific J. Math. 85 (1979), 471–477] obtained by Tremblay and
Fugère [Generating functions related to pairs of inverse functions, Trans-
form methods and special functions, Varna ’96, Bulgarian Acad. Sci.,
Sofia (1998), 484–495]. Special cases are given. These can be seen as gen-
eralizations of the generalized Bernoulli polynomials and the generalized
degenerate Bernoulli polynomials.

1. Introduction

In 1977, motivated by the work of Srivastava and Singhal [27] on the Ja-
cobi polynomials, Carlitz obtained the following generating function for the
Laguerre polynomials [2, p. 525, Eq.(5.5)]:

∞
∑

n=0

L(α+λn)
n (x+ ny)tn =

(1 + ω)α+1 e−xω

1− λω + ω(1 + ω)y
,(1.1)

where α, λ are arbitrary complex numbers and ω is a function of t defined by

ω = t(1 + ω)λ+1 e−yω(1.2)

with ω(0) = 0.
In the same paper, Carlitz [2, p. 521, Theorem 1 and Eq.(2.10)] extended

these results to the forms
∞
∑

n=0

c(α+λn)
n

tn

n!
and

∞
∑

n=0

d(α+λn,β+µn)
n

tn

n!
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respectively, where c
(α+λn)
n and d

(α+λn,β+µn)
n are general one- and two-para-

meter coefficients. Srivastava [23] proposed a generalization of Carlitz’s theo-

rem for the sequence of functions
{

f
(α)
n (x)

}

∞

n=0
and extended the result to the

multivariable and multiparameter sequence of functions
{

g(α1,...,αr)
n (x1, . . . , xs)

}

∞

n=0
.

Explicitly, Srivastava obtained the following generating function [23, p. 472,
Eq.(1.7)]:

A(z)
r
∏

i=1

{[Bi(z)]
αi} exp





s
∑

j=1

xjCj(z)



 =
∞
∑

n=0

g(α1,...,αr)
n (x1, . . . , xs)

zn

n!
(1.3)

implies, with suitable conditions on variables and parameters, the following
multivariable and multiparameter generating function [23, p. 472, Eq.(1.11)]:

∞
∑

n=0

g(α1+λ1n,...,αr+λrn)
n (x1 + ny1, . . . , xs + nys)

tn

n!

=
A(ζ)

∏r
i=1 {[Bi(ζ)]

αi} exp
(

∑s
j=1 xjCj(ζ)

)

Λ[λ1, . . . , λr; y1, . . . , ys; ζ]
,(1.4)

where

Λ[λ1, . . . , λr; y1, . . . , ys; ζ] =



1− ζ





r
∑

i=1

λi

(

B′

i(ζ)

Bi(ζ)

)

+

s
∑

j=1

yjC
′

j(ζ)







(1.5)

and

ζ = t

r
∏

i=1

{

[Bi(ζ)]
λi
}

exp





s
∑

j=1

yjCj(ζ)



 .(1.6)

A large number of interesting papers treating many special cases of Srivastava’s
theorem exist in the literature [4, 24, 25, 30].

The proofs of these results are essentially based on the Lagrange’s expansion
theorem in the form [22, p. 146, Problem 207]:

∞
∑

n=0

tn

n!
Dn

z {f(z) [φ(z)]n}|z=0 =
f(ζ)

1− tφ′(ζ)
,(1.7)

where the functions f(z) and φ(z) are analytic about the origin, and ζ is given
by

ζ = tφ(ζ) and φ(0) 6= 0.(1.8)

Recently, Tremblay and Fugère [33] gave a further generalization of Srivas-
tava’s theorem by using a result due to Osler involving the fractional derivatives
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[18, p. 290, Eq.(3.1)]:

Dα
g(z)f(z) = Dα

h(z)

{

f(z)g′(z)

h′(z)

(

h(z)− h(w)

g(z)− g(w)

)α+1
}

∣

∣

∣

∣

w=z

.(1.9)

In particular, they considered the specific form:

Dn
zG(z)f(z)

∣

∣

z=0
= Dn

zH(z)

{

f(z)

(

G(z) + zG′(z)

H(z) + zH ′(z)

)(

H(z)

G(z)

)n+1
}

∣

∣

∣

∣

z=0

.

(1.10)

They also gave many special cases. For further details on fractional derivatives,
the interested reader should read [8, 9, 19, 20, 21, 34, 35, 36].

The aim of this paper is to further investigate the generalization of Sri-
vastava’s theorem given by Tremblay and Fugère related to pairs of inverse
functions. In Section 2, we recall the theorems recently obtained by Tremblay
and Fugère. Section 3 is devoted to the obtention of new generating functions
for the generalized degenerate Bernoulli polynomials introduced by Carlitz [3].
Finally, in Section 4, we introduce families of pairs of inverse functions by us-
ing a theorem of Donaghey [5], and we give some special cases of generating
functions involving these pairs of inverse functions which can be seen as gener-
alizations of the generalized Bernoulli polynomials and generalized degenerate
Bernoulli polynomials.

2. Main theorems

In this section, we recall the generalization of Srivastava’s theorem as well
as others theorems obtained by Tremblay and Fugère [33, Theorems 3.1 and
3.2].

Theorem 2.1. Let the sequence of functions
{

h(α1,...,αr)
n (x1, . . . , xs; y1, . . . , ys;λ1, . . . , λr|σ

}

∞

n=0

be defined by means of the generating function

A(z)
∏r

i=1 {[Bi(z)]
αi} exp

(

∑s
j=1 xjCj(z)

)

Λσ[λ1, . . . , λr; y1, . . . , ys; z]

=

∞
∑

n=0

h(α1,...,αr)
n (x1, . . . , xs; y1, . . . , ys;λ1, . . . , λr|σ)

zn

n!
(2.1)

with

Λ[λ1, . . . , λr; y1, . . . , ys; z] =



1− z







r
∑

i=1

λi

[

B′

i(z)

Bi(z)

]

+
s
∑

j=1

yjC
′

j(z)









(2.2)

where the parameters σ, αi, λi (1 ≤ i ≤ r) and xj, yj (1 ≤ j ≤ s) are arbitrary

complex numbers independant of z (with suitable conditions on variables and
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parameters). The functions A(z), Bi(z), z
−1Cj(z) are analytic in the neigh-

borhood of the origin, and assume that

A(0) = Bi(0) = C′

j(0) = 1; i = 1, . . . , r; j = 1, . . . , s.(2.3)

Then we have

∞
∑

n=0

h(α1+θ1n,...,αr+θrn)
n (x1 + nw1, . . . , xs + nws; y1, . . . , ys;λ1, . . . , λr|σ + δn)

tn

n!

(2.4)

=
A(ζ)

∏r
i=1 {[Bi(ζ)]

αi} exp
(

∑s
j=1 xjCj(ζ)

)

Λσ[λ1, . . . , λr; y1, . . . , ys; ζ]Ω[λ1, . . . , λr; θ1, . . . , θr; y1, . . . , ys;w1, . . . , ws; δ; ζ]
,

where

Ω[λ1, . . . , λr; θ1, . . . , θr; y1, . . . , ys;w1, . . . , ws; δ; ζ]

= Λ[θ1, . . . , θr;w1, . . . , ws; ζ]− δζ
d

dζ
ln(Λ[λ1, . . . , λr; y1, . . . , ys; ζ])(2.5)

and

ζ = t

r
∏

i=1

{

[Bi(ζ)]
θi
}

exp





s
∑

j=1

wjCj(ζ)



Λ−δ[λ1, . . . , λr; y1, . . . , ys; ζ](2.6)

with all parameters δ, θi (1 ≤ i ≤ r) and wj (1 ≤ j ≤ s) are independant of ζ.

Remark 2.2. If δ = 0, θi = λi (1 ≤ i ≤ r) and wj = yj (1 ≤ j ≤ s), the
generating function (2.4) becomes

∞
∑

n=0

h(α1+λ1n,...,αr+λrn)
n (x1 + ny1, . . . , xs + nys; y1, . . . , ys;λ1, . . . , λr|σ)

tn

n!
(2.7)

=
A(ζ)

∏r
i=1 {[Bi(ζ)]

αi} exp
(

∑s
j=1 xjCj(ζ)

)

Λσ+1[λ1, . . . , λr; y1, . . . , ys; ζ]
,

where ζ = t
∏r

i=1

{

[Bi(ζ)]
λi
}

exp
(

∑s
j=1 yjCj(ζ)

)

.

In addition, if σ = 0, all variables yj and parameters λi become irrevelant
in (2.1) and (2.7). The sequence of functions

{

h(α1,...,αr)
n (x1, . . . , xs; y1, . . . , ys;λ1, . . . , λr|σ

}

∞

n=0

can be simply identified as
{

g
(α1,...,αr)
n (x1, . . . , xs)

}

∞

n=0
. The generating func-

tion (2.7) would evidently reduce to Srivastava’s theorem (1.4).

Tremblay and Fugère [33, p. 490, Eq.(3.10)] gave another interesting special
form of Theorem 2.1. They obtained the following theorem.
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Theorem 2.3. If the sequence of functions
{

k
(α1,...,αr,β,γ)
n (x1, . . . , xs|σ)

}

∞

n=0
is generated by a function of the form

A(z)

r
∏

i=1

{[Bi(z)]
αi} exp





s
∑

j=1

xjCj(z)





(

E(z)

z

)β+σ

(E′(z))
γ−σ

=

∞
∑

n=0

k(α1,...,αr ,β,γ)
n (x1, . . . , xs|σ)

zn

n!
,(2.8)

where the parameters αi (1 ≤ i ≤ r), β, γ and xj (1 ≤ j ≤ s) are independent

of z, the functions A(z), Bi(z), z
−1Cj(z) and E(z) are analytic at the origin

and such that

A(0) = Bi(0) = C′

j(0) = 1; i = 1, . . . , r; j = 1, . . . , s

and

lim
z→0

E(z)

z
= 1,

then the following generating function holds

∞
∑

n=0

k(α1+θ1n,...,αr+θrn,β+φn,γ+κn)
n (x1 + nω1, . . . , xs + nωs|σ + δn)

tn

n!

(2.9)

=
A(ζ)

∏r
i=1 {[Bi(ζ)]

αi} exp
(

∑s
j=1 xjCj(ζ)

)(

E(ζ)
ζ

)β+σ

(E′(ζ))
γ−σ

Λ [θ1, . . . , θr;ω1, . . . , ωs; ζ] + (φ+ δ)− ζ (φ+ δ) E′(ζ)
E(ζ) − ζ (κ− δ) E′′(ζ)

E′(ζ)

,

where

ζ = t

r
∏

i=1

{

[Bi(ζ)]
θi
}

exp





s
∑

j=1

wjCj(ζ)





(

E(ζ)

ζ

)φ+δ

(E′(ζ))
κ−δ

(2.10)

and

Λ[θ1, . . . , θr;ω1, . . . , ωs; ζ] =



1− ζ







r
∑

i=1

θi

[

B′

i(ζ)

Bi(ζ)

]

+
s
∑

j=1

ωjC
′

j(ζ)









 .

(2.11)

Finally, another important theorem for the sequel, given also in [33, The-
orem 3.2, p. 491], involves generating functions of pair of inverse functions.
Specifically, we have the following result.
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Theorem 2.4. If the sequence of functions
{

k
(α1,...,αr,β,γ)
n (x1, . . . , xs)

}

∞

n=0
is

generated by a function of the form

A(z)

r
∏

i=1

{[Bi(z)]
αi} exp





s
∑

j=1

xjCj(z)





(

E(z)

z

)β

(E′(z))
γ

=

∞
∑

n=0

k(α1,...,αr ,β,γ)
n (x1, . . . , xs)

zn

n!
,(2.12)

where the parameters αi (1 ≤ i ≤ r), β, γ and xj (1 ≤ j ≤ s) are independent

of z, the functions A(z), Bi(z), z
−1Cj(z) and E(z) are analytic at the origin

and such that

A(0) = Bi(0) = C′

j(0) = 1; i = 1, . . . , r; j = 1, . . . , s

and

lim
z→0

E(z)

z
= 1,

then we have the following generating function

A
(

E−1(z)
)

r
∏

i=1

{

[

Bi

(

E−1(z)
)]αi

}

exp





s
∑

j=1

xjCj

(

E−1(z)
)





×

(

E−1(z)

z

)−β (
d

dz
E−1(z)

)1−γ

=

∞
∑

n=0

k(α1,...,αr,β−n−1,γ)
n (x1, . . . , xs)

zn

n!
(2.13)

and we also have that

∞
∑

n=0

k(α1+λ1n,...,αr+λrn,β−1−n+φn,γ+κn)
n (x1 + ny1, . . . , xs + nys)

tn

n!

(2.14)

=
A(Ψ)

(

d
dζ
Ψ
)1−γ (

Ψ
ζ

)

−β
∏r

i=1 {[Bi(Ψ)]αi} exp
(

∑s
j=1 xjCj(Ψ)

)

1− φ+ φζ
d
dζ

Ψ

Ψ + κζ
d2

dζ2
Ψ

d
dζ

Ψ
− ζ d

dζ
Ψ
[

∑r
i=1 λi

[

B′
i(Ψ)

Bi(Ψ)

]

+
∑s

j=1 yjC
′

j(Ψ)
]

,

where

ζ = t

(

Ψ

ζ

)

−φ(
d

dζ
Ψ

)

−κ r
∏

i=1

{

[Bi(Ψ)]λi
}

exp





s
∑

j=1

yjCj(Ψ)



 ,

Ψ = E−1(ζ) and E−1(z) denotes the inverse function of E(z).
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3. Applications to generalized degenerate Bernoulli polynomials

The generalized degenerate Bernoulli polynomials

β(α)
n (λ, µ;x)

which contain, as special cases, the Nörlund polynomials [17] and the general-
ized Bernoulli polynomials [6, 10], have been introduced by Carlitz [3]. These
polynomials are defined by the following generating function:

(

z

(1 + λz)µ − 1

)α

(1 + λz)µx =
∞
∑

n=0

β(α)
n (λ, µ;x)

zn

n!
,(3.1)

where λµ = 1 and α ∈ C.
By taking the limit as λ → 0 in (3.1), we have

∞
∑

n=0

lim
λ→0

{

β(α)
n

(

λ,
1

λ
;x

)}

zn

n!
= lim

λ→0

{(

z

(1 + λz)
1
λ − 1

)α

(1 + λz)
x
λ

}

=

(

z

ez − 1

)α

exz

=

∞
∑

n=0

B(α)
n (x)

zn

n!
,(3.2)

where B
(α)
n (x) denotes the well-known and largely investigated generalized

Bernoulli polynomials [7, 11, 12, 13, 14, 15, 26, 28, 29, 31, 37].
The generalized degenerate Bernoulli polynomials satisfy the next properties

[3]:

β(α)
n (λ, µ, x) = (−1)nβ(α)

n (−λ,−µ, α− x),(3.3)

β(a+b)
n (λ, µ, x + y) =

n
∑

k=0

β
(a)
n−k(λ, µ, x)β

(b)
k (λ, µ, y),(3.4)

β(a+b)
n (λ, µ, x + y) =

n
∑

k=0

(

n

k

)

λ−2b−m+kβ
(−b)
n−k (λ, 1/µ, µx)β

(a−m+k)
k (λ, µ, y).

(3.5)

and

β(α)
n (λ, µ, x+ 1)− β(α)

n (λ, µ, x) = nβ
(α−1)
n−1 (λ, µ, x).(3.6)

Another interesting property for the degenerate polynomials β
(1)
n (λ, µ; 0)

that has been proved by Carlitz in [1] is the analog of the Staudt-Clausen
theorem [16, Chap. 13]. Especially, Carlitz obtained the following result:
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Let λ = a/b with a, b relatively primes integers. Then for n even

β(1)
n (λ, µ; 0) = An −

∑

p−1|n
p|a

1

p
,(3.7)

where An is a rational number whose denominator contains only primes occur-

ring in b. For n odd, β
(1)
1 (λ, µ; 0) = λ−1

2 and

β(1)
n (λ, µ; 0) = An −

1

2
(n > 1)(3.8)

provided 2 | a, 4 ∤ a; if 2 ∤ a or 4 | a, then β
(1)
n (λ, µ; 0) = An. In particular when

λ is a integer then An is also an integer.
The following theorems are obtained by suitably applying Theorem 2.3 and

Theorem 2.4.

Theorem 3.1. The following generating function holds for the generalized de-

generate Bernoulli polynomials β
(α)
n (λ, µ, x):

(

ζ
(1+λζ)µ−1

)α

(1 + λζ)µx

1− τ + τζ(1+λζ)µ−1

(1+λζ)µ−1 − ζy
1+λζ

=

∞
∑

n=0

β(α+τn)
n (λ, µ, x + ny)

tn

n!
,(3.9)

where

ζ = t

(

ζ

(1 + λζ)µ − 1

)τ

(1 + λz)µy.

Proof. Setting A(z) = Bi(z) = 1, xj = ωj = 0 (1 ≤ j ≤ s), σ = δ = 0, θi = 0

(1 ≤ i ≤ r) and E(z) = (1+λz)µ−1
µλ

, we thus have

E′(z) = (1 + λz)µ−1 and E′′(z) = (µ− 1)λ(1 + λz)µ−2.

Finally, by making the appropriate substitutions in conjunction with Theorem
2.3, the result follows easily. �

Theorem 3.2. The following generating functions hold for the generalized de-

generate Bernoulli polynomials β
(α)
n (λ, µ, x):

(

(1 + z)
1
µ − 1

λz

)α

(1 + z)x−1+ 1
µ =

∞
∑

n=0

β(1+α+n)
n (λ, µ, x)

zn

n!
(3.10)

and
(

(1+ζ)
1
µ −1

λζ

)α

(1 + ζ)x−1+ 1
µ

1 + ϕ− ϕζ2λ

(

(1+ζ)
1
µ

−1

(1+ζ)
1
µ −1

)

− yζ
1+ζ

=

∞
∑

n=0

β(1+α+n+ϕn)
n (λ, µ, x+ ny)

tn

n!
,(3.11)
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where

ζ = t

(

(1 + ζ)
1
µ − 1

λζ

)ϕ

(1 + ζ)y .(3.12)

Proof. Setting A(z) = Bi(z) = 1, xj = yj = 0 (1 ≤ j ≤ s), σ = δ = 0, λi = 0

(1 ≤ i ≤ r) and E(z) = (1+λz)µ−1
µλ

, we thus have

E−1(z) =
(1 + z)

1
µ − 1

λ
,
d

dz
E−1(z) = (1 + z)

1
µ
−1 and

d2

dz2
E−1(z) =

(1− µ)(1 + z)
1
µ
−2

µ
.

Finally, by making the appropriate substitutions in conjunction with Theorem
2.4, the result follows easily. �

It is worthy to mention that taking the limit as λ → 0 (λµ = 1) in (3.10), we
have

∞
∑

n=0

lim
λ→0

{

β(α+1+n)
n

(

λ,
1

λ
;x

)}

zn

n!
= lim

λ→0

{(

(1 + z)λ − 1

λz

)α

(1 + z)x−1+λ

}

=

(

ln(1 + z)

z

)α

(1 + z)x−1

=

∞
∑

n=0

B(α+1+n)
n (x)

zn

n!
,(3.13)

where B
(α)
n (x) denotes the well-known generalized Bernoulli polynomials. This

last generating function is a well-known result for the Bernoulli polynomials.

4. Applications to special pairs of inverse functions

In this section, we first introduce some families of pairs of inverse functions
with the help of a result given by Donaghey [5]. These families are listed into
two tables. Next, we give some applications of Theorem 2.4 to some of these
pairs of inverse functions which can be seen as extensions of the generalized
Bernoulli polynomials and the generalized degenerate Bernoulli polynomials.

First of all, let us recall a result obtained by Donaghey [5].

Theorem 4.1. Let fk(z) = zFk(z) and gk(z) = zGk(z) be functions generated

by Fk(z) = 1
1+kz

F0

(

z
1+kz

)

(k-th Euler transformation of a series [32]) and

Gk(z) =
G0(z)

1−kzG0(z)
(k-th star transformation of a series [32]) with f0(g0(z)) =

g0(f0(z)) = z, then fk(z) and gk(z) are two families of inverse functions with

k = 0,±1,±2, . . . .
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Table 1. Pairs of inverse functions with 1 index

F0(z) G0(z) fk(z) gk(z)
ez − 1

z

ln(1 + z)

z
e

z
1+kz − 1

ln(1 + z)

1 − k ln(1 + z)
ln(1 + z)

z

ez − 1

z
ln

(

1 +
z

1 + kz

)

ez − 1

1 + k − kez

(1 + λz)µ − 1

z

(1 + z)
1
µ − 1

λz

(

1 +
λz

1 + kz

)µ

− 1
(1 + z)

1
µ − 1

λ + k − k(1 + z)
1
µ

(1 + z)
1
µ − 1

λz

(1 + λz)µ − 1

z

(

1 + z
1+kz

) 1
µ

− 1

λ

(1 + λz)µ − 1

1 + k − k(1 + λz)µ

1

z(ez − 1)

ln(1 + z) − ln z

z

1

e
z

1+kz − 1

ln(1 + z) − ln z

1 − k(ln(1 + z) − ln z)

ln(1 + z) − ln z

z

1

z(ez − 1)
ln(1 + z + kz) − ln z

1

ez − 1 − k

Table 2. Pairs of inverse functions with 2 indices

F0,k(z) G0,k(z) fj,k(z) gj,k(z)

ln(1 + z)

z(1− k ln(1 + z))

e
z

1+kz − 1

z

ln
(

1 + z
1+jz

)

1− k ln
(

1 + z
1+jz

)

e
z

1+kz − 1

1 + j − je
z

1+kz

ez − 1

z (1 + k − kez)

ln
(

1 + z
1+kz

)

z

e
z

1+jz − 1

1 + k − ke
z

1+jz

ln
(

1 + z
1+kz

)

1− j ln
(

1 + z
1+kz

)

(1 + z)
1
µ − 1

z
(

λ+ k − k(1 + z)
1
µ

)

(

1 + λz
1+kz

)µ

− 1

z

(

1 + z
1+jz

)
1
µ

− 1

λ+ k − k
(

1 + z
1+jz

)
1
µ

(

1 + λz
1+kz

)µ

− 1

1 + j − j
(

1 + λz
1+kz

)µ

For example, let f0(z) = ez−1 and g0(z) = ln(1+z), we generate the family
of pairs of inverse functions

fk(z) = e
z

1+kz − 1 and gk(z) =
ln(1 + z)

1− k ln(1 + z)
(k = 0,±1,±2, . . . )

which can also produce the pair of inverse functions with two indices

rk,j(z) =
ln
(

1 + z
1+jz

)

1− k ln
(

1 + z
1+jz

) and

sk,j(z) =
e

z
1+kz − 1

1 + j − je
z

1+kz

(k, j = 0,±1,±2, . . . ).

The following tables contain a list of other possibilities of pairs of inverse
functions (with k, j = 0,±1,±2, . . . ).

It is worthy to mention that applying the same procedure to obtain pairs of
inverse functions with 3 indices or more is irrelevant. By doing this, we recover
the cases with one index.
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Let us examine two examples of the application of Theorem 2.4 to a pair of
inverse functions with 1 index and another with 2 indices.

Example 1. Setting A(z) = Bi(z) = 1, xj = yj = 0 (1 ≤ j ≤ s) and

E(z) =

(

1 +
λz

1 + kz

)µ

− 1

(λµ = 1), we thus have

E′(z) =

(

1 + λz
1+kz

)µ−1

(1 + kz)2
, E−1(z) =

(1 + z)
1
µ − 1

λ+ k − k(1 + z)
1
µ

,

d

dz
E−1(z) =

λ(1 + z)
1
µ
−1

µ
(

λ+ k − k(1 + z)
1
µ

)2

and

d2

dz2
E−1(z) =

λ(1 + z)
1
µ
−2
(

(µ+ 1)k(1 + z)
1
µ + k(1 − µ) + λ− 1

)

µ2
(

λ+ k − k(1 + z)
1
µ

)3 .

Let us consider the sequence of functions
{

h
(β,γ)
n (0, . . . , 0)

}

∞

n=0
generated by





(

1 + λz
1+kz

)µ

− 1

z





β





(

1 + λz
1+kz

)µ−1

(1 + kz)2







γ

=

∞
∑

n=0

h(β,γ)
n (0, . . . , 0)

zn

n!
.(4.1)

According to Theorem 2.4, we obtain the following generating function:





(1 + z)
1
µ − 1

z
(

λ+ k − k(1 + z)
1
µ

)





−β






λ(1 + z)
1
µ
−1

µ
(

λ+ k − k(1 + z)
1
µ

)2







1−γ

=

∞
∑

n=0

h(β−n−1,γ)
n (0, . . . , 0)

zn

n!
.(4.2)

We also find that
∞
∑

n=0

h(β−n−1+φn,γ+κn)
n (0, . . . , 0)

tn

n!
(4.3)

=





(1+ζ)
1
µ −1

ζ

(

λ+k−k(1+ζ)
1
µ

)





−β



λ(1+ζ)
1
µ

−1

µ

(

λ+k−k(1+ζ)
1
µ

)

2





1−γ

1− φ+ φζλ(1+ζ)
1
µ

−1

µ

(

(1+ζ)
1
µ −1

)(

λ+k−k(1+ζ)
1
µ

) +
κζ

(

(1+µ)k(1+ζ)
1
µ +k(1−µ)+λ−1

)

µ(1+ζ)

(

λ+k−k(1+ζ)
1
µ

)

,
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where

ζ = t





(1 + ζ)
1
µ − 1

ζ
(

λ+ k − k(1 + ζ)
1
µ

)





−φ






λ(1 + ζ)
1
µ
−1

µ
(

λ+ k − k(1 + ζ)
1
µ

)2







−κ

.

Especially, if we set k = 0, β = −α, φ = −ϕ, γ = µx
µ−1 and κ = µy

µ−1 in (4.1),

(4.2) and (4.3), we recover (3.10) to (3.12).

Example 2. Let A(z) = Bi(z) = 1, xj = yj = 0 (1 ≤ j ≤ s) and

E(z) =
e

z
1+kz − 1

1 + j − je
z

1+kz

.

Then we have

E′(z) =
e

z
1+kz

(1 + kz)2
(

1 + j − je
z

1+kz

)2 and E−1(z) =
ln
(

1 + z
1+jz

)

1− k ln
(

1 + z
1+jz

) .

Now consider the sequence of functions
{

k
(β,γ)
n (0, . . . , 0)

}

∞

n=0
generated by

(

e
z

1+kz − 1

z(1 + j − je
z

1+kz )

)β (

e
z

1+kz

(1 + kz)
(

1 + j − je
z

1+kz

)2

)γ

=

∞
∑

n=0

k(β,γ)n (0, . . . , 0)
zn

n!
.

(4.4)

Using the fact that

d

dz
E−1(z) =

1

(1 + jz + z)(1 + jz)
(

1− k ln
(

1 + z
1+jz

))2

and

d2

dz2
E−1(z) =

k [2j(1 + z + jz) + 1] ln
(

1 + z
1+jz

)

− 2j(1 + z + jz) + 2k − 1

(1 + jz + z)2(1 + jz)2
(

1− k ln
(

1 + z
1+jz

))3 ,

we have the following generating function





ln
(

1 + z
1+jz

)

z
(

1− k ln
(

1 + z
1+jz

))





−β






1

(1 + jz + z)(1 + jz)
(

1− k ln
(

1 + z
1+jz

))2







1−γ

(4.5)

=

∞
∑

n=0

k(β−n−1,γ)
n (0, . . . , 0)

zn

n!

and we also have
∞
∑

n=0

k(β−1−n+φn,γ+κn)
n (0, . . . , 0)

tn

n!
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=

(

ln(1+ ζ
1+jζ )

ζ(1−k ln(1+ ζ
1+jζ ))

)

−β (

1

(1+jζ+ζ)(1+jζ)(1−k ln(1+ ζ
1+jζ ))

2

)1−γ

1− φ+ φζ

(1+jζ)(1+jζ+ζ) ln(1+ ζ
1+jζ )(1−k ln(1+ ζ

1+jζ ))
+ Ω

,(4.6)

where

Ω =
κζ
[

k(2j + 2j2ζ + 2jζ + 1) ln
(

1 + ζ
1+jζ

)

− 2j(1 + ζ + jζ) + 2k − 1
]

(1 + jζ + ζ)(1 + jζ)
(

1− k ln
(

1 + ζ
1+jζ

))

and

ζ = t





ln
(

1 + ζ
1+jζ

)

ζ
(

1− k ln
(

1 + ζ
1+jζ

))





−φ






1

(1 + jζ + ζ)(1 + jζ)
(

1− k ln
(

1 + ζ
1+jζ

))2







−κ

.

Setting k = j = 0, β = −α and γ = x in (4.4), (4.5) and (4.6), we find
respectively

(

z

ez − 1

)α

exz =

∞
∑

n=0

k(−α,x)
n (0, . . . , 0)

zn

n!
=

∞
∑

n=0

B(α)
n (x)

zn

n!
,(4.7)

(

ln (1 + z)

z

)α

(1 + z)x−1=
∞
∑

n=0

k(−α−n−1,x)
n (0, . . . , 0)

zn

n!
=

∞
∑

n=0

B(α+n+1)
n (x)

zn

n!

(4.8)

and replacing φ by −β and κ by y
(

ln(1+ζ)
ζ

)α

(1 + ζ)
x−1

1 + β − βζ
(1+ζ) ln(1+ζ) −

yζ
(1+ζ)

=

∞
∑

n=0

k(−α−1−n−βn,x+ny)
n (0, . . . , 0)

tn

n!

=

∞
∑

n=0

B(α+1+n+βn)
n (x+ ny)

tn

n!
,(4.9)

where

ζ = t

(

ln (1 + ζ)

ζ

)β (
1

(1 + ζ)

)

−y

.

These generating functions (Equations (4.7) to (4.9)) have been given in [33,
p. 493].

In light of these two examples, it is obvious that the functions given in Tables
1 and 2 can be seen as generalizations of the generalized Bernoulli polynomials
and generalized degenerate Bernoulli polynomials. For example, it could be



844 S. GABOURY AND R. TREMBLAY

interesting to study the following extensions:





z
(

1 + λz
1+kz

)µ

− 1





α






(

1 + λz
1+kz

)µ−1

(1 + kz)2







µx
µ−1

=
∞
∑

n=0

β(α)
n (k;λ, µ, x)

zn

n!
,

(4.10)

with λµ = 1, and

(

z(1 + j − je
z

1+kz )

e
z

1+kz − 1

)α(

e
z

1+kz

(1 + kz)2
(

1 + j − je
z

1+kz

)2

)x

=

∞
∑

n=0

B(α)
n (k, j;x)

zn

n!
.

(4.11)
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