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CLASSROOM NOTES 
EDITED BY C. B. ALLENDOERFER, Haverford College and Institute for Advanced Study 

All material for this department should be sent to C. B. Allendoerfer, Institute for Ad- 
vanced Study, Princeton, New Jersey. 

CONTINUED FRACTIONS AND MATRICES 

J. S. FRAME, Michigan State College 

1. Introduction. The closest rational approximation P/Q (P, Q integers) to a 
given positive real number x, subject to the condition that the denominator Q 
shall not exceed a given positive integer N, is most easily found by means of 
continued fractions. For example, successive approximations to ir obtained by 
this method are 3, 22/7, 333/106, 355/113, * - - . Continued fractions may also 
be used to facilitate the solution of diophantine equations. 

It is our purpose to show how the principal theorems in the theory of con- 
tinued fractions, and the actual computation of successive convergents to a con- 
tinued fraction can be presented quite simply by the use of two-rowed matrices 
and their determinants. To a student familiar with the multiplication of two- 
rowed matrices a good introduction to continued fractions can be presented in an 
hour's lecture. For a student who has just been introduced to matrices, their 
use in connection with continued fractions provides an easy application at the 
elementary level. 

2. Simple continued fractions. For a given positive real x let the integral 
part be a, and the remainder ri, with 0? r1 <1. We define successively the posi- 
tive integers a2, a8, , an, (called partial denominators) and the remainders r2, 
r8p . . . rn so that 

1 1 
(1) x = a,+ri, -= a2+r2,** =a+r, O< rk < 1. 

rl rn-1 

and we write 

(2) x a1 

a2 + 

a3 + 

an- + 
an + rn 

or 

1 1 1 1 
(2') x=al+ *a*,X 

a2 + a3 + an-1 + an + rn 

98 

This content downloaded from 158.110.11.166 on Fri, 28 Feb 2014 06:44:43 AM
All use subject to JSTOR Terms and Conditions



1949] CLASSROOM NOTES 99 

After simplifying the complex fraction (2) and collecting coefficients of r., we 
have 

P. + rnS. Pn Sh\ 

(3) x P + r=Sn where Mn = (P 
Q. + r.T. \Qn Tn 

is an integral matrix, and where, for the case n= 1, we have from (1) 

( ) (i a ) 
Q, T, 

It will be convenfient to denote the nth denominator in (3) by Dn; 

(4) Dn= Qn + rnTn 

To obtain a recursion formula for the P's and Q's, we replace n by n -1 in equa- 
tion (3), divide numerator and denominator by rn-1, and apply (1). 

Pn-1 + rn-lSn-1 Pn(an + rn) + Sn-1 (aizPn-1 + Sn-1) + rnPn-1 
(S) x = = = 

Qn-1 + rn-,Tn-1 Qn-1(an + rn) + Tn71 (anQn-1 + Tn-1) + rnQn- 

On comparing coefficients of rn in (3) and (5) we have 

Sn = Pn-1, Pn = anPn-1 + Sn-1 
(6) 

Tn = Qn-ly Qn = anQn-1 + Tn_l 

Hence, 

Pn = anPn-1 + Pn-2 

Qn = anQn-1 + Qn-2. 

Also from (4) and (5) the ratio Dn-l/Dn is seen to be rn-1, and D1 = 1, so 

(8) 1/Dn = r1r2 . . rn-l, 

provided that none of the r's are 0. The set of equations (7) can most easily be 
written in matrix form 

(Pn Pn-1 (P_1 Pn-2) an I an Inll0 

By induction we then obtain the fundamental relation 

(10) M =(0~ 0 :) Q (1 0)(I 1 ) (1 0)(1 1) 
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100 CLASSROOM NOTES [February, 

3. Theorems on continued fractions. Since the determinant of the matrix 
Mn is the product of the determinants of its factors, we obtain from (10) the im- 
portant relations 

(11) Pn Pn-1 = 

Qn Qn-1 

(12) 
Qn Qn_l QnQn-1 

Pn Pn + rnPn-1 Pn rn(- 1)n1 (-1)n-1 
(13) x- =- - =_ = 

Qn Qn + rnQn-1 Qn QnDn QnDn+l 
THEOREM I. The rational fractions Pn/Qn, called the "convergents" of x, are 

alternately less and greater than x, and the difference of successive convergents is the 
reciprocal of the product of their denominators. Since this product becomes infinite 
with n, the differences defined by (12) approach zero and alternate in sign as n in- 
creases, so the sequence Pn/Qn converges. Its limit is x. 

The proof of these statements follows directly from (13) and (12). 
Equation (3) may be replaced by the matrix equation 

(14) ( 1 ) (~~~Qn 
Q 
n-1 ( l/Dn+l) 

Solving for rn, which is the ratio Dn/Dn+l?, we have 

(15) rn = - n-- 
X 

Pn-1 - Qn_l1X 

(16) an+1 + rn+i = 
-Qnx + Pn 

Equation (16) makes it possible to compute an+, directly if the matrix Mn is 
known. The next matrix Mn+l is then obtained from (10). For example, in the 
continued fraction expansion for ir the partial denominator a5 is the largest 
integer in (1067r-333)/(-1137r+355) =292.+ 

THEOREM II. A periodic continued fraction represents a root of a quadratic 
equation. 

Proof. If two different remainders are equal, equate them, using (15), and 
solve for x. 

THEOREM III. The rationalfraction Pn/Qn defined by (1) and (10) differs from 
x by not more than 1/QnQn+l, and it approximates the real number x more closely 
than does any other rational fraction with a denominator not exceeding Qn. 

Proof. The difference (13) is equal in absolute value to 1/QnDn+l, which by (4) 
is certainly less than 1/QnQn+l. Suppose there were two integers A and B, with 
0 <B <Qn, such that the fraction A/B were closer to x than Pn/Qn. Then we 
should have 
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1949] CLASSROOM NOTES 101 

1 ~~ ~~AX 1 
(17) 1 / n A\ 1 

QnDn+l\ B QxDn+l 

Adding l/QnDn+l to each term and replacing x by its value in (13) gives 

0 < ( 1)n( n _- A) < < 2 

or 

(18) 0 < (-l)n(BPn - AQn) < 2B/Qn+1. 

It is easily shown that the inequality (18) cannot be satisfied by integers A, B 
with B <Qn. For then the right member is less than 2, and the integer in the 
middle member could only be 1. By (11) the latter condition is satisfied by 
taking A = P1-, B = Qn-i, and this is the only choice for which 0< B <Qn, as 
we shall see in ?4 below. However, with B =-Q., we are led from (18) to the 
inequality 1 <2Qn_1/Q.+,, which is impossible by (7). 

4. Continued fractions for rational numbers. If at some stage in (1) we have 
rn=0, then x reduces by (3) to the rational number Pn/Qn. Conversely, every 
rational number is represented by a terminating continued fraction. The next to 
the last convergent is important in solving the linear diophantine equation (19). 

Given two integers Pn and Qn without common factor, to find all pairs of 
integers u and v which satisfy the equation 

(19) Pnu - Q.v = 1. 

The solution is given by 

(20) 
v = (-l)p.,_ + NP, N any integer, 
U = (-1) Qn1 + NQn 

where Pn-l and Qn-, are obtained from the continued fraction expansion of 
Pn/Qn. 

5. General continued fractions. If the simple continued fraction (2) is re- 
placed by the more general form 

(21) + b2 
a2 + b3 

a3 + b4 

an_1 + bn 

an + rn 
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102 CLASSROOM NOTES [February, 

in which r. is not necessarily less than 1, and ak and bk are not necessarily posi- 
tive integers, then it is readily shown that equations (7) become 

(22) Pn= anPn-1 + bnPn_2 

Qn(= anQn-1 + bnQn-2 

and the fundamental relation (10) may be written 

Pn n-l 1\( a21\ (anl\ 
(23) M =- 

Qn Qn-1 10/\b2 0 \bn 0, 

where we define bi=Qi=Po=1, Qo=0. 
By taking determinants in (23), the difference between successive con- 

vergents to x is seen to equal (- 1)%bb2 . . . bn/QnQn-1. Since the sum of these 
terms may not always converge, the question of convergence in this case is 
more complicated than that for the simple continued fractions, and we shall 
not discuss it at this time. 

It may be of interest to include without proof the expansion 

x X2 
(24) = 1+ 

tan-1 x 3 + (2x)2 

5 + (3x)2 

.7 + 

which is typical of many continued fraction expansions for analytic functions 
obtained from hypergeometric series. 

Setting x = 1 in (24) we see that the value of r can be expressed as a continued 
fraction in which the coefficients are given by a simple law 

4 1 
(25) -=1 + 

7r 3 + 4 

5 + 9 

7 + 

This expansion is of interest because of its regularity, but it does not enjoy the 
rapidity of convergence which characterizes the simple continued fractions. 
Successive convergents in (25) are given by 

(6 Pn+1 PnA 1 18 3 18 5 1 {7 1> 9 1 {2n + 1 18 
(26)Qn1 Qn 1 -1 O 4 D 9 D 6 9 1 ...( n2 11 

We may derive from (26) an alternative expansion for the convergents to 4/w, 
in which the partial numerators bi are all 1 but the partial denominators are not 
all integers. This is as follows: 
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1949] CLASSROOM NOTES 103 

(27) :P+1 P" C1 1)C3 1 (5/4 1) (28/9 1) (81/64 1) (an+ 1) 
Qnl1 Qn I 0 1 0 1 0 1 0 1 0 1 0 

where 

a2n = (4n -1) 2.4 ... (2n- 2))2 

= (4n + 1)(213 (2n -1)2 

(28) lim a2n = 

n= 00 

4 
lim a2fl+1 = - 

Since each matrix in (27) has the determinant (-1), formulas (12) and (13) are 
valid in this case. The limits in (28) are easily obtained from the Wallis product 
formula for u-/2. A close estimate for the error of Pl/Qn is (V/2- 1)2n-1. 

DERIVATION OF THE TANGENT HALF-ANGLE FORMULA 

F. E. WOOD, University of Oregon 

The following derivation of the formula for tan 0/2 appears to be an improve- 
ment over standard derivations, for it gives the result directly without a com- 
plicated discussion of the appropriate algebraic sign. 

From the equation 

sin = sin ( - -= sin 0 cos - - cos 0 sin 
2 \ ,2 2 

one obtains 

0 0 
(1 + cos 0) sin - = sin 0 cos - . 

2 2 

Consequently: 

0 sin 0/2 sin 0 
tan- = - 

2 cos0/2 1 + cos 0 
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