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Abstract 

We derive the fourth-order q-difference equation satisfied by the first associated of the q-classical orthogonal polynomials. 
The coefficients of this equation are given in terms of the polynomials tr and z which appear in the q-Pearson difference 
equation Dq(tr p)= zp defining the weight p of the q-classical orthogonal polynomials inside the q-Hahn tableau. (~) 1999 
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1. Introduction 

The fourth-order difference equation for the associated polynomials of all classical discrete poly- 
nomials were given for all integers r (order of association) in [5], using the properties of the Stieltjes 
functions of the associated linear forms. 

On the other hand, the equation for the first associated (r -- 1 ) of all classical discrete polynomials 
was obtained in [13] using a useful relation proved in [2]. In this work, mimicking the approach 
used in [13] we give a single fourth-order q-difference equation which is valid for the first associated 
of all q-classical orthogonal polynomials. This equation is important for some connection coefficient 
problems [10], and also in order to represent finite modifications inside the Jacobi matrices of the 
q-classical starting family [14]. q-classical orthogonal polynomials involved in this work belong to 
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the q-Hahn class as introduced by Hahn [8]. They are represented by the basic hypergeometric series 
appearing at the level 3(/)2 and not at the level 4~3  of the Askey-Wilson orthogonal polynomials. 

The orthogonality weight p (defined in the interval I )  for q-classical orthogonal polynomials is 
defined by a Pearson-type q-difference equation 

Dq(qp) = zp, (1 )  

where the q-difference operator Dq is defined [8] by 

f ( q x )  - f ( x )  
D q f ( X ) =  ( q -  1)x , x # 0 ,  0 < q  < 1, (2) 

and Dqf(O) := f ' ( 0 )  by continuity, provided that f ' ( 0 )  exists, a is a polynomial of degree at most 
two and -c is polynomial of degree one. 

The monic polynomials P,(x; q), orthogonal with respect to p, satisfy the second-order q-difference 
equation 

-~2, .[y(x)]  ---- [(r(x )Dq D1/q -1- ~(x )Dq -+" ~tq, nJd]y(x  ) ---- 0, (3 )  

an equation which can be written in the q-shifted form 

[(0.1 + ,el/1 )~q2 _ ((1 + q)al + "Citl - -  2q, n t~)fq + q a l J d ] y ( x )  = 0, (4 )  

with 

~" ~ 1 - q" 
~.q,. ---- --[n]q "c' q- [n - 111 ~ q j ,  [n]q -- 1 - q '  

q 
(ri -- (r(qix), zi =-- z(qix),  ti ~ t(qix),  t (x)  = (q -- 1 )x 

and the geometric shift Jqq defined by 

Jqqif(x) = f ( q i x ) ,  Fqq ° -- ~¢d ( -- identity operator). 

(5) 

(6) 

2. Fourth-order q-difference equation for the first associated P~(_l~(x; q) of the q-classical 
orthogonal polynomial 

The first associated of Pn-I(X; q) is a monic polynomial of degree n - 1, denoted by P.~](x; q), 
and defined by 

p~!_l] (x; q) = 1 f/P,(s;  q) - P,(x; q)p(s) dqs, (7) 
Yo s x 

where Y0 is given by Y0 = fi p(s)dqs and the q-integral is defined in [7]. 
The polynomials P,(x; q) -P,(°)(x; q) and Pf)(x; q) satisfy also the following three-term recurrence 

relation [4] for r = 0 and r = 1, respectively, 

P.(~](x;q) = ( x -  f l n + r ) p n ( r ) ( x ; q )  - y.+.P.~](x;q), n/> 1, 
(8) 

Po(')(x; q) = 1, pl(r)(x'~ q) = x - B,. 
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Relation (7) can be written as 

P~°] (x; q) = p(x)Q,(x; q) - P~(x; q)p(x)Qo(x; q), (9) 

where 

1 [en(s;q)p(s)dqs" 
Qn(x; q) -- 7o p(x-------) 31 s - x 

It is well-known [15] that Q.(x; q) also satisfies Eq. (3); hence by (9) 

-RO),x. ~ ] 
~2,, ~_~1, ,q) +P,(x;q)Qo(x;q)  = 0. (10) 

p(x) 

In a first step, we eliminate p(x) and Qo(x;q) in Eq. (10) using Eqs. (1) and (3) for P.(x;q). This 
can be easily carried out using a computer algebra system - -  we used Maple V Release 4 [3] - -  
and gives the relation 

(O" 1 q- "Cltt).~2*,n_l [P,(.~](x; q)] ---- [eFqq + fJa]Pn(x;q), (11) 

with 

-~2,n-1" = a2Jq 2 - ((1 + q)o'l + Zltl - 2q~, t~)Yqq + q(a + zt)Jd, 

e =  (&--2; - z ' )  (( l  + q)al + Zltl - 2q,.t~)tl, (12) 

f = - (&-ff; - z ' )  ((q + l)al + Zlt,)tl. 

In a second step, we use Eqs. (11), (12) and the fact that the polynomials P~(x;q) satisfy Eq. (3), 
** again. This gives - -  after some computations with Maple V.4 - -  the operator ~2,n-1 annihilating 

the right-hand side of Eq. (11), 

"~2,n-1 = (0"3 + "c3t3)[q2Al -1- (1 + q)a2  -[- z2t2]~qq 2 -- [q3Al(a2 -q- "c2/2) q- A3(0"2 q- qA1)]~qq 

"q-qal[qZA2 + (1 -]- q)a3 + "c3t3)] Jd ,  (13) 

where A(x) = (1 + q)a(x) + z(x)t(x) - ~q ,n  t (x) 2 and Aj --Aj(x) ~A(qJx),  j = 1,2, 3. 
We therefore obtain the factorized form of the fourth-order q-difference equation satisfied by each 

P,~  (x; q), 
.~* 

~z',~<* 2,n--1 rn(1) r . 
ZL2, n -1  q2(q= i)2x 2 t~- l tx '  q)] = O. (14) 

3. Limiting situations, comments and example 

(1) Since limq_~l Dq = d/dx, from Eqs. (12) and (13), we recover by a limit process the factorized 
form of the fourth-order differential equation satisfied by the first associated P~°](x) of the 
(continuous) classical orthogonal polynomials Pn-I [12], 

,~**c *c (1) 2,n-I ~2,n-l[P.-l(X)] = 0, (15) 
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with 

* d 2 Q d  *c ~'~2,n-- 1 
~2,.-1 = lim )2X2 - -  ad-~x 2 + (2a' - + (a" - z' + ~ ) ~ ,  q-'+l q2(q __ 1 dx 

_ _  "~2 ,n- -  1 o)**~ 1 ~im 1 ** d2 z) d 
*~2,n--1 4o'(x) q 2 ( q - - ~ ] - ) 2 x 2  - -  a~x2 + (o-' + dx ÷ (~' ÷ ~n)~d' 

¢yl t 

where 2 . -  limq~l )Cq, n = - n [ ( n -  1)5-+  z']. 
(2) If the polynomials o- and z are such that o-"= 2z' [12-14], then the right-hand side of Eq. (11) 

is equal to zero, and the first associated p(_l] satisfies the second (instead of fourth)-order 
difference equation 

,~n_l[pn(l_{(x; q)] : 0 .  

For the little q-Jacobi polynomials l~(x;a, blq ) [1, 9] 

x(x - 1 ) 1 - aq + (abq 2 - 1 )x 

q q(q - 1) 

and for the big q-Jacobi polynomials P~(x; a, b, c; q) [1, 9] 

x 2 cq + aq(1 - (b + c)q) + (abq 2 - 1)x 
a(x) = acq - (a + c)x + - - ,  z(x) = 

q q(q - 1) 

the constant a " - 2 z '  is equal to 2(1 - a b q ) / ( q -  1). Therefore, the first associated of the little 
q-Jacobi polynomials (resp. big q-Jacobi polynomials) is still in the little q-Jacobi (resp. big 
q-Jacobi) family when abq = 1. 

Computations involving the coefficients ~ and Vn (see Eq. (8)) given in [1, 6, 11] and use 
of Maple V.4 generate the following relations between the monic little q-Jacobi (resp. monic 
big q-Jacobi) polynomials and their respective first associated 

p(1) (x; a, ._d_ dllq ) =(aq)n p~ (~qq;la, aq Iq), (16) 

1 X P~(l)(x;a, q a , , C ; q ) = ( a ) n P ~ ( a ; 1  a,aq,  c q; q ) .  (17) 

(3) The results given in this paper (see Eqs. (11) and (13)), which agree with the ones obtained 
using the Stieltjes properties of the associated linear form [6], can be used for connection 
problems, expanding the first associated P,°] in terms of P,, in the same spirit as in [10]. We 
have also computed the coefficients of the fourth-order q-difference equation satisfied by the 
first associated of the q-classical orthogonal polynomials appearing in the q-Hahn tableau. In 
particular, from the big q-Jacobi polynomials, we derive by limit processes [9] the fourth-order 
differential (resp. q-difference) equation satisfied by the first associated of the classical (resp. 
q-classical) orthogonal polynomials. 
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(4) For the little q-Jacobi polynomials for example, the operators ~* and -~2,.-1 are given below, 2,n--I 
with the notation: v = q". 

"~2~n--1 = qx[(q 2x -- 1)~q 2 -- v - t (  - v  -- av + q2xabv2 + qX)Jq + a ( - 1  + bqx)Ja],  

~2,n--1 :~:¢ = v-1 q4xZ[qa( - 1 + b q 4 x ) ( q 3 x a b v  + q3xabv2 + q2xv + q2x - qv - qav - v - aV)Jq  2 

_ v - l ( q 5 x  2 -q- av  2 + qv  2 - qZxv2 -- q3xabv3 + qYxZa2b2v3 

_ q3xa2bv 3 _ qSxabv3 + q2a2v2 _ qSxabv2 - qSxaZbv 2 + q2av 2 

-- qSxaZbv 3 _ qZxav - q4xav - q2xv - q4xv - q3xa v + qSxZv 

-- q3 xv  -k q 7 x2 a2 b2v 4 q- q6 x2 abv  - q a xa2 bv3 --k qaZv 2 - qZ xav2 

-k 2q6xZ abv  2 q- q6x2 abv3 q- 2 q a v  2 q- y 2  _ _  q4xabv3 )3qq 

+ ( -  1 + q x ) ( q 4 x a b v  + q4xabv2 + q3xv + q3x - qv  - qav  - v - av )Ja] .  
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