Fourth order q-difference equation for the first associated of the q-classical orthogonal polynomials

M. Foupouagnigni ${ }^{\text {a, }}$, A. Ronveaux ${ }^{\text {b }}$, W. Koepf ${ }^{\text {c, }, ~}$
${ }^{\mathrm{a}}$ Institut de Mathématiques et de Sciences Physiques. B.P. 613 Porto-Novo, Bénin
${ }^{\mathrm{b}}$ Mathematical Physics, Facultés Universitaires Notre-Dame de la Paix, B-5000 Namur, Belgium
${ }^{\text {' }}$ HTWK Leipzig, Fachbereich IMN, Postfach 66, D-04251 Leipzig, Germany

Received 8 June 1998

Abstract

We derive the fourth-order q-difference equation satisfied by the first associated of the q-classical orthogonal polynomials. The coefficients of this equation are given in terms of the polynomials σ and τ which appear in the q-Pearson difference equation $D_{q}(\sigma \rho)=\tau \rho$ defining the weight ρ of the q-classical orthogonal polynomials inside the q-Hahn tableau. (©) 1999 Elsevier Science B.V. All rights reserved.

1991 MSC: 33C25
Keywords: q-Orthogonal polynomials; Fourth-order q-difference equation

1. Introduction

The fourth-order difference equation for the associated polynomials of all classical discrete polynomials were given for all integers r (order of association) in [5], using the properties of the Stieltjes functions of the associated linear forms.

On the other hand, the equation for the first associated ($r=1$) of all classical discrete polynomials was obtained in [13] using a useful relation proved in [2]. In this work, mimicking the approach used in [13] we give a single fourth-order q-difference equation which is valid for the first associated of all q-classical orthogonal polynomials. This equation is important for some connection coefficient problems [10], and also in order to represent finite modifications inside the Jacobi matrices of the q-classical starting family [14]. q-classical orthogonal polynomials involved in this work belong to

[^0]the q-Hahn class as introduced by Hahn [8]. They are represented by the basic hypergeometric series appearing at the level ${ }_{3} \phi_{2}$ and not at the level ${ }_{4} \phi_{3}$ of the Askey-Wilson orthogonal polynomials.

The orthogonality weight ρ (defined in the interval I) for q-classical orthogonal polynomials is defined by a Pearson-type q-difference equation

$$
\begin{equation*}
D_{q}(\sigma \rho)=\tau \rho \tag{1}
\end{equation*}
$$

where the q-difference operator D_{q} is defined [8] by

$$
\begin{equation*}
D_{q} f(x)=\frac{f(q x)-f(x)}{(q-1) x}, \quad x \neq 0,0<q<1 \tag{2}
\end{equation*}
$$

and $D_{q} f(0):=f^{\prime}(0)$ by continuity, provided that $f^{\prime}(0)$ exists. σ is a polynomial of degree at most two and τ is polynomial of degree one.

The monic polynomials $P_{n}(x ; q)$, orthogonal with respect to ρ, satisfy the second-order q-difference equation

$$
\begin{equation*}
\mathscr{Q}_{2, n}[y(x)] \equiv\left[\sigma(x) D_{q} D_{1 / q}+\tau(x) D_{q}+\lambda_{q, n} \mathscr{\mathscr { g }}_{d}\right] y(x)=0, \tag{3}
\end{equation*}
$$

an equation which can be written in the q-shifted form

$$
\begin{equation*}
\left[\left(\sigma_{1}+\tau_{1} t_{1}\right) \mathscr{T}_{q}^{2}-\left((1+q) \sigma_{1}+\tau_{1} t_{1}-\lambda_{q, n} t_{1}^{2}\right) \mathscr{T}_{q}+q \sigma_{1} \mathscr{I}_{d}\right] y(x)=0 \tag{4}
\end{equation*}
$$

with

$$
\begin{align*}
\lambda_{q, n} & =-[n]_{q}\left\{\tau^{\prime}+[n-1]_{\frac{1}{}} \frac{\sigma^{\prime \prime}}{2 q}\right\}, \quad[n]_{q}=\frac{1-q^{n}}{1-q} \tag{5}\\
\sigma_{i} & \equiv \sigma\left(q^{i} x\right), \quad \tau_{i} \equiv \tau\left(q^{i} x\right), \quad t_{i} \equiv t\left(q^{i} x\right), \quad t(x)=(q-1) x
\end{align*}
$$

and the geometric shift \mathscr{T}_{q} defined by

$$
\begin{equation*}
\mathscr{T}_{q}^{i} f(x)=f\left(q^{i} x\right), \quad \mathscr{T}_{q}^{0} \equiv \mathscr{I}_{d}(\equiv \text { identity operator }) \tag{6}
\end{equation*}
$$

2. Fourth-order q-difference equation for the first associated $P_{n-1}^{(1)}(x ; q)$ of the q-classical orthogonal polynomial

The first associated of $P_{n-1}(x ; q)$ is a monic polynomial of degree $n-1$, denoted by $P_{n-1}^{(1)}(x ; q)$, and defined by

$$
\begin{equation*}
P_{n-1}^{(1)}(x ; q)=\frac{1}{\gamma_{0}} \int_{I} \frac{P_{n}(s ; q)-P_{n}(x ; q)}{s-x} \rho(s) \mathrm{d}_{q} s \tag{7}
\end{equation*}
$$

where γ_{0} is given by $\gamma_{0}=\int_{I} \rho(s) \mathrm{d}_{q} s$ and the q-integral is defined in [7].
The polynomials $P_{n}(x ; q) \equiv P_{n}^{(0)}(x ; q)$ and $P_{n}^{(1)}(x ; q)$ satisfy also the following three-term recurrence relation [4] for $r=0$ and $r=1$, respectively,

$$
\begin{align*}
& P_{n+1}^{(r)}(x ; q)=\left(x-\beta_{n+r}\right) P_{n}^{(r)}(x ; q)-\gamma_{n+r} P_{n-1}^{(r)}(x ; q), \quad n \geqslant 1, \tag{8}\\
& P_{0}^{(r)}(x ; q)=1, \quad P_{1}^{(r)}(x ; q)=x-\beta_{r} .
\end{align*}
$$

Relation (7) can be written as

$$
\begin{equation*}
P_{n-1}^{(1)}(x ; q)=\rho(x) Q_{n}(x ; q)-P_{n}(x ; q) \rho(x) Q_{0}(x ; q) \tag{9}
\end{equation*}
$$

where

$$
Q_{n}(x ; q)=\frac{1}{\gamma_{0} \rho(x)} \int_{I} \frac{P_{n}(s ; q)}{s-x} \rho(s) \mathrm{d}_{q} s
$$

It is well-known [15] that $Q_{n}(x ; q)$ also satisfies Eq. (3); hence by (9)

$$
\begin{equation*}
\mathscr{Q}_{2, n}\left[\frac{P_{n-1}^{(1)}(x ; q)}{\rho(x)}+P_{n}(x ; q) Q_{0}(x ; q)\right]=0 \tag{10}
\end{equation*}
$$

In a first step, we eliminate $\rho(x)$ and $Q_{0}(x ; q)$ in Eq. (10) using Eqs. (1) and (3) for $P_{n}(x ; q)$. This can be easily carried out using a computer algebra system - we used Maple V Release 4 [3] and gives the relation

$$
\begin{equation*}
\left(\sigma_{1}+\tau_{1} t_{1}\right) \mathscr{Q}_{2, n-1}^{*}\left[P_{n-1}^{(1)}(x ; q)\right]=\left[e \mathscr{T}_{q}+f \mathscr{\mathscr { F }}_{d}\right] P_{n}(x ; q) \tag{11}
\end{equation*}
$$

with

$$
\begin{align*}
& \mathscr{Q}_{2, n-1}^{*}=\sigma_{2} \mathscr{T}_{q}^{2}-\left((1+q) \sigma_{1}+\tau_{1} t_{1}-\lambda_{q, n} t_{1}^{2}\right) \mathscr{T}_{q}+q(\sigma+\tau t) \mathscr{I}_{d} \\
& e=\left(\frac{\sigma^{\prime \prime}}{2}-\tau^{\prime}\right)\left((1+q) \sigma_{1}+\tau_{1} t_{1}-\lambda_{q, n} t_{1}^{2}\right) t_{1} \tag{12}\\
& f=-\left(\frac{\sigma^{\prime \prime}}{2}-\tau^{\prime}\right)\left((q+1) \sigma_{1}+\tau_{1} t_{1}\right) t_{1}
\end{align*}
$$

In a second step, we use Eqs. (11), (12) and the fact that the polynomials $P_{n}(x ; q)$ satisfy Eq. (3), again. This gives - after some computations with Maple V. 4 - the operator $\mathscr{Q}_{2, n-1}^{* *}$ annihilating the right-hand side of Eq. (11),

$$
\begin{align*}
\mathscr{2}_{2, n-1}^{* *}= & \left(\sigma_{3}+\tau_{3} t_{3}\right)\left[q^{2} A_{1}+(1+q) \sigma_{2}+\tau_{2} t_{2}\right] \mathscr{T}_{q}^{2}-\left[q^{3} A_{1}\left(\sigma_{2}+\tau_{2} t_{2}\right)+A_{3}\left(\sigma_{2}+q A_{1}\right)\right] \mathscr{F}_{q} \\
& \left.+q \sigma_{1}\left[q^{2} A_{2}+(1+q) \sigma_{3}+\tau_{3} t_{3}\right)\right] \mathscr{I}_{d}, \tag{13}
\end{align*}
$$

where $A(x)=(1+q) \sigma(x)+\tau(x) t(x)-\lambda_{q, n} t(x)^{2}$ and $A_{j} \equiv A_{j}(x) \equiv A\left(q^{j} x\right), j=1,2,3$.
We therefore obtain the factorized form of the fourth-order q-difference equation satisfied by each $P_{n-1}^{(1)}(x ; q)$,

$$
\begin{equation*}
\mathscr{Q}_{2, n-1}^{* *} \frac{\mathscr{Q}_{2, n-1}^{*}}{q^{2}(q-1)^{2} x^{2}}\left[P_{n-1}^{(1)}(x ; q)\right]=0 . \tag{14}
\end{equation*}
$$

3. Limiting situations, comments and example

(1) Since $\lim _{q \rightarrow 1} D_{q}=\mathrm{d} / \mathrm{d} x$, from Eqs. (12) and (13), we recover by a limit process the factorized form of the fourth-order differential equation satisfied by the first associated $P_{n-1}^{(1)}(x)$ of the (continuous) classical orthogonal polynomials P_{n-1} [12],

$$
\begin{equation*}
\mathscr{P}_{2, n-1}^{* *_{c}} \mathscr{2}_{2, n-1}^{*_{c}}\left[P_{n-1}^{(1)}(x)\right]=0, \tag{15}
\end{equation*}
$$

with
$\mathscr{Q}_{2, n-1}^{*_{c}}=\lim _{q \rightarrow 1} \frac{\mathscr{Q}_{2, n-1}^{*}}{q^{2}(q-1)^{2} x^{2}}=\sigma \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\left(2 \sigma^{\prime}-\tau\right) \frac{\mathrm{d}}{\mathrm{d} x}+\left(\sigma^{\prime \prime}-\tau^{\prime}+\lambda_{n}\right) \mathscr{I}_{d}$,
$\mathscr{2}_{2, n-1}^{* * c}=\frac{1}{4 \sigma(x)} \lim _{q \rightarrow 1} \frac{\mathscr{Q}_{2, n-1}^{* *}}{q^{2}(q-1)^{2} x^{2}}=\sigma \frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\left(\sigma^{\prime}+\tau\right) \frac{\mathrm{d}}{\mathrm{d} x}+\left(\tau^{\prime}+\lambda_{n}\right) \mathscr{I}_{d}$,
where $\lambda_{n} \equiv \lim _{q \rightarrow 1} \lambda_{q, n}=-n\left[(n-1) \frac{\sigma^{\prime \prime}}{2}+\tau^{\prime}\right]$.
(2) If the polynomials σ and τ are such that $\sigma^{\prime \prime}=2 \tau^{\prime}$ [12-14], then the right-hand side of Eq. (11) is equal to zero, and the first associated $P_{n-1}^{(1)}$ satisfies the second (instead of fourth)-order difference equation
$\mathscr{2}_{2, n-1}^{*}\left[P_{n-1}^{(1)}(x ; q)\right]=0$.
For the little q-Jacobi polynomials $p_{n}(x ; a, b \mid q)[1,9]$
$\sigma(x)=\frac{x(x-1)}{q}, \quad \tau(x)=\frac{1-a q+\left(a b q^{2}-1\right) x}{q(q-1)}$,
and for the big q-Jacobi polynomials $P_{n}(x ; a, b, c ; q)[1,9]$
$\sigma(x)=a c q-(a+c) x+\frac{x^{2}}{q}, \quad \tau(x)=\frac{c q+a q(1-(b+c) q)+\left(a b q^{2}-1\right) x}{q(q-1)}$,
the constant $\sigma^{\prime \prime}-2 \tau^{\prime}$ is equal to $2(1-a b q) /(q-1)$. Therefore, the first associated of the little q-Jacobi polynomials (resp. big q-Jacobi polynomials) is still in the little q-Jacobi (resp. big q-Jacobi) family when $a b q=1$.

Computations involving the coefficients β_{n} and γ_{n} (see Eq. (8)) given in $[1,6,11]$ and use of Maple V. 4 generate the following relations between the monic little q-Jacobi (resp. monic big q-Jacobi) polynomials and their respective first associated
$p_{n}^{(1)}\left(x ; a, \left.\frac{1}{q a} \right\rvert\, q\right)=(a q)^{n} p_{n}\left(\frac{x}{a q} ; \frac{1}{a}, a q \mid q\right)$,
$P_{n}^{(1)}\left(x ; a, \frac{1}{q a}, c ; q\right)=(a)^{n} P_{n}\left(\frac{x}{a} ; \frac{1}{a}, a q, c q ; q\right)$.
(3) The results given in this paper (see Eqs. (11) and (13)), which agree with the ones obtained using the Stieltjes properties of the associated linear form [6], can be used for connection problems, expanding the first associated $P_{n-1}^{(1)}$ in terms of P_{n}, in the same spirit as in [10]. We have also computed the coefficients of the fourth-order q-difference equation satisfied by the first associated of the q-classical orthogonal polynomials appearing in the q-Hahn tableau. In particular, from the big q-Jacobi polynomials, we derive by limit processes [9] the fourth-order differential (resp. q-difference) equation satisfied by the first associated of the classical (resp. q-classical) orthogonal polynomials.
(4) For the little q-Jacobi polynomials for example, the operators $\mathscr{Q}_{2, n-1}^{*}$ and $\mathscr{Q}_{2, n-1}^{* *}$ are given below, with the notation: $v=q^{n}$.

$$
\begin{aligned}
\mathscr{Q}_{2, n-1}^{*}= & q x\left[\left(q^{2} x-1\right) \mathscr{T}_{q}^{2}-v^{-1}\left(-v-a v+q^{2} x a b v^{2}+q x\right) \mathscr{T}_{q}+a(-1+b q x) \mathscr{\mathscr { F }}_{d}\right], \\
\mathscr{Q}_{2, n-1}^{* *}= & v^{-1} q^{4} x^{2}\left[q a\left(-1+b q^{4} x\right)\left(q^{3} x a b v+q^{3} x a b v^{2}+q^{2} x v+q^{2} x-q v-q a v-v-a v\right) \mathscr{T}_{q}^{2}\right. \\
& -v^{-1}\left(q^{5} x^{2}+a v^{2}+q v^{2}-q^{2} x v^{2}-q^{3} x a b v^{3}+q^{7} x^{2} a^{2} b^{2} v^{3}\right. \\
& -q^{3} x a^{2} b v^{3}-q^{5} x a b v^{3}+q^{2} a^{2} v^{2}-q^{5} x a b v^{2}-q^{5} x a^{2} b v^{2}+q^{2} a v^{2} \\
& -q^{5} x a^{2} b v^{3}-q^{2} x a v-q^{4} x a v-q^{2} x v-q^{4} x v-q^{3} x a v+q^{5} x^{2} v \\
& -q^{3} x v+q^{7} x^{2} a^{2} b^{2} v^{4}+q^{6} x^{2} a b v-q^{4} x a^{2} b v^{3}+q a^{2} v^{2}-q^{2} x a v^{2} \\
& \left.+2 q^{6} x^{2} a b v^{2}+q^{6} x^{2} a b v^{3}+2 q a v^{2}+v^{2}-q^{4} x a b v^{3}\right) \mathscr{T}_{q} \\
& \left.+(-1+q x)\left(q^{4} x a b v+q^{4} x a b v^{2}+q^{3} x v+q^{3} x-q v-q a v-v-a v\right) \mathscr{\mathscr { I }}_{d}\right] .
\end{aligned}
$$

Acknowledgements

Part of this work was done when two of the authors M.F. and A.R. were visiting the Konrad-Zuse-Zentrum für Informationstechnik Berlin. They thank W. Koepf and W. Neun for their warm hospitality.

References

[1] I. Area, E. Godoy, A. Ronveaux, A. Zarzo, Inversion problems in the q-Hahn tableau, J. Symb. Computation (1999), to appear.
[2] N.M. Atakishiyev, A. Ronveaux, K.B. Wolf, Difference equation for the associated polynomials on the linear lattice, Zt. Teoret. Mat. Fiz. 106 (1996) 76-83.
[3] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monagan, S.M. Watt, Maple V Language Reference Manual, Springer, New York, 1991.
[4] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[5] M. Foupouagnigni, A.W. Koepf, A. Ronveaux, The fourth-order difference equation for the associated classical discrete orthogonal polynomials, Letter, J. Comput. Appl. Math. 92 (1998) 103-108.
[6] M. Foupouagnigni, A. Ronveaux, M.N. Hounkonnou, The fourth-order difference equation satisfied by the associated orthogonal polynomials of the D_{q}-Laguerre-Hahn Class (submitted).
[7] G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, vol. 35, Cambridge University Press, Cambridge, 1990.
[8] W. Hahn, Über Orthogonalpolynome, die q-Differenzengleichungen genügen, Math. Nachr. 2 (1949) 4-34.
[9] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue Report Fac. of Technical Math. and Informatics 94-05 T.U. Delft, revised version from February 1996, available at: http: www.can.nl/ \sim renes.
[10] S. Lewanowicz, Results on the associated classical orthogonal polynomials, J. Comput. Appl. Math. 65 (1995) 215-231.
[11] J.C. Medem, Polinomios ortogonales q-semiclásicos, Ph.D. Dissertation, Universidad Politécnica de Madrid, 1996.
[12] A. Ronveaux, Fourth-order differential equations for numerator polynomials, J. Phys. A: Math. Gen. 21 (1988) 749-753.
[13] A. Ronveaux, E. Godoy, A. Zarzo, I. Area, Fourth-order difference equation for the first associated of classical discrete orthogonal polynomials, Letter, J. Comput. Appl. Math. 90 (1998) 47-52.
[14] A. Ronveaux, W. Van Assche, Upward extension of the Jacobi matrix for orthogonal polynomials, J. Approx. Theory 86 (3) (1996) 335-357.
[15] S.K. Suslov, The theory of difference analogues of special functions of hypergeometric type, Russian Math. Surveys 44 (2) (1989) 227-278.

[^0]: * Corresponding author. E-mail: koepf(@imn.htwk-leipzig.de.
 ${ }^{1}$ Research supported by: Deutscher Akademischer Austauschdienst (DAAD).

