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MULTIBASIC EULERIAN POLYNOMIALS

DOMINIQUE FOATA AND DORON ZEILBERGER

Abstract. Eulerian polynomials with several bases are defined. Their combi-

natorial interpretations are given as well as congruence properties modulo some

ideals generated by cyclotomic polynomials.

1. Introduction

It is well known (see, e.g., [Ri, Chapter 7]) that the identity

(1.1) y^-A„(t) = --i-^-—       (n>0)
K    ' ¿-¿> n\   "w     I -1exp((l - t)u)       v   -   '

defines a sequence of polynomials (An(t)), called Eulerian polynomials, whose

classical combinatorial interpretation is the following: for each permutation

o — o( 1) ■•■ o(n) let des a be the number of descents of o, that is, the number

of i such that 1 < i < n - 1 and a(i) > a(i + I). Then An(t) = £CT tx+desa

(a £ <9*n). This shows, in particular, that each polynomial An(t) has positive

integral coefficients whose sum is n\.

As usual, let

-Í *' if« = 0;
{U'q'"~ { (I - u)(l - uq) ■ ■ ■ (1 - uq"~l),    if n> 1;

denote the c7-ascending factorial and also let

oo

("; ^oo^n^1-"'?")•
n=0

Further, let

(9;«)B

(q\Q)l(Q'><l)n-i
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844 DOMINIQUE FOATA AND DORON ZEILBERGER

denote the Gaussian polynomial for 0 <  / < n.    Finally, let the two  q-

exponentials be given by (see [An, Chapter 2])

n
U , .-1

„>0 ^ ' H>n

(1.3) ^;^) = E^"I)/27^r = (-»^)oo-
„>0 ^' q'n

Our purpose is to investigate the properties of (AB(s ; qx, ... , q¡)) (n = («,,... ,

«/) € N , / > 1) a class of polynomials in (/+ 1) variables [in short, An(s; q)]

defined by the identity

V        UjU/ _1-5
VnA;?;),   n[S,q)     IsYljeid-s^qj)'

where j goes from 1 to /. To convince ourselves that each An(s;q) is a

polynomial with integral coefficients we may rewrite (1.4) as L = (1 - R)~ .

The identity L(l - R) = 1 yields the recurrence relation

' n
j

^j

A.(s;q)s(l-s)ni-il+"+n>-i>-i(1.5)       ^;q) = £n

where j goes from 1 to / and where i — (ix, ... , i¡) runs over all sequences

of nonnegative integers satisfying i^ (nx, ... , n¡) and 0</,<«,,...,0<

i i <nr As A0(s; q) = 1, relation (1.5) shows by induction that each Aa(s ; q)

is a polynomial with integral coefficients. To show that the coefficients are

indeed positive and of sum («, + •■• + n¡)\ requires more analysis and will be

a consequence of Theorem 1 or Theorem 2 below.

The second class of polynomials under study will be denoted by (Bn(s ; q))

(n £ N +  , k > 0, q= (qx, ... , qk)). They are defined by

nfc+1 u>
T   ,   llj=x   J-Bn(s;q)

(16) n   Y[j=MpQj)nnk+l\

1 -5

1 - ^nj=i ^((1 -s)Uj;qj)exp((l - s)uk+x)

Assume 0 < k , k+l = I and let ql = 1 in (1.5). Then An(s; q) is transformed

into a polynomial in (k+l) variables s, qx, ... , qk. Furthermore, the Gaus-

sian polynomial [/] becomes the ordinary binomial coefficient ("'). Hence

(1.4) itself is transformed into identity (1.6). Thus

(!-7) V ...,nkJS> «I«"- >4k)=Ani.nkJS> «I'"" > «*+l\+I=l •

Conversely, put uk+x = 0 in (1.6) and let k — I. Then (1.6) yields (1.4), so

that

O-8)        K.,Bt(*;*i.---.9fc) = 2,Bl.._,«4,o(j; «i.---.«*)-
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MULTIBASIC EULERIAN POLYNOMIALS 845

We emphasize the fact that An(s; q) has / indices and (/+1) variables, whereas

Bn(s; q) has (k+l) indices and (k+l) variables.

When k = 0, then Bn(s, qx, ... , qk) reduces to the usual Eulerian poly-

nomial An(s) defined in (1.1). When 1=1, then An(s, qx, ... , q¡) is the

q-Eulerian polynomial An(s, q) that is known to be [St] the generating poly-

nomial for the permutation group by the bivariate statistic ( 1 + number of

descents, inversion number). Identity (1.6) for k — 1 was considered by

Désarménien [De] for his definition of the q-Eulerian polynomials with two

indices.

The theory of basic hypergeometric series is now well understood witness

the forthcoming book by Gasper and Rahman [GaRa2]. They have also paved

the way to the almost untouched forest of multi-basic hypergeometric series

[Ga, GaRal]. Our intention here is to derive the properties of the multibase-

analog of the classical Eulerian polynomials using mainly symmetric function

techniques and combinatorial manipulations on the inversion numbers.

We first give a combinatorial interpretation to Aa(s ; q) and Ba(s ; q). Be-

cause of (1.7) it suffices to do it for the An(s ; q)'s. Two combinatorial interpre-

tations will be given, the first one in terms of lignes of route of permutations,

the second one in terms of inversion numbers. The ligne of route Ligne a of

a = a(\) • • • a(n) is defined to be the set of all r such that 1 < r < n — 1 and

o(r) > a(r + 1). Hence | Ligne a\ is the number of descents, des a , defined

above. Furthermore, the sum of all r in Ligne o is the classical major index,

maj a , of a .

Let n = (nx, ... , n¡) satisfy «, H-h n¡ = n . Also let n0 = 0 and denote

by n. the partial sum n; = n, H-h n    (0 < j < I). For j = I, ... , I define

the jth n-inverse ligne of route of a as being

Iligney o = {r : n^._, + 1 < r < n. - 1,  o~ (r) > o~ (r + 1)},

and the 7'th n-inversion number of a as

inv^. a = #{(r, r) : n._j + 1 < r < r < n., a~ (r) > o~ (/)}.

Also let

imaj7. a = £]{r - ny._, : r £ Iligney a]       (j = 1,...,/).

When 1=1, the statistics imaj, a and inv, a are the familiar inverse major

index and inversion number of the permutation o , respectively.

The first two results of the paper can be stated as follows.

Theorem 1. For each n = (nx, ... , n¡) the generating polynomial for the per-

mutation group 5^n by the (I + l)-vector (1 + des, imaj,, ... , imaj,) is equal

to An(s ; q). In other words, if An(s ; q) is defined by identity (1.4), then

(1-9) ^;q) = E^+deS<TíÍJnaJ,,7"-í;n,aJ'<7       (*€.*;).
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846 DOMINIQUE FOATA AND DORON ZEILBERGER

Theorem 2. For each n = (nx, ... , n¡) the generating polynomial for the per-

mutation group £?n by the (I + l)-vector (1 + des, inv,, ... , inv,) is equal to

An(s;q), i.e.,

11   1 n\ a   i \       V*    l+des<T   inv. a inv, it ,     __   c¿,,
(1.10) An(s;q) = 2_^s qx   '   ■■■ql  ' (o£^n).

a

The proof of Theorem 1, derived in §2, makes use of symmetric function

techniques, especially the Schur function algebra. To prove Theorem 2 it is more

convenient to show that AB(s ; q), as defined in (1.10) satisfies the recurrence

relation (1.5). This is done in §3, by using an appropriate factorization of

permutations.

The combination of (1.9) and (1.10) suggests that there must be a bijection

of S"n onto itself that sends the vector (1 + des, imaj,, ... , imaj,) onto (1 +

des, inv,, ... , inv,) . Such a bijection can indeed be derived (§4). Call it tx i—*■

a'. It has even the following stronger property.

Theorem 3. The bijection a >-* a1 satisfies:

Ligne a = Ligne a ;        imaj; a. = inv. o        (j = 1,...,/).

In particular, des o = des o' and maj o = maj a .

In its turn Theorem 3 suggests that the polynomial

1.   , ,       v—v   des<7   maj a   imaj, a imaj, a , ,-.,.
AB(s,p;<i) = }^s      p       qx   Jl   ■■■ql   J' (a £ ^n)

a

should also be investigated. Using the techniques developed in [DeFo2] its

generating function can be calculated in the form

V °> UJ_lA (s   n-a) = Y^ s'

2?{s;p)ni+...+ninj(qj;qj)nj    "[-P'q>     ^Uj(Uj;p,qj)r+l>00'

where

(",;/>,«,)r+i,co =   IT ("/"';<7;)oo    u=i,...,i).
l</<r+l

However the series on the right-hand side cannot be put into a form explicit

enough to deserve further study. Note that the previous generating function

for the An(s, p ; q)'s specializes for / — 1 to an identity worked out by Gessel

[Gel]. For p = 1 the right-hand side can be summed, as will be shown in the

proof of Theorem 1 (§2). The idea of having the ligne of route of a permutation

split into compartments is due originally to Remmel [Re]. Further work along

these lines can be found in [DeFo2].

The second goal of the paper is to work out congruence properties for the

polynomials Bn(s; q) (n £ N +1). Let (dx, ... , dk) be a given sequence of

positive integers and for each n = (nx, ... , nk, nk+x) let

(1.11) nj = djaj + bj,       0<bj<dj-l       (l<j<k),
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MULTIBASIC EULERIAN POLYNOMIALS 847

be the Euclidean division of «   by d-. Then define div n to be

divn = (bx,..., bk, nk+x + ax + ■ ■ ■ + ak).

Further let ®d(q)  denote the dth cyclotomic polynomial  (Ox(q) — 1 -q,

<&2(q) = I +q, ...). We also prove the following theorem.

Theorem 4.  We have the congruences

Bn(s;q)^(l-s)^-X)a^+^-X^Bdivn(s;q)

(mod(Odi (<?,),...,0^))).

The case k = 1 is due originally to Désarménien [De] (see also [DeFo2]).

Corollary. If all the remainders b¡ in (1.11) are equal to 0 or 1, then

(1.12) B0(s; q) = (1 - s^^-^A^^^s)

(mod(®d¡(qx),...,<í>dk(qk)));

(1.13) ^(5;q)-(l-5)K-1)u'+'"+W'-1)uMai+Äi+...+a;+fc/(5)

(mod(Od¡(qx),...,Odk(qk)));

where the polynomial An ,   (s) on both right-hand sides is the Eulerian polyno-

mial defined in (1.1).
In particular, if n = (2a, + bx, ... , 2a¡ + b¡) with bx = 0, I, ... , b¡ = 0, 1

and qx = ■ ■ ■ = q¡ — q, then

(1.14) An(s; q) = (1 - ^+-+û'^+ft|+...+a/+i;(S)       (mod(l +«)).

Both Theorem 4 and its corollary are proved in §5. The case 1=1 of (1.14)

was in fact conjectured by Loday [Lod] for a side calculation of the cyclic

homology of commutative algebras. It has since received several specific proofs

in [DeFo2 and Wa]. Michelle Wachs [Wa] derived a very ingenious involution

for proving (1.14) in the case / = 1. In §6 we give a Wachs-style combinatorial

proof of Theorem 4.

2. Proof of Theorem 1

In fact (1.4) with the interpretation given in (1.7) can be viewed as a spe-

cialization of a result of the (k, /)-colored permutations derived in [DeFo2].

To make the paper self-contained we have preferred to prove Theorem 1 from

scratch using a working example. Take up again the notations preceding The-

orem 1 with o designating a permutation of order n . For each j = I, ... , I

let T   be the restriction of a to the set a~ ([n _, + 1, n.]), so that

(2.1) T^tf-^n^ + l.n.^In^-r-l.n.].

Using the Robinson-Schensted correspondence [Kn, p. 48-72] each bijection t

is mapped onto a pair (P., Q.) of Young tableaux of the same shape that we

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



848 DOMINIQUE FOATA AND DORON ZEILBERGER

shall denote by k.. It follows from the properties of that correspondence that

the entries of P  are the elements of the interval [n _, + 1, n] and the entries

of Qj are those of the set a~x ([n _, + 1, n.]). For j = I, ... , I let T. be the

Young tableau obtained from P. by replacing each entry r by r-n._, and let

U be the product

U = ß, ® • • • <8> Q,.

In the French way of displaying tableaux this means that U is the skew tableau

obtained by placing each Q. to the right of Qj_x and just under it for j =

2, ... , I. Thus each T- is a Young tableau of shape A whose entries are

1,2,...,/? (j = 1,...,/); the entries of C/ are 1,2,...,« and the shape

of U is the skew shape Xx <g> • • • ® X¡. We summarize all this by writing

shape Tj = Xj;        |A;.| = /i;.;        (;'= 1,...,/) ;
(2.2)

shape ¡7 = A, A, |A,| -r-.-.-i-IA,! = n

For instance, let 1 = 2, n = (5, 4) and

1
a =

2   3   4   5

6   4   5    2

12    3    4    5

6   5   9    3   4

6   7

1    9

6   7

2   8

Then

T2 =

9

3

9
7

2

6

Under the Robinson-Schensted correspondence

and

Ci. e,

T2~(p2,e2) =

4

25

T =P. =1 3; T2 = P2

34

= 1 2;

Xx = (2,2, 1)

A2 = (2,2);

6

59

{7=3 4

28

1 7

The inverse ligne of route Iligne U of £/ is defined as being the set of all

entries r such that (r + 1) lies in a higher row than r in (/ (in the French

way of displaying tableaux). Furthermore, define

imaj U = ^{/ : r £ Iligne U},   ides U = \ Iligne U\.

With the working example, Iligne U = {1, 2, 4, 5, 7, S}, imaj U = 21 and

ides U = 6.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



MULTIBASIC EULERIAN POLYNOMIALS 849

Lemma 2.1. The mapping (a, n) i-> (Xx , ... , X¡ ; 7",, ... , T¡ ; U) is a bijection

having properties (2.2) and satisfying

Iligne, ffj - n;_, = Iligne T}       (j = 1,...,/) ;

Ligne a = Iligne U.

We do not prove Lemma 2.1, as it was already derived in [DeFo2] in the con-

text of the (k, /)-colored permutations. With our working example Iligne, a =

{1, 3} = IligneT, ; Iligne2a = {2} = IligneT2; Ligne<7 = {l, 2, 4, 5, 7, 8} =

Iligne U.

It follows from (2.3) that

(2.4) imaj a = imaj T.       ( j = 1,...,/) ;    des a = ides U.

Let 5 AB(s; q) denote the right-hand side of (1.9). Then by (2.3) and (2.4)

z~ -s 1.   , x       V~^    X~*     idest/   imaj 7". imaj T,

(2.5) ^n(5;q) = ^   )T ä        *i ql        '

where the first sum is over the sequences (Xx, ... , X¡) of partitions satisfy-

ing \XX\ = nx, ... ,\A¡\ = n¡, and the second over all.sequences of tableaux

(Tx, ... ,Tt,U) satisfying (2.2).
The next step is to express the right-hand side of (2.5) in terms of skew Schur

functions. Let Se(xx, x2, ...) designate the skew Schur function associated

with the skew diagram 6 [Mac, p. 39]. The following lemma was proved in

[DeFol].

Lemma 2.2. If 8 is a skew diagram of n elements, then

1 V~*   ides T   imaj T       yr~*   r o  /1 2 r,
777-^-2^s        4 =}^sSe(l,q,q  ,...,q),

where the first sum is over all standard tableaux T of shape 6 .

We are using here two specializations of this lemma obtained by letting q = 1

and 5=1, respectively,

(2-6) 7r-V^I>,desr = £'\(l'+1)<

<"> ak^^-"-' 2-->-

where S()(lr+X) is the skew Schur function obtained by taking an alphabet of

(r + I) letters all equal to 1 .

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



850 DOMINIQUE FOATA AND DORON ZEILBERGER

By (2.5), (2.6) and (2.7) we have

_AB(S , q) _ _1_       y> ides U TT    imaj Tj

(i -sTUMr 9,\ = i» sriiMjiij)., {X¡)%J     Vr

as U is of shape Xx ® • • • <8> X¡. In the last step we have used the fundamental

multiplicative property of the Schur functions: Sx^ (x) = Sx(x)S (x). Now

the Cauchy identity for Schur functions

X i,j '   '

yields

t\íj\f¡   nr+\E"?^1 r+l)Sx.d,qj,q2,...)

1 1=n
writeAs \X}\ =Hj   (j = 1,...,/), we may

Vd-rnA-;^- n(,q)

=E/nE^X(ir+X(1'^'i?'---)
r i    X,

= TY\_-_=_l-_
rV(«yi<   -*+n^;«y)oo"

Next replace each u¡ by u-/(l - s). This yields

__IV¿_, i-,

1 -s

-s + UjEHs-^Ujigj)'

using the notation of the second ^-exponential introduced in (1.3).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



MULTIBASIC EULERIAN POLYNOMIALS 851

The generating function for the polynomials A (s, q) involves the first q-

exponential, as shown in the next calculation

1+SnÄ;^',,,"'-'+n,^-')«,;«/)-'+1
_ _l_-£_

= l-sllje((l-s)Uj;qj)'

since E(u; q)e(-u; q) = 1. This proves Theorem 1.

3. Proof of Theorem 2

Call AlBm(s ; q) the right-hand side of (1.10), namely the generating function

for S?n by the vector ( 1 + des, inv,, ... , inv,). We will prove that Anm(s ; q)

satisfies recurrence (1.5), i.e., the equation obtained from (1.5) by replacing AB

and Ax by ABm and A{mv, respectively. Since An = A™ = 1 by convention,

the result will follow by induction.

Consider the set «^ of all "commaed" permutations that consist of a per-

mutation in S"n together with a comma inserted in such a way that the se-

quence after the comma is increasing. For example, 4713,256; 47132,56;

471325, 6; are all members of ¡Tn, but 47, 13256 is not.

To each member (ax,a2) (i.e., o2 is increasing and nonempty and a:=axa2

is a regular permutation of J?^) of ¿fn associate the weight

•  Li/ \ 1+descr.    ,. ,length a,-1 TT    inv u
weight(<T,, er2) = 5 's(l-s) 2       [ij      ■

j

Next to each a in S?n associate the set C(o) of all commaed permutations

obtained from a by inserting a comma right before one of the entries that

belong to the maximal terminal increasing right factor of a .

For example, o = 4713256 gives rise to the following set

C(a) = {4713, 256;  47132,56;  471325,6}.

We claim that this mapping C is weight preserving, i.e.,

l+des<TTT    inv (j ■r—v .
5 [[ij =    ¿^    weiSnt T ■

j reC(a)

Indeed the FT Qj '    factor is the same at both sides. The s-contribution is as

follows, letting r be the length of the maximal increasing right factor of a,

weight(ff( 1) • • • a{n - r))[s(l - s)r~x +s2(l- s)r~2 + ■ ■ ■ + s2(\ - s)°]

= weight(ff(l)."<T(/î - r))s = weight(a(l)---<r(n)) = weight(er).

Thus the sum of the weights of all the elements of S?n (i.e., ABv(s; q)) is

the same as the sum of all the weights of the elements of ^ . Let us compute

the latter, noting that inv cr is also equal to

inv. a = #{(r, r) : 1 < r < r < n, n. > a(r) > a(r') > n._, + 1}.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



852 DOMINIQUE FOATA AND DORON ZEILBERGER

Consider the subset of ETn consisting of all elements such that the comma comes

right after /, members of the first class, ...,/, members of the /th class. Let

hx= nx-ix, ... , h¡ = n¡-i¡ and assume that after the comma we have the fixed

increasing factor a(x) ■ ■ ■ a[x) ■ ■ ■ a{¡] ■ ■ ■ ahl), with n._, + 1 <a[j) < ■■■ < ahJ) < n,

for j = 1,...,/. The total weight of the above factor is easily seen to be

Aihtv(s;n)s(l-s)^-i'+n2-,2+-+n'-''-X

{nraf)Hnra™   -\)+---Hnraf-(hrl))

j

Now for a fixed i = (/,, /2,...,/,) we have that the sum runs independently

with respect to each of the exponents of the q,'s. It is easy to see that inside the

exponent of q. (j; = 1,...,/) we have a typical partition of n with largest

part at most equal to n¡ -A    (= i.) and number of parts at most equal to A .

The generating function of which is well known to be the ^-binomial [ ¡' ]     to
j Sy-

base q¡. Since the sums over each q. run independently, the total weight of

members of !T such that right before the comma come i, members of the first

class, ...,/, members of the /th class (regardless of what comes after) is

n Aiim(s;q)s(l-s)n^+-+"'-i'-X

j

Summing over all conceivable ¡ / n establishes (1.5).   □

The technique used here was inspired by some methods developed in [Ge2]

and [Ze].

4. Inversion numbers

The proof of Theorem 3 relies upon the properties of the so-called second

fundamental transformation [Lot, Chapter 10], which we shall designate by (f>.

Let w = xx • • • xm be a word whose letters belong to N and let x be an integer.

If the last letter w is greater (resp. smaller than or equal to) x, the word

w admits a unique factorization (wxyx, ... , w y ), called its x-factorization

having the following properties:

(i) each yi   (i = I, ... , p) satisfies yi > x (resp. y. < x) ;

(ii) each word iu, (i = I, ... , p) is either empty, or has all its letters smaller

than or equal to (resp. greater than) x .

Define yx(w) = yxwx ■ --ypW . (Note that w = wxyx ■ ■ ■ w y .) The trans-

formation (f> is defined by induction as follows: 4>(w) = w , if w is of length

one; if w has a length at least equal to 2, write w = vx with x being the

last letter of w , and define 4>(vx) = yx(<p(v))x. Let W be the rearrangement

class of some word w0 . It was proved in [Fo] that 0 is a bijection of W onto

itself having the property that

(4.1) majw = inv <f>(w),

for every w £ W.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



MULTIBASIC EULERIAN POLYNOMIALS 853

A further property of cp was stated and proved in [FoSch] for the rearrange-

ment classes W containing only words without repetitions, say, subwords of

permutations. If w is such a word, its inverse ligne of route Iligne w may be

defined as being the set of all k such that k and (k + 1) are letters of w

and (k + 1) is to the left of k in w . In particular, if tt; is a permutation of

1,2,...,«, then Iligne w is simply the ligne of route of the inverse permuta-

tion w~ . Thus when the rearrangement class W contains only subwords of

permutations, it was shown in [FoSch] that

(4.2) Iligne w = Iligne <f>(w ).

Recently, Björner and Wachs [BjWa] have extended the properties of the second

fundamental transformation to a larger set of combinatorial objects, and found

several characterizations for sets that satisfied (4.2). Our purpose presently is

to include </> in the construction of a bijection that will serve to prove Theorem

3.
If o = (7(1) • • • o(n) is a permutation and if n = (nx, ... , «,) is a sequence

of integers of sum n , let

°j = tf(n,_i + lWnj-i + 2) ' • • a{-nj + *)

for j = 1,...,/. If 0 is any transformation on S?n , we will write

(So)j = Sa(nj_x + l)eff(n;_, + 2) ■ • ■Qo(nj + 1).

In particular, if we apply the second fundamental transformation <f> to each er

and form the juxtaposition product

(4.3) w(o) = <t>(ox)---4>(ol),

we define a new transformation on S?n . Furthermore, <j>(a,) = (y/a)¡ using the

previous notations.

Proposition 4.1. The sequence n being given, the mapping \p is a bijection of

5?n onto itself satisfying

(4.4) maj a. = inv(\i/a)},        (j = 1, ... , /) ;

(4.5) Iligne a = Iligne y/(a).

Proof. Relation (4.4) is just (4.1) rewritten for the factors ct . Now by (4.2)

we have Ilignect = Iligne4>(a.). This takes care of all the pairs (k, k + 1)

contained in a single factor er , and therefore in a factor <fi(o ). Next, if

I < i < j < I and (k + 1 ) is a letter of ai, while k is a letter of o , then

(k + 1) will be to the left of k both in o and y/(o).   D

Let iff = a~   and form the sequence

o H-» ¡ct i-> y/ifj i-> i^ifj,

By (4.5)

(4.6) Ligne a = Iligne icr = Iligne ^icr = Ligne i^icr.
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Furthermore, by (4.4)

(4.7) maj(i(T);. = inv(y/ia)j       (;'= 1, ... ,/).

Define

o \= \\p\o.

Then a i-» a' is a bijection satisfying Ligne er = Ligne er' by (4.6). Furthermore,

imaj • a- = maj(icr)   = inv(^icr). = inv(cr'~ )  = inv a .

This completes the proof of Theorem 3.

5. The Désarménien Verfahren

Let x = (xx,x2, ...) be an infinite sequence of variables and for each r =

1,2,... denote by hr(x) the homogeneous symmetric function in the x,'s and

by Pr(x) the power sum J2jxj- By convention, h0(x) = 1. The generating

function H(u; x) = J2r>0uhr(x) can be evaluated in different forms:

(5.1) H(u;x) = Y[(l -uxj)~x =exp£V^^.
j>\ r>\

(See, e.g., [Mac, pp. 14 and 17].)

Recall that a partition of an integer n can be expressed as a nonincreasing

sequence X = (Xx, X2, ...) (A, > X2 >•••), or as a word X = l"2^'"2 • • • (the

multiplicative notation) with the meaning that X has m, parts A, equal to 1 ,

m2 parts A, equal to 2, etc... As usual, to each partition X we attach the

constant

zx = 1   '2  2 • • • mx\m2\ ■ ■ ■

and the power symmetric function

px(x)=px(x)px(\x)---

Also \X\ = n means that A is a partition of n and the notation l(X) stands for

the number of parts of X.

Désarménien [De] introduced the polynomials

(5.2) T(q)=      {q',q)n      ,

where X = lm' 2mi ■ ■■ is a partition of n . He noticed that Tx(q) is a polynomial

of degree n(n - l)/2 and can also be expressed as

(5.3) Tx(q) = (q;q)npx(l,q,q2,...).

Furthermore, he proved the following congruence property.
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Lemma 5.1. Let n = da + b, 0<b<d-l and X = lm'2m2 - - - be a partition

of n . Then the following congruences hold:

(i) if md±a, then Tx(q) = 0  (mod*^?)).

(ii) if md = a, let p = X\da be the partition obtained from X by deleting the

md parts equal to d. Then

Tx = daa\Tp(q)    (mod<5>d(q)).

Now let (c,) (/ = 0, 1, ...) be a sequence of elements belonging to some

given ring. The relation

(5-4) E^E^"-1)'
;>0 '        ¡>0

defines a sequence (C¡) in a unique manner.

Désarménien considered the expansion
m

E *».*(*)«"^ = £'/(*(«;^'"-tf
m>0,n>0 '        i>0

and showed that Wn m(x) can be expressed in terms of the symmetric functions

(px(x)) as

^,Mw=Ec^)f1   ^ = n)-
x *

Then he defined the polynomials

KmJq) = (q;q)nWmn(l,q,q2,...),

and using Lemma 5.1 proved the congruence

Km,da+b(9) = Km+a¡b(q)       (mod<t>d(q)).

Finally, he applied the latter congruence to his ¿/-Eulerian polynomials with two

indices to obtain Theorem 4 for k = 1.

The program for an arbitrary k and consequently for the multibasic Eulerian

polynomials will closely follow the foregoing pattern. This time we have to

introduce / sequences of variables xJ = (x\, x2, ... )  (I < j < I), and relation

(5.4) being given we expand the expression ¿Z,i>oc¡(^lj^(uj > •r') ~ 1)' > as a

power series in the «'s. This is done as follows.

Proposition 5.2. //

(' V
(5-5) EIIM"^ = Ec/ n^;^)-1)   .

n   j=\ ;>0       V=l /

then

(5-6) rn=    E    Cl(X')+-+l(X')Il
PxAx*

j=i
z

A>

the sum being over all partitions satisfying \X \ = nx, ... , \X \ = n¡
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The proof has been made in [DeFo2] in the case 1 = 2 and H(u2 ; x ) = e"2.

The proof for an arbitrary / is quite similar and will therefore be left out.

Let 0 < k and k + l = I and suppose that H(u¡ ; x ) is equal to e"'. From

(5.1) it follows that px(x ) = 1 and pr(x ) = 0 for r > 2. Hence, if \X | = n¡,

we have

(5.7)
px,(x')     Í0, if A7 ̂(i"');

z*     ~\ l/n¡\,    if A7 = (1"0

Hence (5.6) takes the form

(5.8) WB   £   c/a')+...+/a*)+»t., II

k pA*j)   i

'HX>)+...+m<)+nk+tLL      z n       !
xl,...,xk J=l      x       k+{

where \XX\ = nx, ... ,\X \ = nk, and (5.5) the form

(5.9) £ n «?«; = E <i ( ñ * <«, ; *>M*+1 - !
n   ;=1 i>0       \;=1

For 7 = 1, ... , k and r = 1,2,...   replace each xJr  by #r~    in (5.8) and

(5.9). This substitution being made, define

KB(qx ,...,qk)=   Jüj ; Qj)nnk+AVH \x^qr-

By (5.3) and (5.8) we obtain

k

n
7 = 1

(5.10) KB(qx,...,qk)= £ ^ V--+/(^+1 ïï ^

On the other hand, by (1.2) and (5.1)

r-U-l
i -w7r

r>l

H(Uj ; r')|^^-i = II(1 " "X ')  ' = e(Uj ; «y).

Hence (5.9) becomes

(5.11)

n/+1 u> (k V

»   iw^a^+i' ,->o V;=i y
E =

n

Remark. In the notations of Lemma 5.1, case (ii)  (m¿ = a) we have /(A) =

l(p) + a and zx = zp daa\. Hence

(5.12) IM^IM       (mod 4>,(i7)).
zx zß
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Now let (dx, ... , dk) be given and let /i = d.a. + ¿> (0 < b- < d. - 1 ;

1 < ; < fe). When #n is taken mod^ (qx), ... ,<&d (qk)), formula (5.10)

becomes in view of Lemma 5.1 and (5.12):

k  T j(q)

*ofa) = E Wl(ß')+al+-+l(/)+ak+nk+i H "77" •
\ßl\=b,,...,\ßk\=bk »        "

But by (5.10) the right-hand side of the previous congruence is also equal to

*div.(l)   WÍth

divn = (bx, ... ,bk, nk+x + ax + ■ ■ ■ + ak).

Hence

(5.13) KB(q)^KdivB(q)    (mod(Od¡{qx), ... , <¡>di¡(qk))).

To apply the foregoing congruence results to the multibasic Eulerian polyno-

mials we note that (1.6) can be rewritten as

Ifci u/ BB(s;q)

=E(T^)Iín^;^+'
(>0   v '     \j=l

Comparing the latter identity with (5.11) we see that we can apply (5.13) to

KB(q) = BB(s; q)/(l -s)"1 '" "*+l , which are polynomials in the o's with coef-

ficients in the field Q(s). This gives immediately Theorem 4.

Consider a polynomial BB(s;q) (n e N +1) and suppose that the first k

components of n are equal to 0 or 1. It then follows from (1.7) and Theorem

1 that there is no variable q. occurring in the expression of BB(s ; q). There-

fore, this polynomial reduces to the ordinary Eulerian polynomial A„ , , „ (s)

defined in (1.1). The corollary is then a consequence of this observation and

Theorem 4.

6. A Wachs-style proof of Theorem 4

We will give a Wachs-style proof of Theorem 2 of [DeFo2], i.e., the one-

colored case of Theorem 4. The same argument then goes to prove Theorem 4

itself. We use the combinatorial interpretation of Theorem 2.

We have to prove that if a> = primitive ú?th root of unity, then

(6.1) Bda+b,m^^) = (i-s){d-X)aBbm+a(s,co).

Let us first prove the case a = 1, ¿» = 0, m = 0, i.e., that Bd 0(s; œ) =

(1 -s) ~ B0 x(s; co) = (1 - s) ~ Ax(s) = (I - s) ~xs . This follows from recur-

rence (1.5) with one color, and the fact that

(l-qd)(l-qd-X)---(l-qd-'+X)

(í-íV-u-í)
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vanishes when q = co and  1 < i < d. Thus by plugging in q = u> in (1.5)

there is only one surviving term, i = 0. We summarize this result as

vrf-l
(6.2) ^ weight ct = (1-5)" s.

™d+0

Now let us prove (6.1) in general. We may write

(6-3) Bda+b,m(s''Q)=    E   weight ^ = ^51+desVnVl",

^(da+b)+m

with n running over <9'ida+¡J,+m , so that only the elements 1,2, ... , da + b

are taken into account for the calculation of the exponent of q . Group those

(da + b) colored elements into families of consecutive d elements

Vx :={l,...,d};V2:={d+l,...,2d};... ;Va := {(a - l)d + I, ... , ad};

plus a set of "bachelors"

W :={ad+ 1, ... ,ad + b}.

It is possible to view a permutation as a "seating" in a one-row auditorium.

From now on "seating" and "permutation" will be used interchangeably. A

happy seating is one in which no family had to split, i.e., every family sits in

d consecutive chairs. An unhappy seating is one in which at least one of the d

families had to split. We claim

(i) The sum of all the weights of the happy seatings is

(lsf-1)aBb>m+a(s;œ).

(ii) The sum of the weights of all the unhappy seatings is zero.

Proof of (i). Each happy seating can be characterized by a sequence n = (a , nx,

... , na), where o belongs to ^¿,)+(m+a) and indicates how the b bachelors,

the m uncolored elements and the a family-blocks are displayed on the one-

row seating and where nx, ... , na are permutations that arrange the seatings

within each family. We have

des n = des er + des nx h-h des na ,

since the total number of descents is the sum of the inter-family and intra-family

descents. We also have that the number of inversions of n (that count, i.e., the

inversions between da + b elements themselves, disregarding relationships with

the m elements that "do not count") equals d times the number of inversions

in a between the a family blocks, plus d times the number of inversions that

result between the b bachelors and the a family blocks. To these we have

to add, of course, the "intra-family" inversions, i.e., inv7r, + • • • + inv7ra , and

finally we have to add the inversions between the b bachelors. Moding out by

d the contributions from the first two kinds of inversions vanish and we have

(recall q = co, co a primitive dth root of unity)

.  , ^ l+des(T   inv. a  desfl,    inv;r, desjr„   invre
weightn = s q    l  s      'q      '•••5     "q
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so that

sa weight tí = weight o weight nx ■ • ■ weight na.

Thus

y^  weight % = s      Y,  weight o ^ weight fl, • • • E weight na

^haPPy Si+(m«) sd sd

by (6.2) and (6.3).

Proof of (ii). For any set X = {xx < x2 < ■ ■■ < xL} and any permutation

p = X; x, ■■■ X;   of X we denote by red p the permutation of 1,2, ... , L,
'l      '2 'L

called the reduction of p, defined by red p = ixi2- ■ -iL.

Michèle Wachs (d = 2) killed bad guys in pairs. We would have to exter-

minate them in bunches. Let r (1 < r < a) be the smallest unhappy family

(i.e., r is the smallest integer for which Vr is an unhappy family). Let the

connected components of the seats occupied by the Vr-family members have

lengths ax, ... , ac. Obviously c > 2 and ax+a2 +-h a. = d .

Consider all permutations that give rise to the same unhappy r, same com-

ponent sizes ax, ... , ac, whose last connected component reduces to the same

permutation p £ S?a and in which all the non-Kr objects stay the same. In

other words, once the show has begun, only the f^-family members can move

seats between themselves, but they must observe the same "pattern" in the last

component. We will now show that the sum of all the weights of the seatings

that are related in such a way is zero.

The descents and inversions with "the outside world" remains fixed, as do

the descents and inversions within "the outside world." All the changes are the

descents and inversions due to the placements of the Fr-family members them-

selves. Furthermore, even the descents and inversions due to the inhabitants of

the last component among themselves remain fixed, since only the relative sizes

matter. In addition the sum of the contributions to the weights from the relative

placements of the members of the Vr-family within the first c - 1 components

remain the same, regardless the occupants of the last component. (Only rela-

tive size matters.) The only things that do change are the inversions caused by

the interaction between the Fr-members that occupy the last component and the

rest of their family. If the set of occupants of the last component is (let ac = L)

(xx, ... , xL)   (xx < x2 < ■ ■ ■ < xL), then the number of inversions contributed

by these interactions is (d-xL) + (d-\ -xL_x)-\-(d - (L- 1) -xx), where

xt are the reduced labels in the ^.-family: xi := x¡ — rd. What we get is a

typical partition with < L parts and largest part < d — L, whose generating

function (see [An, Chapter 3]) is (1 - qd) •■ -(1 - qd~L+x)/(l - q) ■ •• (1 - qL),

and therefore vanishes when q = co. Since all the unhappy seatings can be

partitioned into these sets, they all die.   D
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Note. The same argument exactly goes over to prove Theorem 4 of the present

paper. We partition each color into the appropriate number of families and

"bachelors", and in order to kill the unhappy seatings, we choose the lowest

color that has an unhappy family, and within this color, the lowest unhappy

family.

Tables of An  n   n (s ; qx, q2, q3) for 6 > «, > n2 > «3 > 0

A table of the polynomials An n n(s;qx,q2, ç/3) such that n2 = 0, 1 and

«3 = 0, 1 and «, < 6 has already been published by Désarménien [De]. Write

Am „ for the notatons adopted in [De] and keep A„   „   „   for ours. We have
m,n r L      J r      n^,n,,n~

the correspondence A„   „   „   = A„ , „   „ , whenever 0 < n,, n, <  1.   We

then just list A7 , n , A'2,2,0 ,  A22x, A420, Ai:}0, Ai2x, A222 that

have not appeared before. Only the last one actually involves the four variables

s,ql,q2,qi.

For example, the (2,2, 0)-table is to be read:   A2 2 2(s; qx, q2, q3) = s +

s2(3 + 3qx + 3q2 + qxq2)+s3(l + 3qx + 3q2 + 4qxq2) + 54 .

(2, 2,0)

1 <?] a2 qxq2

1

4 3   3     1

13   3    4

1

(3,2,0)

i 2 3    2 3
1 <7i  (¡2 Qi  Q\Q2 Q\  a\a2 1\a2\

1

6 6   4   6

3 12 6  12

2        2

2

12    6

6     4

2

12

6

(2,2,1)

1    <7,   <?2 1\l2\

1

12 6 6 2

15 18 18 15

2   6   6    12

1

(4,2,0)

. 2 324354656
1 <7i q2 Q\ Q\<l2 Q\ a\a2 Q\ a\a2 Q\ a\a2 Q\ a\a21^2

1

895   12    39433 1

6 27 10 42  24  45   35   33   33   18   20 9

9       20   18   33   33   35   45   24  42   10  27     6

! 33493    12    59      8

1
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(3,3,0)

861

1 Q\   (¡2 #!  (¡\<Í2 a2  Q\   a\a2 a\a2 a2 a\l2 «1^2 a\^2 #1^2 a\ a2 1\a2

1

988848 44 4

9 24 24 24  36  24 10 36    36 10   8     36     8      8

1  8   8   8   36   8  10 36    36 10   24    36    24    24

4 4      4 8       4       8       8

24

(3,2, 1) (2,2,2)

2 3    2        3
1    «i   <?2 Q\   a\°2 Q\   a\a2 a\a2\

1

17 12  8   12 4 4

33 60 34 60 44 18   44     9

9 44 18 44 60 34   60    33

4        4 12 8    12     17

1   ?i  q2 a3 a\a2 °l°i a2a3 9l92«3

1

20 9 9 9 4 3 3 1

48 45 45 45 33 33 33 20

20 33 33 33 45 45 45 48

13 3 3 9 9 9 20
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