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ABSTRACT 

Using the approach of Bozzo, Di Fiore, and Zellini, new matrix displacement 
decomposition formulas are introduced. It is shown how an arbitrary square matrix A 
can be expressed as sums of products of Hessenberg algebra matrices and high level 
(block) matrices whose submatrices are Itessenberg algebra matrices and have vari- 
able sizes. In most cases these block factors are block-diagonal matrices. Then these 
formulas are used in sequential and parallel solution of Toeplitz systems. © 1998 
Elsevier Science Inc. 

1. I N T R O D U C T I O N  

The present paper  considers some new matrix decompositions based on 
the concept  of  displacement rank [30]. The approach follows the main ideas 
developed in [21, 18], exploiting the notion of  Hessenberg algebra, which 
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generalizes a class of hypergroups of matrices introduced by Bapat and 
Sunder [6]. 

In [21, 18, 17], many displacement-based decompositions of matrices 
known in the current literature, as well as new decompositions based on an 
algebra of ~" type [21]--or on its variant ~'~, ~ [18]--were obtained as special 
eases of general formulas written in terms of whole classes of matrix 
Hessenberg algebras. Further developments, where noncommutative matrix 
algebras are exploited, are considered in [16, 17]. 

All the formulas introduced in [21, 18, 16] can be specialized for the 
inverses of Toeplitz matrices and Toeplitz plus Hankel matrices, with and 
without symmetry. 

The novelty of this paper is that a number of factors involved in the 
decompositions of a general n × n matrix A are high level or block 
matrices, i.e. matrices whose elements are Hessenberg algebra matrices (in 
some cases null matrices) of variable sizes. 

In Theorem 3.1, under the hypothesis of symmetry, the high level factors 
are two-block-diagonal matrices, where the blocks are Hessenberg algebra 
matrices of dimensions ( i -  1 ) × ( i -  1) and ( n - i )  X ( n - i )  (a zero 
element separates the two blocks) with 1 ~< i ~< n. For i = 1, n we retrieve a 
result obtained in [21]. 

In Theorem 3.2, under the hypothesis of symmetry and persymmetry, we 
find a decomposition involving five-block matrices which can be reduced, in 
some particular eases, to three-block-diagonal matrices. As a special ease we 
obtain a formula introduced in [21]. 

In Theorem 3.3 the block factors are two-block-diagonal, where the 
blocks are e-cireulant matrices of variable sizes. 

For stating these theorems and all remarks about them, we need some 
preliminary results on Hessenberg algebras which are exposed in Section 2. 

All theorems and their corollaries proved in Section 3 are exploited in 
Section 4 to write formulas for A = T -1 and A = (T + H )  -1 where T and 
T + H are, respectively, nonsingular Toeplitz and Toeplitz plus Hankel 
matrices. In Section 4 two other representations of T-1 are introduced when 
T is symmetric and n is even. 

The interest of these results consists in the following reasons. The 
matrix-vector product Ab is reduced, in part, to matrix-vector products of 
smaller sizes. This conforms to the general strategy of solving a problem by 
splitting it into smaller subproblems, in order to reduce computational 
complexity and possibly introduce parallel procedures. Here one can choose, 
with some restrictions, the dimensions of these subproblems (because the 
blocks involved in matrix decompositions have variable sizes), which is an 
advantage with respect to the more rigid formulas in [21] where only the 
dimensions n, n - 1, n - 2 were considered. In particular, for n even, the 
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submatrices in the block factors of Theorems 3.2 and 3.3 can be of the s a m e  

dimension n / 2 .  This implies, as consequence of Theorem 3.3, that one can 
avoid the use of matrices of different sizes as were considered in [21], and 
only fast transforms of dimension n and n / 2  are calculated. 

The computational interest of formulas involving factors in block-diagonal 
form is more evident in case a certain degree of parallelism is introduced. 
This aspect is briefly discussed in the concluding remarks for the computation 
of I ' -1£  f ~ C". 

2. HESSENBERG ALGEBRAS 

Let M,(C)  be the space of n × n matrices over the complex field C, and 
let X ~ M,(C). For A ~ M,(C)  set 

~ x (  A )  = A X -  X A .  

Let X be the lower Hessenberg matrix 

r l l  

r21 

X =  

rnl 

b 1 0 

r22 b 2 

"'" 0 

0 

bn-- 1 

• "" r n  n 

b~ ~s 0 Vi, (2.1) 

and let H x denote the kernel of ~x .  
As X is nonderogatory, H x is the space of all polynomials in X with 

coefficients in C and dim H x = n [27, pp. 135-137]. Therefore H x is 
commutative and closed under multiplication. Moreover, if A ~ H x and 
det A # 0 ,  then A-1 ~ H x "  

We call H x a H e s s e n b e r g  algebra,  in conformity with [21, 18]. H x can be 
represented as 

where the matrices X i are defined as follows [21]: 

X1 = I 

j = l  . . . . .  n - 1 .  
(2.3) 
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r which The  representat ion (2.2) is a consequence  of  the equalities erlXi = %,  
can be  easily proved  by induction. I t  can be shown that 

k=l  
1 <~ i , j  < n. (2.4)  

Moreover,  f rom the commutat ivi ty  of  H x, we have e~X, Xj = erxjx, and 
then 

e~X, = e~Xj,  1 < i , j  <<. n. (2 .5 )  

Let  Hx(z )  denote  the matrix y~ni=l ziX~, i.e. the matrix of  H x whose first 
row is z r = [z 1 z 2 "" Zn]. Let  J be  the reversion matrix (6n+ 1 i,j) and 
~. = Jz .  A square matrix A is persymmetric if A T = jAj ,  and centrosymmet- 
r/c if A = jAj .  

In the following four propositions we state some propert ies  of  Hessenberg  
algebras which will be  useful in the next section. 

PROPOSITION 2.1. Let x , y  ~ C n. Then 

(i) n x ( n x ( x ) r y )  = nx(y)Hx(x);  
(ii) x r n x ( y )  = y r n x ( x ) ;  

(iii) i f  X is persymmetric, then nx(x)y  = Hx(~)i. 

Proof. (i): For  i = 1 . . . . .  n, 

e[Hx(Hx(x)ry) = e[ ~ [Hx(x)ry]k Xk 
k=] 

= ~ [Hx(x)ry]kerkX,=yrHx(x)X, 
k=l  

= yrX, Hx(x) = ~ ykerkX, Hx(x) 
k=l  

= e r, ~ YkXkHx(x) = e ~ H x ( y ) H x ( x  ).  
k = l  

(ii) is a consequence  of  (i) and of  the commutat ivi ty  of  Hx, and (iii) follows 
from (ii). • 
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PROPOSITION 2.2. Let  A ~ H x (X in (2.1)). Then A is invertible in 
M n(C) i f  and only i f  there exists z ~ C" such that zrA = e~'. In this case 
A - I  = Hx(z).  

Proof. Let z be  such that zrA = e l  r, and consider the matrix Hx(z) .  
T h e n  o b s e r v e  t h a t  erHx(z)A = zrX~ A = zrAX,  = elrX, = e r, i = 1 . . . . .  n. 
Thus H x ( z ) A  = A H x ( z )  = I, that is, A is invertible in Mn(C). The  converse 
is obvious. • 

In the following two propositions we assume X tridiagonal and, for 
the sake of  simplicity, we set a~ = r , ,  i = 1 . . . . .  n, and c~ = r~+~,~, i = 
1 . . . . .  n - 1 .  

PROPOSITION 2.3. Let  X in (2.1) be tridiagonal. Then 

(i) det  X,~ -4:0 i f  and only i f  c~ 4= 0 f o r  all i; 
(ii) i f  det  X,, 4 :0  and X is persymmetric ,  then X,~ 1 = ( 1 / [  X,],,I)Xn; 

(iii) X is centrosymmetr ic  i f  and only i f  X,, = J. 

Proof. We refer  the reader  to [21] and [18]. However,  point (iii) simply 
follows from the equivalences 

j x = x j  ~ J E H  x ~ J = H x ( e , ,  ) =X , , .  • 

PROPOSITION 2.4. Let  X in (2.1) be tridiagonal. Then 

(i) i f  n is even and X is centrosymmetric  (or  persymmetr ie  wi th  c i 4: 0, 
i = 1 . . . . .  n / 2  - 1), then det X,,/2 4= 0; 

(ii) i f  n is odd and X is centrosymmetrie  (or persymmetric) ,  then 
det X(,,+ 1)/2 = 0. 

Proof. Let us prove assertions (i) and (ii) in the eentrosymmetr ic  ease. 
For  (ii) simply observe that point (iii) of  Proposit ion 2.3 and the equalities 
(2.4) imply 

X(n + 1)/,2J = x(,,_ i)/2 x,, = x~n + l)/2. 

As regards (i), by (2.4) we know that X i X  z = E~:l[Xz]~k X k. Exploiting this 
equality for i = n / 2 ,  n / 2  - ] . . . . . .  2, and the equality X,,/2+1 = X,,/,zJ, we 
obtain X, , /2Q, /2+l  i = x i -1 ,  i = n / 2 ,  n / 2  -- 1 . . . . .  2, where  the Q~'s are 
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polynomials  in X def ined  as follows: 

Q o  = I ,  Q1 = b ,~ -~2+161[x2  - b ; l ( a n / 2  - a l ) I  - b ; l b n / 2 J ] ,  

Pi4-1 = b n / l + i + l b l ( P i [  X2 - b l l ( a n / 2 - i  - a l ) I ]  - b l l b n / 2 _ i P i _ l ) ,  

i = 1 . . . . .  n / 2  - 2. In  par t icular  X n / 2 Q , , / 2 - 1  = X1 = I .  

The  p roo f  of  assertions (i) and  (ii) in the  pe r symmet r i c  case is omit ted .  

The  assert ions of  Proposi t ion 2.4 are false in the  symmetr ic  case. Cons ider  
the  6 x 6 t r idiagonal  matrix X with b~ = c i = 1, i = 1 . . . . .  5 ,  a i = 0 ,  i v~ 5, 
and a 5 = 1. By using the defini t ion (2.3), one can easily calculate the  matrix 
X 3 and see that  de t  X a = 0. Again, consider  the  n x n t r idiagonal  matrix X, 
n odd,  with b i = c  i = 1, a i = 0 ,  i = 1 . . . . .  n -  1, and a,, = 1. I t  can be 
easily shown that  a matrix A = ( a i j )  ~ H x (or  equivalent ly  AX = XA) i f  and 
only if  its entr ies  satisfy the  condi t ion 

a i _ l ,  j + a i + l ,  j = a i , j _  1 + a i , j +  1, 1 <~ i , j  <~ n ,  (2.6)  

where  ao, i = ai,  o = O, ai,  n+ 1 = a , , + l , i  = ai , , ,  ( =  an, i) ,  i = 1 . . . .  n .  By us- 
ing this fact and the ident i ty  X(n + 1 ) / 2  = Hx(e(n + 1)/2), w e  see that  

(0 . . . . . .  0 1 0 . . . . . .  0 

X(n + 1) /2  

1 0 1 

0 1 1 0 

1 0 1 1 0 1 

0 1 1 1 

1 0 1 1 

0 . . . . . .  0 1 1 " "  1 1 

(2.7) 
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Finally, the equalities 

T 
( - e L -  3)/2 + e L -  1)/2 + eo,+ 1)/2 - e~,, +3)/2) X(.+ ,)/2 

( n -  1 ) / 2  ( n -  1 ) / 2  (n + 1 ) / 2  

E , + E " e2k + E e~k-J 
k = 2  k = l  k = l  

__ " T = e l "  e T k  + e n 
= 

and Proposition 2.2 prove that det X(, + 1)/2 
Let P~ be the n × n matrix 

4=0. 

0 1 0 

0 

e 0 

0 ~ 

0 

1 

0 

203 

e ~ c ,  ( ,2.s)  

and consider the persymmetric Hessenberg algebra C~ = Her. The space C~, 
which is known as the algebra of e-circulant matrices [19], is spanned by the 
matrices (P~)i = p,~-I defined in (2.3). The matrices of C~ are simultane- 
ously diagonalizable, that is, for z ~ C n 

F - 1 D ~ - , 1 C ~ ( z ) D ~ e =  ~--n d i a g ( e ~ F D ~ z , i =  1 . . . . .  n ) ,  (2.9) 

where [ F L j  = (1/fn-n)o) (i-l×j-1), i , j  = 1 . . . . .  n,  o) = e x p ( - i 2 " n ' / n ) ,  i = 

f -Z-f ,  and D,~ = diag( tx i -  1, i = 1 . . . . .  n) ,  /x = ' ~ .  The matrix F is known 
as the Fourier matrix, and the linear transform Fz, z ~ C", as the discrete 
Fourier transform (DFT) of z. It is known that if n is a highly composite 
integer, then the DFT of z can be efficiently computed with O ( n  log n) 
arithmetic operations (FFT) [32, 15]. 

The spaces C 1 (6 = 1), C_ 1 (e  = -1) ,  and C O (e  = 0) are known as the 
algebras of circulant, skew-circulant, and upper triangular Toeplitz matrices, 
respectively. For the sake of simplicity we set C = C l, P = P1, Pi = C ( e i )  = 
p i -1 ,  and Z = P0 r. 



204 CARMINE DI FIORE AND PAOLO ZELLINI 

Let  T~,~ be the n x n matrix 

T~,~ 

E 

1 

= 0 

0 

0 °°° 0 

1 

0 

..  0 1 

0 1 

and consider the symmetric Hessenberg algebra %, ,  = H L .  The space z~, 
is spanned by the matrices (T~, ¢)i defined in (2.3). The  matrices of  z~, ~ are 
obviously simultaneously diagonalizable. Moreover, if e, q~ E {1 , -1} ,  ~-~,~ 
can be reduced to diagonal form by means of  fast discrete tr igonometric 
transforms (DTI ' )  [18, 36]. 

Consider, in particular, the space r0, 0 = r.  It is easily verified that a 
matrix A ~ ~- if and only if its entries ai j  satisfy the condition (2.6) where 
%, i = a ,  + 1, i = ai, o = ai, ,, + J = O, i = 1 . . . . .  n .  The  condition (2.6) can be 
used to investigate the structure of T i = (T0,0) i, which is nothing but  the 
matrix r ( e  i) of  r whose first row is e/r. Moreover,  for z ~ C", 

S ~ ' ( z ) S =  2 diag sin n + l  e ~ ' S z ,  i = l  . . . .  , n  (2.11) 

where [S],j = ~ / 2 / ( n  + 1) sin[/ jyr/(n + 1)1, i , j  = 1 . . . . .  n ( S  1 = S = 

s T ) .  The  linear transform Sz, z ~ C n, is known as the discrete sine transform 
of  z. It can be efficiently computed  in O ( n  log n) arithmetic operations if 
n + 1 is a highly composite integer [32]. 

For  the sake of simplicity set ~'~, 1 = T + + ,  T 1, 1 = 7 , T 1, 1 = T + ,  

a n d  T I , _ I  = T + _ .  

The algebras ~- and C~ are often used with similar techniques in many 
problems in numerical linear algebra. See for example [8-12, 39] and the 
references in [12]. Also, the matrices of  the algebras C~ and ~'~, ~ have been 
involved in several known decomposition formulas [7, 13, 14, 16-18,  21-26,  
30, 31]. The  most signifieant decomposition formulas of  this paper  exploit 
these same algebras. 

The  following notation will be used in the next sections. Set I k = 
( t ~ i j ) i , j - 1  . . . . .  k and Jk = ( ~ i , k + l - j ) i , j  1 . . . . .  k" Let I j  i, 1 ~ i , j  ~ n ,  denote  the 
(Ij - il + 1) × n (0, 1) matrix which maps a vector z = [z I "" z , ]  r ~ C n 

to the vector I j z  = [z i ..- z j ]  r ~ C pj-~l+l ( I  = I n = I t ,  J = J n  = I ? ) .  For 
the sake of  simplici~ we will often use the symbols it and J instead of  I k and 
Jk ,  a n d ~ f ° r z E  C even i f k  ~Sn. 
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In this section new matrix displacement  decomposi t ion tbrmulas are 
introduced. These  formulas involve factors which are block matrices (with 
blocks belonging to Hessenberg  algebras) and, in particular, b l o c k - d i a ~ o n a l  

matrices. Under  some restrictions the dimensions of  the blocks will be 
arb i t ra l ' ,  so to r e g a i n - - f o r  a suitable choice of  these d i m e n s i o n s - - s o m e  
known formulas considered in [21, 24]. In the most significant case, t l ,  ~ 
blocks will have the same dimension n / 2  ( n  even). 

If  U , V  ~ M,,(C), then it is known that E~ I [ U V - V U ] k ~  = 0. As a 
direct consequence of  this faet and of Proposition 2.](ii), we obtain the 
following 

LEMMA 3.1. A s s u m e  t h a t  f o r  an  n × n m a t r i x  A t h e r e  ex i s t  2 ~  vectors '  

x,,, = [ x l  • .. x,, i , y,,, = [ y ] " )  . . .  y},,,~]r m = 1 . . . . .  a ,  s u c h  t h a t  
X T a 1" T 0 T.  (Sx(A)  = E,,'~=I ,,,y,,, [X in (2.1)]. T h e n  E ..... 1 x , ,Hx(y , , )  = 

In the theorems below, A is always a generic n X n matrix of  M,(C) .  
Let  X be a symmetr ic  tridiagonal matrix of  order  n: 

X = 

t 
a I b I 0 

bl a2 be 

0 b 2 

0 -.. 0 b,, 1 

""  0 

0 

b n  1 

at1 

b~ # 0 Vi. (3.1)  

Denote  by X '  and X" the uppe r  left (i - 1) × (i - 1) submatrix of  X 
and the lower right (u - i) × (n - i) submatrix of" X, respectively. 

THEOREM 311. L e t  X i ( X  i = H x ( e i ) )  b e  i n v e r c i b l e  in M,,(C). T h e n  t h e  

e q u a l i t y  ~ x (  A )  = Z ~ 1" , ,=1 xmY,;, i m p l i e s  

m = 1 

(3.2) 

= - u (xc'xm)x, ty ) + (3.3) 
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where, f o r  z ~ C ~, 

= 

i 

0 

b,-_'lJHjx,j( I~- ' z )  J 0 

0 .-. 0 ... 0 

o 

0 

(3.4) 

T T Proof. Let  Qj = e j+ le  j + e j e j +  1 ( 0 0  = Q,  = 0). Then,  taking into 
account  Proposit ion 2.1 and L e m m a  3.1, 

= ~ ~ b , _ l Q , _ l + b , Q , ( X i ( X m ) ) H x ( X i - l y m )  
m = l  

= ~ (Xme~--eixVm)Hx(X~-Xy,.) 
m =  l 

= XmYm --e, X mHX rm X:' 
m = I  m = l  

= ~ Xmy, T = ~ x ( A ) .  
7n = l 

Thus A - -  Earn= 1 Xi(xm)Hx(X[- lym)  ~ Ker ~ x  = Hx" A s  eTxi(Xm ) ---- 0 T, 

m = 1 . . . .  , a ,  we have (3.2). Exploiting (3.2) and the equality ~ x ( A T )  = 
- ~ x ( A )  T, we have also (3.3). • 

As X 1 and X n are invertible in Mn(C) (see Proposition 2.3), the formulas 
(3.2) and (3.3) hold for i = 1 and i =- n, and we retrieve a result of  [21]. I f  X 
is also persymmetr ic ,  then the matrices X, /2  and Xn/2+ 1 = JXn/2 (n even) 
are nonsingular, and therefore  (3.2) and (3.3) also hold for i = n / 2  and 
i = n / 2  + 1. On the contrary, they do not hold for i = (n + 1 ) / 2  (n odd), 
since det  X(,+I)/2 = 0. However ,  (3.2) and (3.3) always hold for i = (n  + 
1 ) / 2  (n  odd) when  X = T 2 + e~e  (. In fact, in this case, det X(n+l)/2 ~e O. 
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(See Proposit ion 2.4 and related remarks.)  Finally, notice that  Proposition 
2.1(0 allows us to take the matrix X~ -1 out of  the arguments  in (3.2) and 
(3.3). 

Let  X be a symmetr ic  and persymmet r ic  tridiagonal matrix of  order  n, 

X = 

a 1 b 1 0 

bl a2 b,2 

0 b 2 

"-- 0 

" ' "  0 

0 

a2 bl 

b 1 a 1 

b j .  0 Vj, (3.5) 

and fix a n u m b e r  i such that 

n 

f o r n e v e n  1 ~<i~<72 + 1; 

n + l  
for n odd 1 ~< i ~< - -  

2 

(3.6) 

Denote  by X '  the lower right (i - 1) × (i - 1) submatrix of  X, and by X" 
the (n - 2 i )  x (n - 2 i )  submatrix of  X obtained by deleting its first i rows 
and columns and its last i rows and columns. (Observe that there are choices 
of  i for which ei ther  X '  or X" disappears.) 

THEOREM 3.2. Let i satisfy (3.6), and let X, X', and X" be defined as 
above. Let X~ (X i = Hx(ei)) be invertible in M,(C) .  Then the equality 
(Sx(A) = E= r .... 1 x,,,y,,, implies 

A + j A j =  L X , ( x . , ) H x ( X ; ' Y , , , ) + H x ( X ( ' ( A  +JAJ)re , )  (3.7) 

= -- L Hx(X~lx,,~)Xi(Y,,,) + H x ( X i ] (  A + J A J ) e , ) ,  (3.8)  
i"tl  = i 
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where,  f o r  z ~ C",  

x , ( ~ )  = 

i n + l - i  

0 0 

bi-_~JHx,(I{-~z)J " 0 " b ''U,_,j x'k¢I"-'+2,, z)X 

0 ... 0 ... 0 ... 
0 " b [ I H  [ I i + l z  ~ " 0 X" \  n - i  1 

0 "'" 0 "'" 0 "'" 

b ~ l l H x , (  I " - i + 2 z ) j  " 0 " bi~'  , H x ,  ( I i ' z )  

0 0 

(3.9) 

Proof. Let  Q~ = e~+le~ r + e~er+l  (Q0 = 0). F o r  every choice of  i 
satisfying (3.6) X can be  rewri t ten as 

X = 

0 0 

J X ' J  : 0 : 0 

0 ... 0 ... 0 ... 
0 X" 0 

0 ... 0 ... 0 ... 
0 0 : X '  

0 0 

0 

+ K ,  

0 

where  K is def ined  as follows: 

(1) n e v e n a n d l  <<.i < < . n / 2 -  l o r  n odd  a n d l  <~i < ~ ( n -  1 ) /2  

K = b~_l(Q,_  1 + J O i - l J )  + ai(e~ er  + J e i e ~ J )  + b~(Q, + j Q j ) ;  

(2) n even and i = n / 2  

K =  b n / e - l ( Q , , / 2 1  + JQ,~/z 1J) 
T 

+ anl2(enlee~£/e + J % 1 2 e n l . 2 J )  + b, , izOn/2;  

(3) n odd  and i = (n + 1 ) / 2  

T K = b ( . _ l ) / z ( Q ( . _ l ) / z  + JQo, 1)~z J )  + ao,+l)/2eo,+l)/2e( .+l) /2;  

(4) n even a n d i  = n / 2 +  1 =-* K = b n / 2 Q , , / 2 .  
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By considering cases (1), (2), (3), and (4) one at a time, we realize that the 
identities 

fSx(X,(X,n))  = CK(X,(X,,)) = x,,,e~ -- e , x  T,,, + J(x, , ,e~ - e~xT,,)J 

hold for all i satisfying (3.6). Then,  by using the assumption det X~ ~ 0, 
Proposition 2.1, and L e m m a  3.1, we have 

~ X (  L X i ( x m ) H x ( X Z l y m ) )  ~ k x ( x ; ' y , , , )  

L x,,~y,,~ +J  L xmy,,~,J 
m = 1 m = 1 

= ( S x (  A + J A J ) .  

Thus A + JAJ - E'~,,,= 1 X,(xm)Hx(X/tY.,) Ker(S  x = H  x.As 

e~i L Xi(x,,,)Hx(XT-'Y,,,) =Or 
m = l  

for all i satisfying (3.6), including the case i = n/2  + 1, we have (3.7). 
Exploiting (3.7) and the equality ~ x ( A T )  = -(S x(A)r, we have also (3.8). 

The  formulas (3.7) and (3.8) obviously hold for i = 1. In this case we 
retrieve a result of  [21]. Moreover  by Proposition 2.4 they hold for i = n/2  
and i = n/2  + 1 (n even), and they do not hold for i = (n + 1 ) / 2  (n odd). 
As in T h e o r e m  3.1, one can take the matrix X~ 1 out of  the arguments  in the 
decomposi t ion formulas (3.7) and (3.8). Finally observe that  if X ' =  

Ji 1X'Ji l '  then 

x;(z) = i# 

b~',-x ((,t ' + ;: , -)0 
0 --- 

0 
0 . . .  

o 

0 0 
0 i 0 

0 "" 0 "" 
! b71tfx ( nU+!z) ! 0 
0 "'" 0 "" 
! 0 ! t),G.x.((;~ -~ r'  ,+~)..) 
0 0 

0 
I# 

0 
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where 

I# 

0 0 
1 1 

Vl ~ Ii_ 1 0 V~ Ii-1 

0 . . .  0 . . .  0 . . .  

0 In_2i 0 

0 "'" 0 "'" 0 "'" 
1 --1 

I /2  I i -1  0 V~ I i -  I 

0 0 

(3.1o) 

Now we rewrite the Theorems 3.1 and 3.2 for X = To, 0 = T 2 (2.10). 
Some of the advantages of this choice are the following: 

(1) It is easy to check the nonsingularity of T i, and if n is even, the Ti's 
are mostly invertible. Moreover, the matrix by vector product T~-lz can be 
calculated in some cases with only O ( n )  additive operations. 

(2) The corresponding decomposition formulas are always in terms of the 
same algebra r.  

(3) The consequent formulas for the inverse of a Toeplitz or a Toeplitz 
plus Hankel matrix (see the next section) are computationally efficient 
because of the low computational cost of the product of a r matrix by a 
vector [see (2.11)]. 

COROLLARY 3.1. 

A = 

m = l  

I f  det T i 4 : 0  and  ~r~(A) = E ~ T ,,=1Xmy&, then  

r ~ , ( X m ) r ( r , - l y m )  + r ( T , - 1 A T e , )  (3.11) 
m=l 

~-(Ti-lxm)~-~ (ym) + " c ( T i - l A e i ) ,  (3.12) 

where ,  f o r  z ~ C" ,  

, ( i i- 'z)  
. , .  

0 

0 

0 
0 ~"" 

T ( I ~ +  1Z) 

0 

(3.13) 
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COROLLARY 3.2. Let i satisfy (3.6), and let T~ be invertible in M , ( C ) .  
Then the equality ~T2(A) = E,~= t Xmy T implies 

A + JA] = ~ f ~ ( X m ) 7 ( T Z l y m )  + "r(T~-I(A + J A j ) T e , )  (3 .14)  
m = l  

= - ~ z(Ti-lx,,)~'~(ym) + T(Ti-I(A + JAJ)e,) (3.15) 
7 n ~  ] 

where, f o r  z ~ C", 

~(~) = 

0 0 
~(~i-1~) o ~(~:,÷~z) 

0 .-- 0 .-. 0 .-. 
0 T( " '+1 ' l ._,z)  0 

0 .-- 0 .-. 0 ... 

0 0 

(3.16) 

Moreover observe that ~'~(z) = I#T~\ (z) I#, where I# is defined in (3.10), and 

~ k ( ~ )  = 

0 0 
~( ( ~¢-' ÷ , :_ ,~: )z )  . o o 

0 ... 0 ... 0 ... 0 
• i + 1  • o , ( i o _ , z )  o 

0 ... 0 ... 0 -" 0 
• _ _  ) )  

o o 

(3 .17)  

Notice  that  if  n + i is a highly composi te  integer,  it would  be  desirable  to 
have a representa t ion  of  A in terms of  size n and size (n  - 1 ) / 2  r matrices.  
Unfortunately,  the  choice i = (n  + 1 ) / 2  in Corollar ies  3.1 and 3.2, which 
would  yield such formulas,  is not  possible,  because  de t  T(n + 1 ) / 2  = 0. 

In the  next t heo rem we wish to state two decomposi t ion  formulas 
involving e-circulant  matrices.  In  part icular ,  i f  n is even, the  sizes of  the  
e-circulant  matr ices  involved can be  n and n / 2 .  
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Let p and q be two arbitrary vectors of order i and n - i, respectively, 
and let ~, 77, and 8 be arbitrary complex numbers. Set K = eie~+ 1 + 
~en ~T -- ~ei eT -- ~eneT+l . Then 

~e~((C¢(p) 0 0 C,(q) ) ) = ~ K ( ( C ~ ( P )  
0 0 C,(q) ))  

__~ ~ ] 1 

(3.18) 

For 6 = ~7, (3.18) becomes 

-r /~ (e~+l - sCe~ r) + ( e , -  7]en) (~:pT [ _qT). 

Moreover, for an arbitrary vector r of order n, 

C~(p) 0 Ccn(r) = ~p~, 
0 C,(q) 0 C,(q) 

) Ce, (r) 

+ ( e , -  r/en) (~pT I -qT")Ct:'7(r)" 

(3.19) 

Assume ~e (A) = x y  T, where x and y are two vectors of order n, and 
choose p, q, ~ d  r such that ~ = I~Xx, -~Tq = I~ +ix, and rT[(P¢n),+l- 
~I] = yT. If ~7 :~ 0 and s c is not an eigenvalue of (Pen)i+ 1, then this choice is 
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possible and (3.19) becomes  

_ _  7" p 7" 1 xT(p/~.o)i+ljC~([( I~)i+ xYr + (% - rlen) rl 1 ly) 
1 T r T 1 --I ., 

= xy r + ( e , -  n~.)-x~C~,(y)~(ee,):+~l(e~,):.,- e, l j = x y ' .  

The  last equal i ty  follows from L e m m a  3.1. 
Now we can state the  following 

THEOREM 3.3. Let ~, rl be complex numbers and i ~ {0 . . . . .  n - 1}. 
Assunw ~ p~(A) = E ~ r m=l Xmym" I f  det[(P~n)i+~ - sCI] 4= 0 and r I 4: O, then 

A =  ( .,=}7~, 4)i(x,,,)C,n(y,,,) + C,~(Ar(ei+l - ~ T e , ) ) ) [ ( P s ~ r l ) i +  1 - -  ~ / . ] - I  

(3.20) 

= [ ( r , ~ ) i + l  - -  ~ I ]  - 1  

x (  - ,,,£= I Ce'7(im)J4'~ (y,,,)" r j+Ce,(jA(e,, _, - see,))) , (3.'21) 

where, f ) r  z ~ C", 

6 , ( , )  = 

c~(~;z) 0 
1 

0 - - % (  z,'~ ~z)  

Proof. Let  us prove (3.20). Firs t  observe that  the previous a rgument  can 
be ex tended  to the case where  C p ( A )  is the  sum of  more  than one dyad. 

That  is, under  the assumption g e e ( A )  = F~ ~ x r .... ~ mY,,,, the  matrix 

__  e 7" I 1 

m = 1 
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commutes  with Pen ( the above proof  does not include the case i = 0, which 
is however  easily verified). Thus it is an e lement  of  Cen, say Cen(z). As 

T ei+l)Y~m= 1 d&(xm)Cen([(P¢n)[+l ~ I ] - l y  m) = O r (see Proposition 
2.1 and L e m m a  3.1), z is necessarily the vector  ((Pe~)T+ 1 - ~ I ) - l A r ( e ~ +  1 - 
~el ) .  By point  (i) o f  Proposit ion 2.1, we have the thesis. The  p roof  of  (3.21) is 
left to the reader.  • 

In the case i = 0, if  ~7 g: 0 and ~ ¢ 1, T h e o r e m  3.3 yields two formulas 
where  all the e-circulant matrices involved are n x n matrices. This type of  
formula is studied in [24] and retr ieved in [21] as a consequence  of  more  
general  decomposit ions.  In the case i = n / 2  ( n  even), if ~ r / ( r / -  ~)  4= 0, 
then the formulas (3.20) and (3.21) hold with [ ( P e n ) n / 2 + 1 -  ~/.]-1 = 
[ 1 / ~ ( ' q -  ~)][(Pen)n/2+l + ~I]. In other  words, there  exist displacement  
decomposi t ion formulas where  only e-circulant matrices of  order  n and n / 2  
are used. 

Now we rewrite T h e o r e m  3.3 for ~ = - 1  and 77 = 1 (analogously we 
could rewrite it for ~ = 1 and "q = - 1 ) .  In this case we can translate the 
hypothesis of  T h e o r e m  3.3 into a set of  explicit values of  i. In fact, the matrix 
( P - 1 ) i + l  + I, i ~ {0 . . . . .  n - 1}, is singular if and only if - 1  is an eigen- 
value of  ( P _ l ) i +  1 = pi_ 1" As the eigenvalues of  P_ 1 are 

2k+1 ) 
exp i - - l r  , k = 0  . . . . .  n - l ,  

n 

this happens  if and only if there  exist an integer s and k ~ {0 . . . . .  n - 1} 
such that i = n ( 2 s  + 1 ) / ( 2 k  + 1). 

COROLLARY 3.3. Let  i ~ {0 . . . . .  n -  1 } \ { n ( 2 s  + 1 ) / ( 2 k  + 1 ) : k  = 
1, . n - l , s = 0 , 1 ,  } . I f ~ v  ( A ) = F ,  ~ r . . . . . .  _ m = 1 xmY,;,, then  

A = ¢ , ( , , . ) c  ,(r,,,) + c , (AT(e,+,  + e , ) ) ) [ ( P  ,) ,+,  + i ]  -1 

(3.22) 

: [ (e  , ) ,+ ,  + I ] - '  

X - C _ , ( X m ) J ~ , ( y m )  j + C_ l ( JA (e , , _  , + e . ) )  , (3.23) 
m = ] 
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where ,  f o r  z ~ C ~, 

4,i(z) = (C_~(I~z) 0 ) 
0 -c(t?+ ~z) " (3.24) 

As regards the Corollary 3.3 it is interesting to notice that if n is a power 
of 2 there is no restriction on the choice of i. In other words, the dimensions 
of the submatrices in the block matrices of (3.22) and (3.23) are completely 
arbitrary. However notice that the decompositions (3.20), (3.21) in Theorem 
3.3 hold for any  value of n and i if we let ~, 77 assume, indifferently, the 
values ~ = 1, 77 = - 1  or ~ = - 1 ,  r / =  1. In the next section we will use 
Corollary 3.3 to find a well-known formula and to state a new, convenient 
formula for the inverse of a Toeplitz matrix (Theorem 4.1). 

Observe that the dimensions of the matrices involved in the decomposi- 
tion formulas of Theorems 3.1, 3.2, and 3.3 satisfy, respectively, the following 
equations (x, y, n ~ ~l): 

x + y  + l = n ,  (3.25) 

2 x  + y + 2 = n,  (3.26) 

x + y = n. (3.27) 

In [34] it is shown that if x, y, n are chosen in the set of integers of the form 
p~,p~2 ... pt k, (where the p,'s are t fixed prime numbers) and are pairwise 
relatively prime, then the equation (3.27) has a finite (depending on 
max 1 <~ i ~ t Pi ) number of solutions. 

In the cases{t = 3 ;  Pl = 2 ,  P2 = 3, p3 = 5 } a n d { t  = 4 ; p l  = 2 ,  P2 = 3 ,  
P3 = 5, P4 = 7}, these solutions are listed in [3]. In [20] there is a method to 
derive the solutions (in the sense described above) of (3.27) in every case. 

We recall that efficient algorithms for fast Fourier transforms were 
recently developed for dimensions that are products of powers of small prime 
integers [1, 2, 37, 38, 15]. Then the equations (3.25)-(3.27) can be particu- 
larly interesting for the choice of the block dimensions in the previous 
theorems [especially (3.27) for Theorem 3.3]. 

4. APPLICATIONS: NUMERICAL SOLUTION 
OF TOEPLITZ SYSTEMS 

Let T = (ti_ j) and H = (h i+ j_z ) ,  i , j  = 1 , . . . ,  n, denote, respectively, a 
Toeplitz and a Hankel matrix of dimension n x n with complex elements, 
and assume that the Toeplitz plus Hankel matrix T + H is not singular. 
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Notice that the direct triangular factorization of (T + H )  -1 may be 
considered as more fundamental than the problem of inverting T + H. In 
fact, the inverse problem can be obtained as the solution of a special 
triangular factorization problem. Some recent results in this direction-- 
leading to algorithms of complexity O(n2)--can be found in [33] and [29] 
(see also the references in each of those papers). 

Here we follow another approach where a distinction is emphasized 
between a preprocessing phase--where only operations on elements of 
T + H are performed--and a successive phase of complexity O(n log n) 
where the linear system (T + H)x = f, f ~ C ' ,  is solved. 

In this section we find some representations for the inverse of T + H as 
consequences of some decomposition formulas obtained in Section 3. Like 
analogous already known formulas [4, 5, 7, 13, 14, 16-18, 21, 24, 28], 
these representations can be exploited to calculate (T + H ) - i f  by means 
of a constant number of discrete transforms. As the rank of the matrix 
(Sv((T + H) -1) is 4 [26, p. 154], we can apply, for instance, the formulas 
( 3 J l )  and (3.14) of Corollaries 3.1 and 3.2 and obtain the following represen- 
tations of (T + H ) -  1 : 

(i) (T + H)  1 ___ [~r[(xl)7(vl ) + q.[(x2)~.(v. ) 

--T<(W1)T(X3) -- T~(Wn)T(X4) J- T(Vi)]T/-1; (4.1) 

(ii) If  T = T r and JH = HJ, then 

(T -I- H) -I = [Tx(X])T(Wl) -- Tx(Wl)T(XI) J- T(Wi)]T{ -I. (4.2) 

The vectors x/, i = 1, 2, 3, 4, are the solutions of particular Toeplitz plus 
Hankel systems with coefficients matrix T + H (see [21] and [18]). The 
vectors w k (v~), k --- 1 . . . . .  n, are the columns (rows) of (T + H)  -1. Obvi- 
ously statements (i) and (ii) hold if T i is not singular. For their proof proceed 
as in [21] and [18]. 

The formulas (4.1), (4.2) generalize the representations of (T + H)  -1 
(obtained for i = 1 or i = n) introduced in [21], where only size n and size 
n - 1 (or n - 2) ~" matrices were used. However, they have mainly a 
theoretical interest. In fact the expressions of (T + H)  -1 found in [18] and in 
[16], where one exploits the algebras ~ , ,  and the algebras C + JC and 
C_ 1 - t - j c  1, are more utilizable in the calculation of (T + H ) - l f ,  f ~ C n, 
because they require the computation of discrete transforms all having order 
n. 
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Now assume H = 0 ,  and set T - I  = S = ( s i j )  and s k = T l e k, k = 
I . . . . .  n. It  is well known and easily verified that ~he rank of  (S e ( T - ' )  is 2 
[26, p. 16]. Thus, by using Corollary 3.3, we could obtain two simple 
expressions for the inverse of  a general  nonsingular Toepli tz  matrix in terms 
of circulant and skew-circulant matrices. He re  we calculate one of  them 
in the particular case s u = [T-1111 4: 0, that is, we assume the (n - 1) × 
(n - 1) upper  left submatrix of  T to be  nonsingular. 

PROPOSITION 4.1. Let i ~ {0 . . . . .  n - 1} \ {n(2j + ] ) / ( 2 k  + I) :  k = 
1 . . . . .  n - 1, j = 0 , 1  . . . .  }, and assumes'~l = I T  i]ll 4:0. Then 

T-~ = 
2,s',, 0 C(I'i+'Sl) T ,~i+,,~I C ,(is,,) 

[ o -c(i;; ,sr,)  ,) 2( P~ 1 + I )  
I 

(4.3)  

Proof. From the equality 

(Szr (T - l )  = - -  - (JZ~, 
Sll 

(4.4)  

(see [21] or [18]), it follows that ~ e  ( T  1 ) =  (1 /S~ l ) [S , (p~ l~ l ) r  
( P  j s l ) ~ ] .  Then  apply the formula (3.22) of  Coro l l a~  3.3, taking into 
account Proposition 2.1(i) and the following identities: 

^ T C(z) P = C(7,) T, C__](z)P 1 - C - l ( Z )  , 

p(i) 0 )&i(z) + ( z i+  , + z , ) I  6~(e_,,) = 0 e("-') 

[z ~ C ", and P(_k 1) (p(k))  is the matrix P 1 ( P )  of  order  k]. 

Notice that (4.3) holds, in particular, for i = 0 and i = n / 2  (n even). In 
the next theorem we rewrite (4.3) in these two eases under  the fur ther  
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assumption that T is symmetric. For the sake of simplicity, if n is even 
1 = /rim+ 1 (n = 2m), we set a = Ires D b is l, e = [mSm+l , d ~- / n m + l S m + l ,  and 

}~ ~--- S i n + l ,  1. 

TH~OnEM 4.1. Assume T = T T and Sll --- [T-t]l l  4= 0. Then 

(i) one has 

1 
T-- ] .  ~ 

2Sll 
{C(sl)C l(sl) r + C ( s l ) r c _ l ( s l ) } ;  (4.5) 

(ii) I f  n is even (n = 2m), then 

1 :, 0) l T - 1 -  - AI C l(s l)  
2sn C(b)  r 

- (  C-l(b)0 - -C(a )0 )C- I ( s l )T+s l lC- I (Sm+I )} ( I - -pm-1 ) "  (4.6) 

The formula (4.5) is the well-known formula of Ammar and Gader [4]. If 
s 1 is known, this formula allows one to solve the linear system Tx = f, 
f ~ C n, with essentially eight order n DFTs. The same result is obtained in 
the real case in [18] with a similar formula involving the algebras rl. 1 and 
r_ 1,- 1. The formula (4.6) is a new formula for T -1. Notice that it requires, 
apparently, the extra calculation of Sin+ 1" However, we will observe that, if 
parallel procedures are possible, the use of the representation (4.6) in the 
calculation of T- i f may be more convenient than the use of (4.5). 

From now on n is always even (n = 2m). Moreover, for the sake of 
simplicity, in all the structured matrices the dimension index is omitted. In 
fact the dimension will be always manifest in the context. 

In the following theorem we state two other possible expressions for T-1 
in the case n even. We essentially exploit the fact that the m × m matrices 
S+ and S_ in the equality 

t' ( ) 0 S_ 
(4.7) 

are the inverses of two particular Toeplitz plus Hankel matrices (see the 
remark at the end of the theorem). 
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THEOREM 4.2. Assume T = T T, n even (n = 2m), and sll = [T-1]l~ 
O. Then 

'( )t, T _ I =  ~ (  ff _ _ j ) S +  0 1 

0 S_ 

where 

1 
S_+= - -  [C(b )  + J C ( a )  + A J ] [ C _ I ( b )  T + J C  l(a)] 

Sll 

+ c  d - - - b  (I ___J) -Y-J[C_l(d)T +]C ~(c)] (4.8) 
811 

O F  

1 [+ T~+ (a  + b)T (I . ,+ls ,  + Z b  +811el)  S+ ~ _ _  _ _ __ ++ 2 __ __ 
- S 1 1  - _ 

_ I 2 _ _  + - -  • T-z_+_ +( ,,,+1sl + Z[~ -T- s~,e,)'c+ (a + b)]  (4.9) 

Proof. Before proving the theorem we need to recall a result of [18]. 
Assume that for an m × m matrix A there exist 2 a  vectors xk, Yk ~ C' '  
such that (S T . . . . .  (A) = E~= l xkY~. Then 

2 A =  + ~ z~+_(xk)r_+_+(yk) +2r+_+(ATel). 
k=l 

(4.10) 

Let SUL, ScR, SoL and SDR be the upper left, upper right, lower left, and 
lower right m × m submatrices of S = T i respectively. Observe that 
SD L = ]Sun J = SuR,T SC, L = jSon J = S~:L ' and therefore 

(, ,)_-2 
-J 0 sc,~,- s~,RJ 
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From the equality (4.4), rewritten for T = T r with the new notation 

SDL SDR 0 Z T 0 Z T SDL SDR 

a ~' i ,~)] ,  

it follows that 

1 
= OmO  + 

SII  
(4.12) 

~ ( s ~ L )  = --C~T(S~L) ~ = - e e l ,  - - -  ;1 zb)bT - .(i,,~,+,~ , 
S l l  

(4.13) 

1 7" 
c z , ( s ~ . )  = ema~--  del' + - - [ b ( I ; ' + ' s ~ )  - - ( / , ]+ ,s~)bT] .  (4.14) 

SII  

e z ( S ~ . )  = --CzT(S~L) ~ = ± [ " ( Z T b ) "  -- (Zb)aT l 
Sl l  

(4.15) 

By adding the identities (4.12) and (4.13) and the identities (4.14) and (4.15) 
and then exploiting the equalities CSr2(Suc + SuR J) = Gr~(SvL)+_ 
~r~(sva)J, we have 

(ST~(SUL +- SVRJ) = e,,~(e +_ d) T - (e + d)er,, 

S@l{ ^ 2 2 -~ Z b ) ( a  -t- ~))T} (4.16) + ( .  + b ) ( ~ +  is, +_ z b )  T - (~,,,+ ,s~ 

Finally, as consequence of (4.16), we easily obtain 

1[ 
~r+ 1 I(SuL "F SvRJ) = - -  (a + b)(I ,~+ls 1 + z b  + sue1) r 

• ± S l l  

- ( I m 2 + l S l + Z b + s u e , ) ( a + b )  r ] .  (4.17) 
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The formula (4.9) follows from (4.10) and (4.17). Moreover, by exploiting the 
equalities (4.12) and (4.14), we have 

1 
(Se_l(Suc) = e,,,e r - de~" + - - [ b ( Z b )  r -  (I,,2+lsj-.S',le,,)ar], (4.18) 

S'll 

1 T 
+--[b(/2m+ls1-811el)  -(I.2+1S1--811em)bT], (4.19) 

811 

respectively. The formula (3.22) of Corollary 3.3 for i = 0 and the identities 
(4.18) and (4.19) imply 

2s~, .  = c ( a )  - c 10,)  

+---1 ( C ( b ) C  l ( b ) T s u ,  [ - AI] + [C(a) T+ AIIC ,(a)}, (4.20) 

2St~ R = - C  l (d  ) + C ( d )  

+---1 (C(b)[C ~(a)T -- AI] + [C(a) T + xllc_~(b)}. (4.el) 
811 

Finally, write the matrices 2(SEE + Su/J) and 2(Sue - St~J) to obtain (4.8). 

REMARK. If we denote by TeL, Tun, TDL, and TDR the upper left, upper 
fight, lower left, and lower right m × m submatrices of T respectively, then 

(i ' o 
J -J 0 TUL - TuR J 

By inverting this equality we obtain a new equality which, compared with 
(4.11), yields 

s ~  +_ s~RJ = ( T ~  + T ~ J )  -~ 
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For the sake of completeness observe that the vector Sm+ 1 and its 
subvectors e and d, used in the decompositions (4.6) and (4.8), can be easily 
expressed in terms of s 1, a and b, by the following identities: 

1 
(i) d + e = - - [ C ( a ) a  - C(b)b + A(b + a)]; 

811 
1 

(ii) d - e = - - [ C _ l ( a ) a  - C_ l(b)b + A(b - a)]; 
Sll 

(iii) d - f i e  -- - - ( b  - J P a )  + 3m+l,m+ I - -  ~ e l ;  

811 811 
1 

(iv) Sm+l  = [ C - I ( S I ) P m + I S I  + C-I(S1)TPm;1 ] or sin+ 1 = 
2sl l  

[ ± • 

SI1 

(i), (ii), (iii) are obtained by calculating the first column of 2 Str L, the first row 
of 2 SvL, and the first column of 2 SvR through the formulas (4.20), (4.20), 
and (4.21), respectively. (iv) is obtained by exploiting Proposition 2.1 to 
calculate r T- 1 em+ 1 T- 1 with expressed either by (4.5) or by (4.6) and by 
observing that Sin+ 1 = (eTm+ 1 T- 1)T. 

5. CONCLUDING REMARKS 

The displacement decompositions considered in this paper involve Hes- 
senberg algebras and block matrices whose blocks belong to Hessenberg 
algebras and have variable sizes. They turn out to be more useful (flexible) 
than those considered in [21]. In fact, in (3.2), (3.3), (3.7), (3.8), (3.20), (3.21), 
one can choose the dimensions of the blocks according to the particular 
problem features and in such a way that the orders of the discrete transforms 
involved are all highly composite integers (typically powers of 2). 

As special instances, new decompositions of the inverse T- 1 of a Toeplitz 
matrix are obtained [see (4.6), (4.8), and (4.9)]. These formulas, like the 
Ammar-Gader formula (4.5), can be used to solve linear systems Tx = f via 
the computation of T- I f by means of a constant number of discrete trans- 
forms (s 1 is assumed to be known). The Ammar-Gader formula (4.5) reaches 
the best known sequential time; in particular (4.5) allows one to compute 
T- 1 f with essentially eight order n DFTs. The formulas (4.6), (4.8) and (4.9) 
may be more efficient than (4.5), in particular in a parallel computation 
where different discrete transforms are performed simultaneously, either in 
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parallel or sequentially [one may conceive of a reduction of parallel time, with 
1 1 with (4.6), and by a factor .~ with (4.8) or (4.9)]. low redundancy, by a factor 

Moreover, if the preprocessing phase includes the computation of the 
discrete transforms of vectors not depending on f, the formulas (4.8) and 
(4.9) require an amount of computation of twelve order n /2  (six order n) 
discrete transforms plus O(n) arithmetic operations, the same amount re- 
quired by (4.5). The distinction of a preprocessing phase in the solution of the 
system Tx = f is significant when several linear systems with the same T 
have to be solved. 

Finally observe that if m (m = n/2)  is even, the twelve order m DFTs 
required by (4.8) can be reduced to eleven (ten of order m plus two of order 
m/2). In fact two of them are DFTs of vectors of the type ( I  + J )z  and 
( I  - ] )z ,  z ~ C m, possessing special symmetries. In [35] such symmetries are 
called QE and QO symmetries, respectively, and an order m DFT of a QE 
(QO) symmetric vector is shown to cost the same as an order m/2  DFT. 

The previous results are obtained by using the known splits of matrices of 
the type involved in (4.5), (4.6), (4.8), and (4.9) (see (2.9), [16], [18]), and by 
exploiting the above relations (i)-(iv) between s,,+ t and s 1. 
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