SOME RESULTS FOR GENERALIZED HARMONIC NUMBERS ${ }^{1}$

Cong-Jiao Feng

School of Mathematical Sciences, Dalian University of Technology, Dalian, China.

Feng-Zhen Zhao

School of Mathematical Sciences, Dalian University of Technology, Dalian, China.

Received: 7/8/07, Revised: 6/13/09, Accepted: 8/4/09, Published: 11/27/09

Abstract

In this paper, we discuss the properties of a class of generalized harmonic numbers $H(n, r)$. By means of the method of coefficients, we establish some identities involving $H(n, r)$. We obtain a pair of inversion formulas. Furthermore, we investigate certain sums related to $H(n, r)$, and give their asymptotic expansions. In particular, we obtain the asymptotic expansion of certain sums involving $H(n, r)$ and the inverse of binomial coefficients by Laplace's method.

1. Introduction

It is well-known that the harmonic numbers H_{n} are defined by

$$
H_{0}=0, \quad H_{n}=\sum_{k=1}^{n} \frac{1}{k}
$$

and the generating function of H_{n} is

$$
\sum_{n=1}^{\infty} H_{n} z^{n}=-\frac{\ln (1-z)}{1-z}
$$

The harmonic number H_{n} plays an important role in number theory and has been generalized by many authors (see[1], [2], [5], [7], [8], [11]). In this paper, we consider a class of generalized harmonic numbers $H(n, r)$. The definition of $H(n, r)[7]$ is

$$
H(n, r)=\sum_{1 \leq n_{0}+n_{1}+\cdots+n_{r} \leq n} \frac{1}{n_{0} n_{1} \cdots n_{r}}, \quad \text { for } n \geq 1, \quad r \geq 0
$$

It is clear that $H(n, 0)=H_{n}$. The generating function of $H(n, r)$ is (see [4])

$$
\begin{equation*}
\sum_{n=r+1}^{\infty} H(n, r) z^{n}=\frac{(-1)^{r+1} \ln ^{r+1}(1-z)}{1-z} \tag{1}
\end{equation*}
$$

[^0]From (1) we obtain

$$
\begin{align*}
\sum_{n=0}^{\infty} H(n+r+1, r) z^{n} & =\frac{(-1)^{r+1} \ln ^{r+1}(1-z)}{z^{r+1}(1-z)} \tag{2}\\
\sum_{n=r+1}^{\infty} \frac{H(n, r)}{n+1} z^{n+1} & =\frac{(-1)^{r} \ln ^{r+2}(1-z)}{r+2} \\
\sum_{n=0}^{\infty} \frac{H(n+r+1, r)}{n+r+2} z^{n} & =\frac{(-1)^{r} \ln ^{r+2}(1-z)}{(r+2) z^{r+2}}
\end{align*}
$$

There are many relations between $H(n, r)$ and H_{n}. For instance (see [4]),

$$
\begin{aligned}
\sum_{r=0}^{n} \frac{1}{(r+1)!} H(n, r) & =n \\
\sum_{r=0}^{n-1} \frac{(-1)^{r}}{(r+1)!} H(n, r) & =1 \\
\sum_{r=1}^{n} \frac{(-1)^{r+1}}{r!} H(n+1, r) & =H_{n}
\end{aligned}
$$

The numbers $H(n, r)$ can be computed by the formula (see [4])

$$
H(n, r)=\frac{(-1)^{r+1}}{n!}\left(\left.\frac{d^{n}}{d x^{n}} \frac{[\ln (1-x)]^{r+1}}{1-x}\right|_{x=0}\right)
$$

Some initial values of $H(n, r)(n \geq r+1)$ are given in Table 1.

$n \backslash r$	0	1	2	3	4	5
1	1					
2	$\frac{3}{2}$	1				
3	$\frac{11}{6}$	2	1			
4	$\frac{25}{12}$	$\frac{35}{12}$	$\frac{5}{2}$	1		
5	$\frac{137}{60}$	$\frac{15}{4}$	$\frac{17}{4}$	3	1	
6	$\frac{49}{20}$	$\frac{203}{45}$	$\frac{49}{8}$	$\frac{35}{6}$	$\frac{7}{2}$	1

Table 1: Initial Values of $H(n, r)$

In this paper, we investigate the properties of $H(n, r)$. The paper is organized as follows. In Section 2, we obtain some identities for $H(n, r)$ and Cauchy numbers of the first kind (associated Stirling numbers of the first kind) by means of the method of coefficients [10]. In Section 3, we obtain a pair of inversion formulas.In Section 4, we
give the asymptotic expansion of certain sums related to $H(n, r)$ and Cauchy numbers of the second kind (binomial coefficients) when r is fixed.

For convenience, we recall some definitions involved in the paper. Throughout, we denote the Cauchy numbers of the first kind and the second kind by a_{n} and b_{n}, respectively. Let $s(n, k), s_{2}(n, k)$, and $S(n, k)$ stand for Stirling numbers of the first kind, associated Stirling numbers of the first kind, and Stirling numbers of the second kind, respectively. Their definitions are respectively (see [3]):

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} a_{n} \frac{z^{n}}{n!}=\frac{z}{\ln (1+z)}, & \sum_{n=0}^{\infty} b_{n} \frac{z^{n}}{n!}=\frac{-z}{(1-z) \ln (1-z)} \\
\sum_{n=k}^{\infty} s(n, k) \frac{z^{n}}{n!}=\frac{\ln ^{k}(1+z)}{k!}, & \sum_{n=k}^{\infty} S(n, k) \frac{z^{n}}{n!}=\frac{\left(e^{z}-1\right)^{k}}{k!} \\
\sum_{n=k}^{\infty} s_{2}(n, k) \frac{z^{n}}{n!}=\frac{[\ln (1+z)-z]^{k}}{k!} &
\end{array}
$$

Throughout this paper, the binomial coefficients $\binom{n}{m}$ are defined by

$$
\binom{n}{m}= \begin{cases}\frac{n!}{m!(n-m)!}, & n \geq m \\ 0, & n<m\end{cases}
$$

where n and m are nonnegative integers.
Let $\left[z^{n}\right] f(z)$ denote the coefficient of z^{n} for the formal power series of $f(z)$. The [t^{n}] are called the "coefficient of" functionals [10]. If $f(t)$ and $g(t)$ are formal power series, the following relations hold [10]:

$$
\begin{align*}
& {\left[t^{n}\right](\alpha f(t)+\beta g(t))=\alpha\left[t^{n}\right] f(t)+\beta\left[t^{n}\right] g(t)} \tag{3}\\
& {\left[t^{n}\right] t f(t)=\left[t^{n-1}\right] f(t)} \tag{4}\\
& {\left[t^{n}\right] f(t) g(t)=\sum_{k=0}^{n}\left(\left[y^{k}\right] f(y)\right)\left[t^{n-k}\right] g(t)} \tag{5}
\end{align*}
$$

2. Some Identities Involving $H(n, r)$

In this section, we establish some identities involving $H(n, r)$ by using (3)-(5).
Cauchy numbers of the first kind a_{n} and Cauchy numbers of the second kind b_{n} play important roles in approximate integrals and difference-differential equations (see [9]). Some values of a_{n} and b_{n} are:

n	0	1	2	3	4	5	6	7	8	9
a_{n}	1	$\frac{1}{2}$	$-\frac{1}{6}$	$\frac{1}{4}$	$-\frac{19}{30}$	$\frac{9}{4}$	$-\frac{863}{84}$	$\frac{1375}{24}$	$-\frac{33953}{90}$	$\frac{57281}{20}$
b_{n}	1	$\frac{1}{2}$	$\frac{5}{6}$	$\frac{9}{4}$	$\frac{251}{30}$	$\frac{475}{12}$	$\frac{19087}{84}$	$\frac{36799}{24}$	$\frac{1070017}{90}$	$\frac{2082753}{20}$

In Section 4, we give the asymptotic expansion of the the sum involving $H(n, r)$ and b_{n}. In this section, we establish some identities related to $H(n, r)$ and a_{n}. In [9], there is an identity involving Cauchy numbers of the first kind a_{n} and harmonic numbers H_{n}, namely

$$
1+\sum_{n=1}^{\infty} \frac{(-1)^{n} a_{n} H_{n}}{n!n}=\frac{\pi^{2}}{6}
$$

From the generating functions of $H(n, r)$ and Cauchy numbers of the first kind a_{n}, we have

Theorem 1 Let $n \geq 1$ and $r \geq 1$. Then

$$
\begin{align*}
& \sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!}=H(n+r, r-1) \tag{6}\\
& \sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!(n-j+r+2)}=\frac{(r+1) H(n+r, r-1)}{(r+2)(n+r+1)} \tag{7}
\end{align*}
$$

Proof. From the definitions of a_{n} and $H(n, r)$, we have

$$
\begin{aligned}
\sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!} & =\sum_{j=0}^{n}\left(\left[z^{j}\right] \frac{-z}{\ln (1-z)}\right)\left[z^{n-j}\right]\left(\frac{(-1)^{r+1} \ln ^{r+1}(1-z)}{z^{r+1}(1-z)}\right) \\
& =\left[z^{n}\right] \frac{(-1)^{r} \ln ^{r}(1-z)}{z^{r}(1-z)} \\
& =H(n+r, r-1), \\
& \left.=\left[z^{n}\right] \frac{(-1)^{r+1} \ln r+1}{(r+2) z^{r+1}}\right) \\
\sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!(n-j+r+2)} & =\sum_{j=0}^{n}\left(\left[z^{j}\right] \frac{-z}{\ln (1-z)}\right)\left[z^{n-j}\right]\left(\frac{(-1)^{r} \ln ^{r+2}(1-z)}{(r+2) z^{r+2}}\right) \\
& =\frac{(r+1) H(n+r, r-1)}{(r+2)(n+r+1)}
\end{aligned}
$$

Identities (6)-(7) relate $H(n, r)$ and Cauchy numbers of the first kind.
It is well-known that Stirling numbers play an important role in combinatorial analysis, and associated Stirling numbers are significant in enumerative combinatorics
(see [3]). We know that associated Stirling numbers of the first kind $s_{2}(n, k)$ are related to the number of a set, and the value of $\left|s_{2}(n, k)\right|$ is the number of derangements of a set $N(|N|=n)$ with k orbits. By the generating functions of $H(n, r)$ and the Stirling numbers of the first kind $s(n, r)$, we immediately get

$$
\begin{equation*}
H(n, r)=\frac{(r+1)!}{n!}(-1)^{n+r+1} s(n+1, r+2) \tag{8}
\end{equation*}
$$

The associated Stirling numbers of the first kind $s_{2}(n, k)$ and harmonic numbers H_{n} satisfy [13]:
$\sum_{j=0}^{n} \frac{(-1)^{j} H_{j+1} s_{2}(n-j+k, k)}{(j+2)(n-j+k)!}=\frac{(-1)^{k}}{2} \sum_{j=0}^{k} \frac{(-1)^{j}(j+1)(j+2) s(n+j+2, j+2)}{(k-j)!(n+j+2)!}$.

For $s_{2}(n, k)$ and $H(n, r)$, we have the following result.
Theorem 2 Let $k \geq 1, n \geq 1$ and $r \geq 0$. Then

$$
\begin{aligned}
& \sum_{j=0}^{n} \frac{(-1)^{j} s_{2}(j+k, k) H(n-j+r+1, r)}{(j+k)!} \\
& =\frac{(-1)^{k}}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} H(n+j+r+1, j+r)
\end{aligned}
$$

Proof. From the generating functions of $s_{2}(n, k)$ and $H(n, r)$, we get

$$
\begin{aligned}
\sum_{j=0}^{n} & \frac{(-1)^{j} s_{2}(j+k, k) H(n-j+r+1, r)}{(j+k)!} \\
& =\sum_{j=0}^{n}\left(\left[z^{j}\right] \frac{[\ln (1-z)+z]^{k}}{(-1)^{k} k!z^{k}}\right)\left[z^{n-j}\right] \frac{(-1)^{r+1} \ln ^{r+1}(1-z)}{z^{r+1}(1-z)} \\
& =\left[z^{n}\right] \sum_{j=0}^{k}\binom{k}{j} \frac{(-1)^{r+1} \ln ^{j+r+1}(1-z)}{(-1)^{k} k!z^{j+r+1}(1-z)} \\
& =\frac{(-1)^{k}}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j}\left[z^{n}\right] \frac{(-1)^{j+r+1} \ln ^{j+r+1}(1-z)}{z^{j+r+1}(1-z)} \\
& =\frac{(-1)^{k}}{k!} \sum_{j=0}^{k}(-1)^{j}\binom{k}{j} H(n+j+r+1, j+r) .
\end{aligned}
$$

3. Inversion Formulas

For sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$, it is well-known that

$$
f_{n}=\sum_{k=0}^{n} S(n, k) g_{k} \Longleftrightarrow g_{n}=\sum_{k=0}^{n} s(n, k) f_{k}
$$

Now we prove that
Theorem 3 Let $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ be two sequences. Then

$$
\begin{align*}
f_{n} & =\sum_{k=0}^{n} H(n+1, k) g_{k} \tag{9}\\
\Longleftrightarrow g_{n} & =\frac{1}{(n+1)!} \sum_{k=0}^{n}(-1)^{n-k}(k+1)!S(n+2, k+2) f_{k}
\end{align*}
$$

Proof. Let

$$
g(z)=\sum_{m=0}^{\infty} g_{m} z^{m}, \quad f(z)=\sum_{m=0}^{\infty} f_{m} z^{m}
$$

(i) When

$$
f_{n}=\sum_{k=0}^{n} H(n+1, k) g_{k}
$$

we have

$$
\begin{aligned}
f(z) & =\sum_{k=0}^{\infty} g_{k} z^{k} \sum_{m=k}^{\infty} H(m+1, k) z^{m-k} \\
& =\sum_{k=0}^{\infty} g_{k} \frac{(-1)^{k+1} \ln ^{k+1}(1-z)}{z(1-z)} \\
& =\frac{-\ln (1-z)}{z(1-z)} g(-\ln (1-z))
\end{aligned}
$$

Let $u=\ln (1-z)$. Then $z=1-e^{u}$ and

$$
\begin{aligned}
g(-u) & =-\frac{\left(1-e^{u}\right) e^{u}}{u} f\left(1-e^{u}\right) \\
& =-\frac{1}{u} \sum_{m=0}^{\infty}(-1)^{m+1} f_{m}\left(e^{u}-1\right)^{m+2}-\frac{1}{u} \sum_{m=0}^{\infty}(-1)^{m+1} f_{m}\left(e^{u}-1\right)^{m+1}
\end{aligned}
$$

It follows from the definition of $S(n, k)$ that

$$
\begin{aligned}
g(-u)=\sum_{m=0}^{\infty} & (-1)^{m}(m+2)!f_{m} \sum_{p=0}^{\infty} S(p+m+2, m+2) \frac{u^{p+m+1}}{(p+m+2)!} \\
& +\sum_{m=0}^{\infty}(-1)^{m}(m+1)!f_{m} \sum_{p=0}^{\infty} S(p+m+1, m+1) \frac{u^{p+m}}{(p+m+1)!}
\end{aligned}
$$

Then

$$
\begin{aligned}
{\left[u^{n}\right] g(-u)=} & (-1)^{n} g_{n} \\
= & \sum_{j=0}^{n} \frac{S(n+1, j+1)(-1)^{j+1}(j+1)!f_{j}}{(n+1)!} \\
& \quad+\sum_{j=0}^{n-1} \frac{S(n+1, j+2)(-1)^{j+1}(j+2)!f_{j}}{(n+1)!}
\end{aligned}
$$

On the other hand,

$$
\begin{equation*}
S(n+1, j+1)+(j+2) S(n+1, j+2)=S(n+2, j+2), \quad S(n, n)=1 \tag{10}
\end{equation*}
$$

Then we have

$$
g_{n}=\frac{1}{(n+1)!} \sum_{k=0}^{n}(-1)^{n-k}(k+1)!S(n+2, k+2) f_{k}
$$

(ii) When

$$
g_{n}=\frac{1}{(n+1)!} \sum_{k=0}^{n}(-1)^{n-k}(k+1)!S(n+2, k+2) f_{k}
$$

we have

$$
\begin{aligned}
g(z) & =\sum_{k=0}^{\infty} g_{k} z^{k} \\
& =\sum_{j=0}^{\infty}(j+1)!f_{j} \sum_{k=j}^{\infty} \frac{(-1)^{k-j}}{(k+1)!} S(k+2, j+2) z^{k} .
\end{aligned}
$$

It follows from (10) that

$$
\begin{aligned}
g(z)= & \sum_{j=0}^{\infty}(j+1)!f_{j} \sum_{k=j}^{\infty} \frac{(-1)^{k-j}}{(k+1)!}[S(k+1, j+1)+(j+2) S(k+1, j+2)] z^{k} \\
= & \sum_{j=0}^{\infty}(j+1)!f_{j} \sum_{k=j+1}^{\infty} \frac{(-1)^{k-j-1}}{k!} S(k, j+1) z^{k+1} \\
& \quad+\sum_{j=0}^{\infty}(j+1)!f_{j}(j+2) \sum_{k=j+1}^{\infty} \frac{(-1)^{k-j}}{(k+1)!} S(k+1, j+2) z^{k} .
\end{aligned}
$$

Then

$$
\begin{aligned}
g(z) & =z \sum_{j=0}^{\infty}(-1)^{j+1} f_{j}\left(e^{-z}-1\right)^{j+1}+z \sum_{j=0}^{\infty}(-1)^{j+1} f_{j}\left(e^{-z}-1\right)^{j+2} \\
& =-z\left(e^{-z}-1\right) e^{-z} f\left(1-e^{-z}\right)
\end{aligned}
$$

Let $v=1-e^{-z}$. Then $z=-\ln (1-v)$,

$$
\begin{aligned}
f(v) & =-\frac{\ln (1-v)}{v(1-v)} g(-\ln (1-v)) \\
& =\sum_{m=0}^{\infty} g_{m} \sum_{j=m}^{\infty} H(j+1, m) v^{j} \\
{\left[v^{n}\right] f(v) } & =f_{n} \\
& =\sum_{k=0}^{n} H(n+1, k) g_{k}
\end{aligned}
$$

Hence (9) holds.

4. Asymptotic Expansion of Certain Sums Involving $H(n, r)$

Sometimes it is difficult to compute the accurate values of sums involving $H(n, r)$. However, we give the asymptotic values of certain sums related to $H(n, r)$. In this section, we give asymptotic expansions of certain sums involving $H(n, r)$ and Cauchy numbers of the second kind (binomial coefficients). At first, we recall a lemma.
Lemma ([6]) Let α be a real number and

$$
L(z)=\ln \frac{1}{1-z}
$$

When $n \rightarrow \infty$,

$$
\begin{align*}
& {\left[z^{n}\right](1-z)^{\alpha} L^{k}(z) \sim \frac{1}{\Gamma(-\alpha)} n^{-\alpha-1} \ln ^{k} n, \quad\left(\alpha \notin \mathbb{Z}_{\geq 0}\right)} \tag{11}\\
& {\left[z^{n}\right](1-z)^{m} L^{k}(z) \sim(-1)^{m} k m!n^{-m-1} \ln ^{k-1} n, \quad\left(m \in \mathbb{Z}_{\geq 0}, \quad k \in \mathbb{Z}_{\geq 1}\right)} \tag{12}
\end{align*}
$$

Now we give the asymptotic expansions of certain sums involving $H(n, r)$ using above lemma.

Theorem 4 Assume that r is fixed with $r \geq 1$. For $H(n, r)$ and Cauchy numbers of the second kind b_{n}, we have

$$
\begin{equation*}
\sum_{j=0}^{n} \frac{b_{j}}{j!} H(n-j+r+1, r) \sim(n+r) \ln ^{r}(n+r), \quad(n \rightarrow \infty) \tag{13}
\end{equation*}
$$

Proof. We can verify that

$$
\begin{aligned}
& \left.\sum_{j=0}^{n} \frac{b_{j} H(n-j+}{}+r+1, r\right) \\
& j! \\
& \quad=\sum_{j=0}^{n}\left(\left[z^{j}\right] \frac{-z}{(1-z) \ln (1-z)}\right)\left[z^{n-j}\right] \frac{(-1)^{r+1} \ln ^{r+1}(1-z)}{z^{r+1}(1-z)} \\
& \quad=\left[z^{n}\right] \frac{(-1)^{r} \ln ^{r}(1-z)}{z^{r}(1-z)^{2}} .
\end{aligned}
$$

Then

$$
\sum_{j=0}^{n} \frac{b_{j}}{j!} H(n-j+r+1, r)=\left[z^{n+r}\right](1-z)^{-2} L^{r}(z)
$$

It follows from (11) that

$$
\left[z^{n+r}\right](1-z)^{-2} L^{r}(z) \sim \frac{n+r}{\Gamma(2)} \ln ^{r}(n+r)
$$

Since $\Gamma(2)=1,(13)$ holds.

It is well-known that the Stirling numbers of the first kind $s(n, r)$ satisfy

$$
s(n, r)=\sum_{0 \leq j \leq h \leq n-r}(-1)^{j+h}\binom{h}{j}\binom{n-1+h}{n-r+h}\binom{2 n-r}{n-r-h} \frac{(h-j)^{n-r+h}}{h!} .
$$

Due to (8), we can express $H(n, r)$ in terms of binomial coefficients:

$$
\begin{gathered}
H(n, r)=\frac{(-1)^{n+r+1}(r+1)!}{n!} \sum_{0 \leq j \leq h \leq n-r-1}(-1)^{j+h}\binom{h}{j}\binom{n+h}{n-r-1+h} \\
\times\binom{ 2 n-r}{n-r-1-h} \frac{(h-j)^{n-r-1+h}}{h!} .
\end{gathered}
$$

Now we give the asymptotic expansion of certain sums involving $H(n, r)$ and binomial coefficients.

Theorem 5 Assume that k and r are fixed with $k \geq 1$ and $r \geq 1$. When $n \rightarrow \infty$,

$$
\begin{align*}
& \sum_{j=0}^{n}\binom{2 j}{j} \frac{H(n-j+r+1, r)}{4^{j}} \sim 2 \sqrt{\frac{n+r+1}{\pi}} \ln ^{r+1}(n+r+1), \tag{14}\\
& \tag{15}\\
& \sum_{j=0}^{n}\binom{j+k}{k} H(n-j+r+1, r) \sim \frac{(n+r+1)^{k+1} \ln ^{r+1}(n+r+1)}{(k+1)!} .
\end{align*}
$$

Proof. We note that

$$
\begin{gather*}
\sum_{n=0}^{\infty}\binom{2 n}{n} \frac{z^{n}}{4^{n}}=\frac{1}{\sqrt{1-z}}, \quad|z|<1, \tag{16}\\
\sum_{n=0}^{\infty}\binom{n+k}{k} z^{n}=\frac{1}{(1-z)^{k+1}}, \quad|z|<1 \tag{17}
\end{gather*}
$$

From (2), (16), and (17), we can prove that

$$
\begin{aligned}
\sum_{j=0}^{n}\binom{2 j}{j} \frac{H(n-j+r+1, r)}{4^{j}} & =\sum_{j=0}^{n}\left(\left[z^{j}\right] \frac{1}{\sqrt{1-z}}\right)\left[z^{n-j}\right] \frac{(-1)^{r+1} \mathrm{ln}^{r+1}(1-z)}{z^{r+1}(1-z)} \\
& =\left[z^{n}\right] \frac{L^{r+1}(z)}{z^{r+1}(1-z)^{3 / 2}} \\
& =\left[z^{n+r+1}\right](1-z)^{-3 / 2} L^{r+1}(z),
\end{aligned}
$$

and

$$
\begin{aligned}
\sum_{j=0}^{n}\binom{j+k}{k} H(n-j+r+1, r) & =\left[z^{n}\right] \frac{L^{r+1}(z)}{z^{r+1}(1-z)^{k+2}} \\
& =\left[z^{n+r+1}\right](1-z)^{-k-2} L^{r+1}(z)
\end{aligned}
$$

Due to (11),

$$
\begin{aligned}
& \sum_{j=0}^{n}\binom{2 j}{j} \frac{H(n-j+r+1, r)}{4^{j}} \sim \frac{(n+r+1)^{1 / 2}}{\Gamma(3 / 2)} \ln ^{r+1}(n+r+1), \quad(n \rightarrow \infty) \\
& \sum_{j=0}^{n}\binom{j+k}{k} H(n-j+r+1, r) \sim \frac{(n+r+1)^{k+1} \ln ^{r+1}(n+r+1)}{\Gamma(k+2)}, \quad(n \rightarrow \infty) .
\end{aligned}
$$

Noting that

$$
\Gamma(3 / 2)=\frac{\sqrt{\pi}}{2}, \quad \text { and } \quad \Gamma(k+2)=(k+1)!
$$

we show that (14)-(15) hold.

In particular, for $k=r=1$ and $n \rightarrow \infty$ in (15), we get

$$
\begin{aligned}
\sum_{j=0}^{n}\binom{j+k}{k} H(n-j+r+1, r) & \sim \frac{(n+2)^{2}}{2} \ln ^{2}(n+2) \\
& \sim \frac{n^{2}+4 n}{2} \ln ^{2} n
\end{aligned}
$$

From (11)-(12) and the proof of Theorem 1, we obtain

$$
\begin{aligned}
& \sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!} \sim \ln ^{r}(n+r), \quad(n \rightarrow \infty) \\
& \sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!(n-j+r+2)} \sim \frac{(r+1) \ln ^{r}(n+r+1)}{(r+2)(n+r+1)}, \quad(n \rightarrow \infty)
\end{aligned}
$$

where r is fixed.
Now we compare the asymptotic values of

$$
\sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!} \quad \text { and } \quad \sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!(n-j+r+2)}
$$

with their accurate ones, when $r=1$ and $n \rightarrow \infty$. For $r=1$,

$$
\begin{aligned}
& \sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!}=H_{n+1} \\
& \sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!(n-j+r+2)}=\frac{2 H_{n+1}}{3(n+2)}
\end{aligned}
$$

It follows from Euler-Maclaurin's formula that

$$
H_{n}=\ln n+\gamma+\frac{1}{2 n}+\mathrm{O}\left(\frac{1}{n^{2}}\right), \quad n \geq 1
$$

where $\gamma=0.57721 \cdots$ is Euler's constant. Hence we have

$$
\begin{aligned}
\sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+2,1)}{j!} & =\ln (n+1)+\gamma+\frac{1}{2(n+1)}+\mathrm{O}\left(\frac{1}{n^{2}}\right), \\
\sum_{j=0}^{n} \frac{(-1)^{j} a_{j} H(n-j+r+1, r)}{j!(n-j+r+2)} & =\frac{2 \ln (n+1)}{3(n+2)}+\frac{2 \gamma}{3(n+2)}+\mathrm{O}\left(\frac{1}{n^{2}}\right),
\end{aligned}
$$

where $n \geq 1$.
It is evident that the harmonic numbers H_{n} satisfy that

$$
H_{n}-H_{n-1}=\frac{1}{n}
$$

For $H(n, r)$, we derive an asymptotic recurrence relation:
Theorem 6 Let r be fixed with $r \geq 1$. When $n \rightarrow \infty$,

$$
H(n, r)-H(n-1, r) \sim \frac{(r+1) \ln ^{r} n}{n}
$$

Proof. It follows from (1) and (12) that

$$
\begin{aligned}
H(n, r)-H(n-1, r) & =\left[z^{n}\right] L^{r+1}(z) \\
& \sim \frac{(r+1) \ln ^{r} n}{n}, \quad(n \rightarrow \infty)
\end{aligned}
$$

In the final result of this section, we give the asymptotic expansion of certain sums for inverses of binomial coefficients and $H(n, r)$ by Laplace's method.

Theorem 7 Let $r \geq 1$. When $r \rightarrow \infty$,

$$
\begin{align*}
\sum_{n=r+1}^{\infty} \frac{(-1)^{n} H(n, r)}{(2 n+1)\binom{2 n}{n}} & \sim(-1)^{r+1} \frac{2}{5} \sqrt{\frac{5 \pi}{r+1}}\left(\ln \frac{5}{4}\right)^{r+3 / 2} \tag{18}\\
\sum_{n=r+1}^{\infty} \frac{H(n, r)}{(2 n+1)\binom{2 n}{n}} & \sim \frac{2}{3} \sqrt{\frac{3 \pi}{r+1}}\left(\ln \frac{4}{3}\right)^{r+3 / 2} \tag{19}
\end{align*}
$$

Proof. We know that the inverse of a binomial coefficient is related to an integral [12] as follows:

$$
\begin{equation*}
\binom{n}{m}^{-1}=(n+1) \int_{0}^{1} z^{m}(1-z)^{n-m} d z \tag{20}
\end{equation*}
$$

Owing to (20),

$$
\begin{aligned}
\sum_{n=r+1}^{\infty} \frac{(-1)^{n} H(n, r)}{(2 n+1)\binom{2 n}{n}} & =\sum_{n=r+1}^{\infty} H(n, r) \int_{0}^{1}(-z)^{n}(1-z)^{n} d z \\
\sum_{n=r+1}^{\infty} \frac{H(n, r)}{(2 n+1)\binom{2 n}{n}} & =\sum_{n=r+1}^{\infty} H(n, r) \int_{0}^{1} z^{n}(1-z)^{n} d z
\end{aligned}
$$

For $z \in[0,1]$,

$$
\begin{aligned}
\sum_{n=r+1}^{\infty} H(n, r) \int_{0}^{1}(-z)^{n}(1-z)^{n} d z & =\int_{0}^{1}\left(\sum_{n=r+1}^{\infty} H(n, r)(-z)^{n}(1-z)^{n}\right) d z \\
\sum_{n=r+1}^{\infty} H(n, r) \int_{0}^{1} z^{n}(1-z)^{n} d z & =\int_{0}^{1}\left(\sum_{n=r+1}^{\infty} H(n, r) z^{n}(1-z)^{n}\right) d z
\end{aligned}
$$

It follows from (1) that

$$
\begin{aligned}
\sum_{n=r+1}^{\infty} H(n, r) \frac{(-1)^{n}}{(2 n+1)\binom{2 n}{n}} & =(-1)^{r+1} \int_{0}^{1} \frac{\ln ^{r+1}[1+z(1-z)]}{1+z(1-z)} d z \\
\sum_{n=r+1}^{\infty} \frac{H(n, r)}{(2 n+1)\binom{2 n}{n}} & =\int_{0}^{1} \frac{\{-\ln [1-z(1-z)]\}^{r+1}}{1-z(1-z)} d z
\end{aligned}
$$

Put

$$
g(z)= \begin{cases}e^{\ln \ln [1+z(1-z)]}, & z \in(0,1) \\ 0, & z=0 \\ 0, & z=1\end{cases}
$$

and

$$
\phi(z)=\frac{1}{1+z(1-z)}, \quad z \in[0,1]
$$

Then $g(z)$ reaches the maximum at $z=1 / 2, g^{\prime}(1 / 2)=0$, and $g^{\prime \prime}(1 / 2)<0$. By
applying Laplace's method, we have

$$
\begin{aligned}
& (-1)^{r+1} \int_{0}^{1} \frac{\ln ^{r+1}[1+z(1-z)]}{1+z(1-z)} d z \\
& \quad \sim \phi(1 / 2)(g(1 / 2))^{r+3 / 2} \sqrt{\frac{-2 \pi}{(r+1) g^{\prime \prime}(1 / 2)}} \quad(r \rightarrow \infty)
\end{aligned}
$$

Then (18) holds.
Using the same method, we obtain (19).

Acknowledgement The authors would like to thank the anonymous referees for their helpful comments.

References

[1] V. S. Adamick, On Stirling numbers and Euler sums, J. Comput. Appl. Math. 79(1997): 119-130.
[2] A. T. Benjamin, D. Gaebler, R. Gaebler, A combinatorial approach to hyperharmonic numbers, Integers, 3(2003): A15.
[3] L. Comtet, Advanced Combinatorics, D. Reidel Publication Company, 1974.
[4] Gi-Sang Cheon, M. A. El-Mikkawy, Generalized harmonic numbers with Riordan arrays, J. Number Theory, 128(2008): 413-425.
[5] W. Chu, Harmonic number identities and Hermite-Padé approximations to the logarithm function, J. Approx. Theory, 137(2005): 42-56.
[6] P. Flajolet, E. Fusy, X. Gourdon, D. Panario, and N. Pouyanne, A hybrid of Darboux's method and singularity analysis in combinatorial asymptotics, The Electronic J. Combinatorics, $\mathbf{1 3}(2006)$.
[7] A. Gertsch, Generalized harmonic numbers, in: Number Theory, C. R. Acad. Sci. Paris Ser. I 324(1997): 7-10.
[8] I. M. Gessel, On Miki's identity for Bernoulli numbers, J. Number Theory, 110(2005): 75-82.
[9] D. Merlini, R. Sprugnoli, and M. C. Verri, The Cauchy numbers, Discrete Math. 306(2006): 1906-1920.
[10] D. Merlini, R. Sprugnoli, and M. C. Verri, The method of coefficients, American Math. Month. 114(2007): 40-57.
[11] J. M. Santmyer, A Stirling like sequence of rational numbers, Discrete Math. 171(1997): 229-239.
[12] T. Tiberiu, Combinatorial sums and series involving inverses of binomial coefficients, Fibonacci Quart. 38.1(2000): 79-84.
[13] Feng-Zhen Zhao, Some properties of associated Stirling numbers, J. Integer Sequences, 11(2008): A08.1.7.

[^0]: ${ }^{1}$ This work was supported by the Science Research Foundation of Dalian University of Technology.

