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Abstract

In this paper, we discuss the properties of a class of generalized harmonic numbers
H(n, r). By means of the method of coefficients, we establish some identities involv-
ing H(n, r). We obtain a pair of inversion formulas. Furthermore, we investigate
certain sums related to H(n, r), and give their asymptotic expansions. In particu-
lar, we obtain the asymptotic expansion of certain sums involving H(n, r) and the
inverse of binomial coefficients by Laplace’s method.

1. Introduction

It is well-known that the harmonic numbers Hn are defined by

H0 = 0, Hn =
n∑

k=1

1
k

,

and the generating function of Hn is

∞∑

n=1

Hnzn = − ln(1− z)
1− z

.

The harmonic number Hn plays an important role in number theory and has been
generalized by many authors (see[1], [2], [5], [7], [8], [11]). In this paper, we consider
a class of generalized harmonic numbers H(n, r). The definition of H(n, r)[7] is

H(n, r) =
∑

1≤n0+n1+···+nr≤n

1
n0n1 · · ·nr

, for n ≥ 1, r ≥ 0.

It is clear that H(n, 0) = Hn. The generating function of H(n, r) is (see [4])

∞∑

n=r+1

H(n, r)zn =
(−1)r+1 lnr+1(1− z)

1− z
. (1)

1This work was supported by the Science Research Foundation of Dalian University of Tech-
nology.
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From (1) we obtain

∞∑

n=0

H(n + r + 1, r)zn =
(−1)r+1 lnr+1(1− z)

zr+1(1− z)
, (2)

∞∑

n=r+1

H(n, r)
n + 1

zn+1 =
(−1)r lnr+2(1− z)

r + 2
,

∞∑

n=0

H(n + r + 1, r)
n + r + 2

zn =
(−1)r lnr+2(1− z)

(r + 2)zr+2
.

There are many relations between H(n, r) and Hn. For instance (see [4]),

n∑

r=0

1
(r + 1)!

H(n, r) = n,

n−1∑

r=0

(−1)r

(r + 1)!
H(n, r) = 1,

n∑

r=1

(−1)r+1

r!
H(n + 1, r) = Hn.

The numbers H(n, r) can be computed by the formula (see [4])

H(n, r) =
(−1)r+1

n!

(
dn

dxn

[ln(1− x)]r+1

1− x

∣∣∣∣
x=0

)
.

Some initial values of H(n, r)(n ≥ r + 1) are given in Table 1.

n \ r 0 1 2 3 4 5
1 1

2 3
2 1

3 11
6 2 1

4 25
12

35
12

5
2 1

5 137
60

15
4

17
4 3 1

6 49
20

203
45

49
8

35
6

7
2 1

Table 1: Initial Values of H(n, r)

In this paper, we investigate the properties of H(n, r). The paper is organized as
follows. In Section 2,we obtain some identities for H(n, r)and Cauchy numbers of the
first kind(associated Stirling numbers of the first kind) by means of the method of
coefficients [10]. In Section 3,we obtain a pair of inversion formulas.In Section 4, we
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give the asymptotic expansion of certain sums related to H(n, r) and Cauchy num-
bers of the second kind (binomial coefficients) when r is fixed.

For convenience, we recall some definitions involved in the paper. Throughout,
we denote the Cauchy numbers of the first kind and the second kind by an and
bn, respectively. Let s(n, k), s2(n, k), and S(n, k) stand for Stirling numbers of the
first kind, associated Stirling numbers of the first kind, and Stirling numbers of the
second kind, respectively. Their definitions are respectively (see [3]):

∞∑

n=0

an
zn

n!
=

z

ln(1 + z)
,

∞∑

n=0

bn
zn

n!
=

−z

(1− z) ln(1− z)
,

∞∑

n=k

s(n, k)
zn

n!
=

lnk(1 + z)
k!

,
∞∑

n=k

S(n, k)
zn

n!
=

(ez − 1)k

k!
,

∞∑

n=k

s2(n, k)
zn

n!
=

[ln(1 + z)− z]k

k!
.

Throughout this paper, the binomial coefficients
(n
m

)
are defined by

(
n

m

)
=






n!
m!(n−m)!

, n ≥ m,

0, n < m,

where n and m are nonnegative integers.
Let [zn]f(z) denote the coefficient of zn for the formal power series of f(z). The

[tn] are called the “coefficient of” functionals [10]. If f(t) and g(t) are formal power
series, the following relations hold [10]:

[tn](αf(t) + βg(t)) = α[tn]f(t) + β[tn]g(t), (3)

[tn]tf(t) = [tn−1]f(t), (4)

[tn]f(t)g(t) =
n∑

k=0

([yk]f(y))[tn−k]g(t). (5)

2. Some Identities Involving H(n, r)

In this section, we establish some identities involving H(n, r) by using (3)-(5).
Cauchy numbers of the first kind an and Cauchy numbers of the second kind bn

play important roles in approximate integrals and difference-differential equations
(see [9]). Some values of an and bn are:

n 0 1 2 3 4 5 6 7 8 9

an 1 1
2 −1

6
1
4 −19

30
9
4 −863

84
1375
24 −33953

90
57281

20

bn 1 1
2

5
6

9
4

251
30

475
12

19087
84

36799
24

1070017
90

2082753
20
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In Section 4, we give the asymptotic expansion of the the sum involving H(n, r)
and bn. In this section, we establish some identities related to H(n, r) and an. In
[9], there is an identity involving Cauchy numbers of the first kind an and harmonic
numbers Hn, namely

1 +
∞∑

n=1

(−1)nanHn

n!n
=

π2

6
.

From the generating functions of H(n, r) and Cauchy numbers of the first kind an,
we have

Theorem 1 Let n ≥ 1 and r ≥ 1. Then

n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!

= H(n + r, r − 1), (6)

n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!(n− j + r + 2)

=
(r + 1)H(n + r, r − 1)

(r + 2)(n + r + 1)
. (7)

Proof. From the definitions of an and H(n, r), we have

n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!

=
n∑

j=0

(
[zj ]

−z

ln(1− z)

)
[zn−j ]

(
(−1)r+1 lnr+1(1− z)

zr+1(1− z)

)

= [zn]
(−1)r lnr(1− z)

zr(1− z)

= H(n + r, r − 1),

n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!(n− j + r + 2)

=
n∑

j=0

(
[zj ]

−z

ln(1− z)

)
[zn−j ]

(
(−1)r lnr+2(1− z)

(r + 2)zr+2

)

= [zn]
(−1)r+1 lnr+1(1− z)

(r + 2)zr+1

=
(r + 1)H(n + r, r − 1)

(r + 2)(n + r + 1)
.

!

Identities (6)-(7) relate H(n, r) and Cauchy numbers of the first kind.
It is well-known that Stirling numbers play an important role in combinatorial anal-

ysis, and associated Stirling numbers are significant in enumerative combinatorics
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(see [3]). We know that associated Stirling numbers of the first kind s2(n, k) are
related to the number of a set, and the value of |s2(n, k)| is the number of derange-
ments of a set N(|N | = n) with k orbits. By the generating functions of H(n, r)
and the Stirling numbers of the first kind s(n, r), we immediately get

H(n, r) =
(r + 1)!

n!
(−1)n+r+1s(n + 1, r + 2). (8)

The associated Stirling numbers of the first kind s2(n, k) and harmonic numbers
Hn satisfy [13]:

n∑

j=0

(−1)jHj+1s2(n− j + k, k)
(j + 2)(n− j + k)!

=
(−1)k

2

k∑

j=0

(−1)j(j + 1)(j + 2)s(n + j + 2, j + 2)
(k − j)!(n + j + 2)!

.

For s2(n, k) and H(n, r), we have the following result.

Theorem 2 Let k ≥ 1, n ≥ 1 and r ≥ 0. Then

n∑

j=0

(−1)js2(j + k, k)H(n− j + r + 1, r)
(j + k)!

=
(−1)k

k!

k∑

j=0

(−1)j

(
k

j

)
H(n + j + r + 1, j + r).

Proof. From the generating functions of s2(n, k) and H(n, r), we get

n∑

j=0

(−1)js2(j + k, k)H(n− j + r + 1, r)
(j + k)!

=
n∑

j=0

(
[zj ]

[ln(1− z) + z]k

(−1)kk!zk

)
[zn−j ]

(−1)r+1 lnr+1(1− z)
zr+1(1− z)

= [zn]
k∑

j=0

(
k

j

)
(−1)r+1 lnj+r+1(1− z)
(−1)kk!zj+r+1(1− z)

=
(−1)k

k!

k∑

j=0

(−1)j

(
k

j

)
[zn]

(−1)j+r+1 lnj+r+1(1− z)
zj+r+1(1− z)

=
(−1)k

k!

k∑

j=0

(−1)j

(
k

j

)
H(n + j + r + 1, j + r).

!
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3. Inversion Formulas

For sequences {fn} and {gn}, it is well-known that

fn =
n∑

k=0

S(n, k)gk ⇐⇒ gn =
n∑

k=0

s(n, k)fk.

Now we prove that

Theorem 3 Let {fn} and {gn} be two sequences. Then

fn =
n∑

k=0

H(n + 1, k)gk

(9)

⇐⇒ gn =
1

(n + 1)!

n∑

k=0

(−1)n−k(k + 1)!S(n + 2, k + 2)fk.

Proof. Let

g(z) =
∞∑

m=0

gmzm, f(z) =
∞∑

m=0

fmzm.

(i) When

fn =
n∑

k=0

H(n + 1, k)gk,

we have

f(z) =
∞∑

k=0

gkzk
∞∑

m=k

H(m + 1, k)zm−k

=
∞∑

k=0

gk
(−1)k+1 lnk+1(1− z)

z(1− z)

=
− ln(1− z)
z(1− z)

g(− ln(1− z)).

Let u = ln(1− z). Then z = 1− eu and

g(−u) = −(1− eu)eu

u
f(1− eu)

= − 1
u

∞∑

m=0

(−1)m+1fm(eu − 1)m+2 − 1
u

∞∑

m=0

(−1)m+1fm(eu − 1)m+1.
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It follows from the definition of S(n, k) that

g(−u) =
∞∑

m=0

(−1)m(m + 2)!fm

∞∑

p=0

S(p + m + 2,m + 2)
up+m+1

(p + m + 2)!

+
∞∑

m=0

(−1)m(m + 1)!fm

∞∑

p=0

S(p + m + 1,m + 1)
up+m

(p + m + 1)!
.

Then

[un]g(−u) = (−1)ngn

=
n∑

j=0

S(n + 1, j + 1)(−1)j+1(j + 1)!fj

(n + 1)!

+
n−1∑

j=0

S(n + 1, j + 2)(−1)j+1(j + 2)!fj

(n + 1)!
.

On the other hand,

S(n + 1, j + 1) + (j + 2)S(n + 1, j + 2) = S(n + 2, j + 2), S(n, n) = 1. (10)

Then we have

gn =
1

(n + 1)!

n∑

k=0

(−1)n−k(k + 1)!S(n + 2, k + 2)fk.

(ii) When

gn =
1

(n + 1)!

n∑

k=0

(−1)n−k(k + 1)!S(n + 2, k + 2)fk,

we have

g(z) =
∞∑

k=0

gkzk

=
∞∑

j=0

(j + 1)!fj

∞∑

k=j

(−1)k−j

(k + 1)!
S(k + 2, j + 2)zk.
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It follows from (10) that

g(z) =
∞∑

j=0

(j + 1)!fj

∞∑

k=j

(−1)k−j

(k + 1)!
[S(k + 1, j + 1) + (j + 2)S(k + 1, j + 2)]zk

=
∞∑

j=0

(j + 1)!fj

∞∑

k=j+1

(−1)k−j−1

k!
S(k, j + 1)zk+1

+
∞∑

j=0

(j + 1)!fj(j + 2)
∞∑

k=j+1

(−1)k−j

(k + 1)!
S(k + 1, j + 2)zk.

Then

g(z) = z
∞∑

j=0

(−1)j+1fj(e−z − 1)j+1 + z
∞∑

j=0

(−1)j+1fj(e−z − 1)j+2

= −z(e−z − 1)e−zf(1− e−z).

Let v = 1− e−z. Then z = − ln(1− v),

f(v) = − ln(1− v)
v(1− v)

g(− ln(1− v))

=
∞∑

m=0

gm

∞∑

j=m

H(j + 1,m)vj ,

[vn]f(v) = fn

=
n∑

k=0

H(n + 1, k)gk.

Hence (9) holds. !

4. Asymptotic Expansion of Certain Sums Involving H(n, r)

Sometimes it is difficult to compute the accurate values of sums involving H(n, r).
However, we give the asymptotic values of certain sums related to H(n, r). In
this section, we give asymptotic expansions of certain sums involving H(n, r) and
Cauchy numbers of the second kind (binomial coefficients). At first, we recall a
lemma.
Lemma ([6]) Let α be a real number and

L(z) = ln
1

1− z
.
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When n→∞,

[zn](1− z)αLk(z) ∼ 1
Γ(−α)

n−α−1 lnk n, (α (∈ Z≥0), (11)

[zn](1− z)mLk(z) ∼ (−1)mkm!n−m−1 lnk−1 n, (m ∈ Z≥0, k ∈ Z≥1). (12)

Now we give the asymptotic expansions of certain sums involving H(n, r) using
above lemma.

Theorem 4 Assume that r is fixed with r ≥ 1. For H(n, r) and Cauchy numbers
of the second kind bn, we have

n∑

j=0

bj

j!
H(n− j + r + 1, r) ∼ (n + r) lnr(n + r), (n→∞). (13)

Proof. We can verify that

n∑

j=0

bjH(n− j + r + 1, r)
j!

=
n∑

j=0

(
[zj ]

−z

(1− z) ln(1− z)

)
[zn−j ]

(−1)r+1 lnr+1(1− z)
zr+1(1− z)

= [zn]
(−1)r lnr(1− z)

zr(1− z)2
.

Then

n∑

j=0

bj

j!
H(n− j + r + 1, r) = [zn+r](1− z)−2Lr(z).

It follows from (11) that

[zn+r](1− z)−2Lr(z) ∼ n + r

Γ(2)
lnr(n + r).

Since Γ(2) = 1, (13) holds. !

It is well-known that the Stirling numbers of the first kind s(n, r) satisfy

s(n, r) =
∑

0≤j≤h≤n−r

(−1)j+h

(
h

j

)(
n− 1 + h

n− r + h

)(
2n− r

n− r − h

)
(h− j)n−r+h

h!
.
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Due to (8), we can express H(n, r) in terms of binomial coefficients:

H(n, r) =
(−1)n+r+1(r + 1)!

n!

∑

0≤j≤h≤n−r−1

(−1)j+h

(
h

j

)(
n + h

n− r − 1 + h

)

×
(

2n− r

n− r − 1− h

)
(h− j)n−r−1+h

h!
.

Now we give the asymptotic expansion of certain sums involving H(n, r) and bino-
mial coefficients.

Theorem 5 Assume that k and r are fixed with k ≥ 1 and r ≥ 1. When n→∞,

n∑

j=0

(
2j
j

)
H(n− j + r + 1, r)

4j
∼ 2

√
n + r + 1

π
lnr+1(n + r + 1), (14)

n∑

j=0

(
j + k

k

)
H(n− j + r + 1, r) ∼ (n + r + 1)k+1 lnr+1(n + r + 1)

(k + 1)!
. (15)

Proof. We note that

∞∑

n=0

(
2n
n

)
zn

4n
=

1√
1− z

, |z| < 1, (16)

∞∑

n=0

(
n + k

k

)
zn =

1
(1− z)k+1

, |z| < 1. (17)

From (2), (16), and (17), we can prove that

n∑

j=0

(
2j
j

)
H(n− j + r + 1, r)

4j
=

n∑

j=0

(
[zj ]

1√
1− z

)
[zn−j ]

(−1)r+1 lnr+1(1− z)
zr+1(1− z)

= [zn]
Lr+1(z)

zr+1(1− z)3/2

= [zn+r+1](1− z)−3/2Lr+1(z),

and
n∑

j=0

(
j + k

k

)
H(n− j + r + 1, r) = [zn]

Lr+1(z)
zr+1(1− z)k+2

= [zn+r+1](1− z)−k−2Lr+1(z).
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Due to (11),
n∑

j=0

(
2j
j

)
H(n− j + r + 1, r)

4j
∼ (n + r + 1)1/2

Γ(3/2)
lnr+1(n + r + 1), (n→∞)

n∑

j=0

(
j + k

k

)
H(n− j + r + 1, r) ∼ (n + r + 1)k+1 lnr+1(n + r + 1)

Γ(k + 2)
, (n→∞).

Noting that

Γ(3/2) =
√

π

2
, and Γ(k + 2) = (k + 1)!,

we show that (14)-(15) hold. !

In particular, for k = r = 1 and n→∞ in (15), we get

n∑

j=0

(
j + k

k

)
H(n− j + r + 1, r) ∼ (n + 2)2

2
ln2(n + 2)

∼ n2 + 4n
2

ln2 n.

From (11)-(12) and the proof of Theorem 1, we obtain

n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!

∼ lnr(n + r), (n→∞),

n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!(n− j + r + 2)

∼ (r + 1) lnr(n + r + 1)
(r + 2)(n + r + 1)

, (n→∞),

where r is fixed.
Now we compare the asymptotic values of

n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!

and
n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!(n− j + r + 2)

with their accurate ones, when r = 1 and n→∞. For r = 1,
n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!

= Hn+1,

n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!(n− j + r + 2)

=
2Hn+1

3(n + 2)
.
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It follows from Euler-Maclaurin’s formula that

Hn = lnn + γ +
1
2n

+ O
(

1
n2

)
, n ≥ 1,

where γ = 0.57721 · · · is Euler’s constant. Hence we have

n∑

j=0

(−1)jajH(n− j + 2, 1)
j!

= ln(n + 1) + γ +
1

2(n + 1)
+ O

(
1
n2

)
,

n∑

j=0

(−1)jajH(n− j + r + 1, r)
j!(n− j + r + 2)

=
2 ln(n + 1)
3(n + 2)

+
2γ

3(n + 2)
+ O

(
1
n2

)
,

where n ≥ 1.
It is evident that the harmonic numbers Hn satisfy that

Hn −Hn−1 =
1
n

.

For H(n, r), we derive an asymptotic recurrence relation:

Theorem 6 Let r be fixed with r ≥ 1. When n→∞,

H(n, r)−H(n− 1, r) ∼ (r + 1) lnr n

n
.

Proof. It follows from (1) and (12) that

H(n, r)−H(n− 1, r) = [zn]Lr+1(z)

∼ (r + 1) lnr n

n
, (n→∞).

!

In the final result of this section, we give the asymptotic expansion of certain
sums for inverses of binomial coefficients and H(n, r) by Laplace’s method.

Theorem 7 Let r ≥ 1. When r →∞,

∞∑

n=r+1

(−1)nH(n, r)
(2n + 1)

(2n
n

) ∼ (−1)r+1 2
5

√
5π

r + 1

(
ln

5
4

)r+3/2

, (18)

∞∑

n=r+1

H(n, r)
(2n + 1)

(2n
n

) ∼ 2
3

√
3π

r + 1

(
ln

4
3

)r+3/2

. (19)



INTEGERS: 9 (2009) 617

Proof. We know that the inverse of a binomial coefficient is related to an integral
[12] as follows:

(
n

m

)−1

= (n + 1)
∫ 1

0
zm(1− z)n−mdz. (20)

Owing to (20),

∞∑

n=r+1

(−1)nH(n, r)
(2n + 1)

(2n
n

) =
∞∑

n=r+1

H(n, r)
∫ 1

0
(−z)n(1− z)ndz,

∞∑

n=r+1

H(n, r)
(2n + 1)

(2n
n

) =
∞∑

n=r+1

H(n, r)
∫ 1

0
zn(1− z)ndz.

For z ∈ [0, 1],

∞∑

n=r+1

H(n, r)
∫ 1

0
(−z)n(1− z)ndz =

∫ 1

0

( ∞∑

n=r+1

H(n, r)(−z)n(1− z)n

)
dz,

∞∑

n=r+1

H(n, r)
∫ 1

0
zn(1− z)ndz =

∫ 1

0

( ∞∑

n=r+1

H(n, r)zn(1− z)n

)
dz.

It follows from (1) that

∞∑

n=r+1

H(n, r)
(−1)n

(2n + 1)
(2n

n

) = (−1)r+1

∫ 1

0

lnr+1[1 + z(1− z)]
1 + z(1− z)

dz,

∞∑

n=r+1

H(n, r)
(2n + 1)

(2n
n

) =
∫ 1

0

{− ln[1− z(1− z)]}r+1

1− z(1− z)
dz.

Put

g(z) =






eln ln[1+z(1−z)], z ∈ (0, 1),
0, z = 0,
0, z = 1,

and
φ(z) =

1
1 + z(1− z)

, z ∈ [0, 1].

Then g(z) reaches the maximum at z = 1/2, g′(1/2) = 0, and g′′(1/2) < 0. By
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applying Laplace’s method, we have

(−1)r+1

∫ 1

0

lnr+1[1 + z(1− z)]
1 + z(1− z)

dz

∼ φ(1/2)
(

g(1/2)
)r+3/2

√
−2π

(r + 1)g′′(1/2)
(r →∞).

Then (18) holds.
Using the same method, we obtain (19). !

Acknowledgement The authors would like to thank the anonymous referees for
their helpful comments.

References

[1] V. S. Adamick, On Stirling numbers and Euler sums, J. Comput. Appl. Math. 79(1997):
119-130.

[2] A. T. Benjamin, D. Gaebler, R. Gaebler, A combinatorial approach to hyperharmonic num-
bers, Integers, 3(2003): A15.

[3] L. Comtet, Advanced Combinatorics, D. Reidel Publication Company, 1974.

[4] Gi-Sang Cheon, M. A. El-Mikkawy, Generalized harmonic numbers with Riordan arrays, J.
Number Theory, 128(2008): 413-425.

[5] W. Chu, Harmonic number identities and Hermite-Padé approximations to the logarithm
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