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Abstract

By means of recent results concerning spectral distributions of Toeplitz matrices, we show
that the singular values of a sequence of blockp-level Hankel matricesHn(µ), generated
by ap-variate, matrix-valued measureµ whose singular part is finitely supported, are always
clustered at zero, thus extending a result known whenp = 1 andµ is real valued and Lipschitz
continuous. The theorems hold for both eigenvalues and singular values; in the case of singular
values, we allow the involved matrices to be rectangular. © 2000 Elsevier Science Inc. All
rights reserved.
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1. Introduction

The theory of the asymptotic spectral distribution of a sequence of matrices dates
back to the works of Szeg"o (see [6] and the references therein), who first solved the
problem of showing the existence and computing the limit

lim
n→∞

1

n

n∑
j=1

F(λj (Tn)), (1)
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whereTn = Tn(f ) is then × n Toeplitz matrix generated by the Fourier coefficients
of a bounded real valued functionf, theλj s are its eigenvalues andF is a function
continuous on the compact interval[inf f, supf ]; indeed, Szeg"o showed that the
above limit exists and is equal to the integral

1

2π

∫ π

−π

F (f (x)) dx.

This result is now a classical one in the theory of Toeplitz matrices; nevertheless, it
has undergone many extensions and generalizations in recent years. For example, the
book of Böttcher and Silbermann [3] presents a systematic extension of the theory of
Toeplitz matrices and operators to operators with matrix-valued symbols, also deal-
ing with Szeg"o-like limits and other asymptotic results; Tyrtyshnikov [11] extended
the Szeg"o formula to the case of multilevel Toeplitz matrices, that is,
f = f (x1, . . . , xp) depends onp variables and the matrices{Tn(f )}, where
n = (n1, . . . , np) is now a multiindex, have ap-level Toeplitz structure; moreover,
the boundedness assumption onf was dropped, andf was only assumed to be square
integrable over the cubeQp (throughout, we denote byQ the interval(−π, π)). In
the nonhermitian case, an analogous result was proved concerning singular values.
In the recent paper [12], Tyrtyshnikov and Zamarashkin proved that the results from
[11] still hold whenf is only supposed to be integrable overQp; finally, such results
are further extended in [10] to the case wheref is simultaneouslyp-variate and
matrix-valued, thus embracing as particular cases all the previously known results
on the asymptotic spectral distribution of Toeplitz-related matrices.

In this paper, we prove the existence of limits analogous to (1) for multilevel block
Hankel matrices generated by the Fourier coefficients of a matrix-valued multivariate
measure whose singular part is a finite sum of point masses. For positive natural
numbersp, h, k, let µ be a matrix-valued measure, defined onQp, with values in
Ch×k ; throughout, the symboln always denotes the multiindexn = (n1, . . . , np),
and π(n) denotes the productn1 · · · np. The p-level block Hankel matrixHn(µ)

generated byµ has orderhπ(n) × k π(n) and is defined by

Hn(µ) =
2n1−1∑
j1=1

· · ·
2np−1∑
jp=1

K
(j1)
n1 ⊗ · · · ⊗ K

(jp)
np ⊗ aj1,...,jp (µ). (2)

In the above equality,K(l)
m denotes the matrix of orderm whose(i, j) entry equals

1 if j + i = l + 1 and equals zero otherwise; the matricesK
(l)
m , l = 1, . . . , 2m − 1,

are the natural basis of the linear space ofm × m Hankel matrices, and the tensor
notation emphasizes thep-level Hankel structure ofHn(µ); finally, the innermost
blocksaj1,...,jp (µ) areh × k matrices, and they are the Fourier coefficients ofµ,

aj1,...,jp (µ) = 1

(2π)p

∫
Qp

e−i(j1x1+···+jpxp) dµ(x) ∈ Ch×k,

wherex = (x1, . . . , xp) ranges overQp.
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The above definitions ofHn(µ) andaj1,...,jp (µ) generalize the more usual defin-
itions of Fourier coefficientaj1,...,jp (f ) of an integrable functionf ,

aj1,...,jp (f ) = 1

(2π)p

∫
Qp

f (x) e−i(j1x1+···+jpxp) dx, (3)

and of the Hankel matrixHn(f ) generated by it. In fact, whenµ is univariate, scalar
valued (that is, whenh = k = p = 1) and absolutely continuous, the above defined
Hn(µ) is just the Hankel matrixHn(f ) ≡ {ai+j−1}ni,j=1 of ordern generated by the
functionf such thatf (x) dx = dµ(x).

Spectral properties of Hankel matrices where pioneered by Widom [13], as finite
counterparts of certain integral operators. Boundedness and compactness of Hankel
operators iǹ 2 spaces were studied by Nehari and Hartman, see [8]. Moreover, eigen-
values of finite Hankel matrices play an important role in best rational approximation
theory, in particular, in the Carathéodory–Fejér and Nehari problems. We refer to the
book [9] for a recent account on Hankel matrices and operators. More recent res-
ults connecting spectral properties of Hankel matrices to problems in approximation
theory can be found in [4,7].

In this paper, we consider unbounded sequences of Hankel matrices. Our results
concern the asymptotic spectral distribution ofHn(µ) asn tends to infinity, and that
of An + Hn(µ) whereAn is any sequence of matrices which has some given spectral
distribution. We remark that the notation “limn→∞” stands for “limmin{ni }→∞”, that
is, not only the size ofHn(µ), but also the size of each inner Hankel level ofHn(µ)

must diverge.
The following theorem characterizes the spectral distribution of block multilevel

Hankel matrices, and it states that their spectra are always clustered at zero. It extends
a previous result in [5], which covered the particular case wheref (x) = dµ(x)/ dx

is univariate, scalar-valued and bounded.

Theorem 1. If µ(x) is a matrix-valued measure inQp, with values inCh×k, whose
singular part is finitely supported, then for any function F, uniformly continuous and
bounded overR,

lim
n→∞

1

(h ∧ k) π(n)

(h∧k)π(n)∑
j=1

F(σj (Hn(µ))) = F(0), (4)

whereh ∧ k = min{h, k} andσj (Hn(µ)) denotes the jth singular value ofHn(µ).
Moreover, if the involved matrices are hermitian, then a similar limit holds for

eigenvalues as well.

In other words, the asymptotic spectral measure of the matricesHn(µ) is the
Heavyside step function with the jump at zero, or, according to the definition of
a cluster found in [11], the set{0} is a cluster for the singular values ofHn(µ).
Moreover, adding a sequence of such Hankel matrices to a sequence with a given
spectral distribution does not affect the spectral distribution itself. As a particular
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case, we obtain a result on spectral distributions of Toeplitz-plus-Hankel matrices,
which generalizes the results from [5] concerning the one-level scalar case.

After introducing some definitions and preliminary results in Section 2, we give
the proof of Theorem 1 and other related results in Section 3.

2. Notations and preliminary results

If A ∈ Ch×k , we denote byσj (A) thejth singular value ofA, and ifA is hermitian,
we denote byλj (A) the jth eigenvalue ofA (both sets are arranged in nondecreasing
order, counting multiplicities). Throughout, we endowCh×k with the so calledtrace
norm,

‖A‖tr =
h∧k∑
j=1

σj (A),

whereh ∧ k = min{h, k}. For the basic properties of the trace norm, we refer the
reader to [1].

We consider functions belonging to the Banach spaceL1(Q
p, Ch×k) of all matrix-

valued functions which are integrable overQp . TheL1-norm is that induced by the
trace norm, that is,

f ∈ L1(Q
p, Ch×k) ⇐⇒ ‖f ‖L1 = 1

(2π)p

∫
Qp

‖f (x)‖tr dx < +∞.

It is clear that any other matrix norm onCh×k would lead to the same space of
functions; nevertheless, the choice of the trace norm will turn out to be natural in our
setting.

Giveng ∈ L1(Q
p, Ch×k), thep-level block Toeplitz matrixTn(g) generated byg

has orderhπ(n) × k π(n), and in analogy with (2), is defined by

Tn(g) =
n1∑

j1=−n1

· · ·
np∑

jp=−np

J
(j1)
n1 ⊗ · · · ⊗ J

(jp)
np ⊗ aj1,...,jp (g), (5)

whereJ
(l)
m denotes the matrix of ordermwhose(i, j) entry equals 1 ifj − i = l and

equals zero otherwise; as for Hankel matrices, the innermost blocksaj1,...,jp (g) are
h × k matrices, namely the Fourier coefficients ofg, defined as in (3).

The following result is a particular case of Mirsky’s theorem, and will be used
in Section 3; a proof and more details can be found in the book of Bhatia [1, pp.
100,101].

Lemma 2. For any two matricesA,B ∈ Ch×k, we have

h∧k∑
j=1

∣∣σj (A) − σj (B)
∣∣ 6 ‖A − B‖tr. (6)
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If, moreover, A and B are hermitian, then also
k∑

j=1

∣∣λj (A) − λj (B)
∣∣ 6 ‖A − B‖tr. (7)

Finally, letO denote the set of all sequences{Kn} of hπ(n) × kπ(n) matrices such
that

lim
n→∞

1

π(n)
‖Kn‖tr = 0. (8)

The classO plays an important role in the study of asymptotic spectral properties
of sequences of matrices, see e.g. [3, Sections 5.6 and 5.7]. Its relevance is clarified
by the fact that the term-by-term sum of a sequence inO to a sequence of matrices
leaves unchanged the asymptotic spectral distribution of the latter:

Theorem 3. Suppose that{Kn} is a sequence inO and {An} is a sequence of
matrices such thatAn andKn arehπ(n) × k π(n) and such that the limit

lim
n→∞

1

(h ∧ k) π(n)

(h∧k)π(n)∑
j=1

F(σj (An)) (9)

exists for all F uniformly continuous and bounded overR. Then the singular values
of An + Kn are distributed as those ofAn, that is, the limit

lim
n→∞

1

(h ∧ k) π(n)

(h∧k)π(n)∑
j=1

F(σj (An + Kn)) (10)

exists and is equal to the limit(9).
Moreover, if all the involved matrices are hermitian, then the same results hold

for eigenvalues as well.

Proof. For any multiindexn = (n1, . . . , np) we let

Dn = 1

π(n)

∣∣∣∣∣∣
(h∧k)π(n)∑

j=1

F(σj (An + Kn)) −
(h∧k)π(n)∑

j=1

F(σj (An))

∣∣∣∣∣∣ .
In order to prove that (9) equals (10) it suffices to show that limn→∞ Dn = 0. Sup-
pose first thatF is smooth and‖F ′‖∞ = sup|F ′(x)| < +∞. Using the mean value
theorem and Lemma 2 we obtain

Dn 6 ‖F ′‖∞
π(n)

(h∧k)π(n)∑
j=1

|σj (An + Kn) − σj (An)| 6 ‖F ′‖∞
π(n)

‖Kn‖tr.

Taking the limit forn → ∞, the proof is completed. The general case can be man-
aged by a standard approximation argument: IfF is uniformly continuous and
bounded overR, let {Fm} be a sequence ofC1(R) functions such that‖F − Fm‖∞ 6
ε for all ε and sufficiently largem. Then we have
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Dn 6 1

π(n)

(
‖F ′

m‖∞‖Kn‖tr +
(h∧k)π(n)∑

j=1

|F(σj (Kn)) − Fm(σj (Kn))|

+
(h∧k)π(n)∑

j=1

|F(σj (An + Kn)) − Fm(σj (An + Kn))|
)

6 ‖F ′
m‖∞

π(n)
‖Kn‖tr + 2(h ∧ k)ε.

Consequently, lim supn→∞ Dn 6 2(h ∧ k)ε, and sinceε > 0 can be chosen arbitra-
lily, we arrive at the assertion.

Finally, if all the matrices are hermitian, in order to prove the statements concern-
ing singular values, it suffices to repeat step by step the above arguments replacing
σj with λj and using (7) in place of (6).�

3. Main results

Consider the following inequality concerning block multilevel Toeplitz matrices:

Lemma 4. If g ∈ L1(Q
p, Ch×k) then, for any multiindex n,

1

π(n)
‖Tn(g)‖tr 6 2‖g‖L1. (11)

For a proof, see [10, Lemma 3.1], where the estimate is proved whenh = k; the
general case can be easily obtained by adding a suitable number of dummy null rows
(if h < k) or columns (ifh > k), which does not affect the norms.

Here we prove an analogous inequality forHn(f ); the idea is that of passing from
Hankel to Toeplitz structure by a suitable permutation of rows.

Lemma 5. If f ∈ L1(Q
p, Ch×k) then, for any multiindex n,

1

π(n)
‖Hn(f )‖tr 6 2‖f ‖L1. (12)

Proof. We observe that the matrixK(m)
m is the “reverse” permutation matrix of order

m; to point it out, we denote it byRm. Moreover, letIm = J
(0)
m be the identity matrix

of orderm. It is immediate to see that

Rm K(h)
m = J (h−m)

m , h = 1, 2, . . . , 2m − 1, (13)

that is,Rm turns a Hankel matrix into a Toeplitz. This holds also in the multilevel
case; indeed, observing thatRπ(n) = Rn1 ⊗ · · · ⊗ Rnp , we obtain from (2), (5) and
(13),
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Rπ(n) ⊗ Ih

)
Hn(f )

=
2n1−1∑
j1=1

· · ·
2np−1∑
jp=1

(
Rn1 K

(j1)
n1

)
⊗ · · · ⊗

(
Rnp K

(jp)
np

)
⊗ aj1,...,jp (f )

=
2n1−1∑
j1=1

· · ·
2np−1∑
jp=1

J
(j1−n1)
n1 ⊗ · · · ⊗ J

(jp−np)
np ⊗ aj1,...,jp (f )

=
n1∑

j1=−n1

· · ·
np∑

jp=−np

J
(j1)
n1 ⊗ · · · ⊗ J

(jp)
np

⊗ aj1+n1,...,jp+np (f )

= Tn(g),

whereg(x1, . . . , xp) = ei(n1x1+···+npxp)f (x1, . . . , xp). The trace norm is unitarily
invariant (see [1]). Therefore we obtain‖Hn(f )‖tr = ‖Tn(g)‖tr. Since the singular
values off (x) coincide with those ofg(x), we have‖g‖L1 = ‖f ‖L1, and from (11),
we obtain (12). �

Theorem 6. If f ∈ L1(Q
p, Ch×k), then the sequence{Hn(f )} belongs toO.

Proof. Whenf is a trigonometric polynomial,

f (x1, . . . , xp) =
d∑

j1=−d

· · ·
d∑

jp=−d

aj1,...,jpei(j1x1+···+jpxp), (14)

by removing null rows and columns (which does not affect the trace norm), we obtain

‖Hn(f )‖tr = ‖
d∑

j1=1

· · ·
d∑

jp=1

K
(j1)

d ⊗ · · · ⊗ K
(jp)

d ⊗ aj1,...,jp (f )‖tr,

and hence‖Hn(f )‖tr does not depend onn. Therefore, equality (8) is trivially ful-
filled with Kn = Hn(f ).

Whenf ∈ L1(Q
p, Ch×k), let {fm} be a sequence of functions of the kind (14)

(whered may depend onm) converging tof in theL1-norm. For any givenm, from
the triangular inequality and Lemma 5 it follows

1

π(n)
‖Hn(f )‖tr 6

1

π(n)
‖Hn(fm)‖tr + 1

π(n)
‖Hn(f − fm)‖tr

6 1

π(n)
‖Hn(fm)‖tr + 2‖f − fm‖L1.

Taking the limit asn → ∞ yields

lim sup
n→∞

1

π(n)
‖Hn(f )‖tr 6 2‖f − fm‖L1

for any fixedm. Finally, taking the limit asm → ∞ we complete the proof. �
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As an immediate consequence we have that, ifg ∈ L1(Q
p, Ch×k), then

lim
n→∞

1

π(n)

k π(n)∑
j=1

F(σj (Tn(g) + Hn(f ))) = 1

(2π)p

∫
Qp

k∑
j=1

F(σj (g(x))) dx.

(15)

The proof of (15) is but a particular case of Theorem 3, whenAn equalsTn(g); the
fact that the spectra ofTn(g) are distributed as the right-hand side of (15) was proved
in [10]. Note that Eq. (15) was shown in [5] in the one-level scalar case under the
additional hypothesis that bothf andg are bounded.

Proof of Theorem 1. By hypothesis, we haveµ = µa + µs, whereµa is absolutely
continuous andµs is finitely supported. Ifµ is scalar valued andµs consists of just a
unit mass at̂x = (x̂1, . . . , x̂p) ∈ Qp , then, for any multiindicesi = (i1, . . . , ip) and
j = (j1, . . . , jp) with 1 6 ik, jk 6 nk for k = 1, . . . , p, the(i, j) entry ofHn(µs)

is

ai1+j1−1,...,ip+jp−1(µs)= 1

(2π)p
e−i((i1+j1−1)x̂1+···+(ip+jp−1)x̂p)

=c

p∏
k=1

e−iik x̂k

p∏
k=1

e−ijkx̂k

wherec = ei(x̂1+···+x̂p)/(2π)p. Hence the rank ofHn(µs) is 1. Analogously, when
µs is supported inl points andµs(x) ∈ Ch×k , we see that the rank ofHn(µs) is not
greater thanl(h ∧ k). Consequently, ifµa ≡ 0, equality (4) holds since only a finite
number (independently ofn) of singular values and eigenvalues are different from
zero andF is bounded. In the general case, the assertion follows if we define the
sequencesAn = Hn(µs) andKn = Hn(f ), wheref is the density associated toµa,
and use Theorems 3 and 6 in the decompositionHn(µ) = Hn(µa) + Hn(µs). �
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