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Abstract

By means of recent results concerning spectral distributions of Toeplitz matrices, we show
that the singular values of a sequence of blpdevel Hankel matricedd,, (i), generated
by ap-variate, matrix-valued measurewhose singular part is finitely supported, are always
clustered at zero, thus extending a result known when1 andu is real valued and Lipschitz
continuous. The theorems hold for both eigenvalues and singular values; in the case of singular
values, we allow the involved matrices to be rectangular. © 2000 Elsevier Science Inc. All
rights reserved.
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1. Introduction

The theory of the asymptotic spectral distribution of a sequence of matrices dates
back to the works of Széqg(see [6] and the references therein), who first solved the
problem of showing the existence and computing the limit
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jim > FO4(Ty), (1)
j=1
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whereT,, = T, (f) is then x n Toeplitz matrix generated by the Fourier coefficients
of a bounded real valued functidnthe i ;s are its eigenvalues arfidis a function
continuous on the compact intervahf 7, supf1; indeed, Szefy showed that the
above limit exists and is equal to the integral

1 T
o F(f(x)) dx.

T J—m
This result is now a classical one in the theory of Toeplitz matrices; nevertheless, it
has undergone many extensions and generalizations in recent years. For example, the
book of Béttcher and Silbermann [3] presents a systematic extension of the theory of
Toeplitz matrices and operators to operators with matrix-valued symbols, also deal-
ing with Szed-like limits and other asymptotic results; Tyrtyshnikov [11] extended
the Szed formula to the case of multilevel Toeplitz matrices, that is,
f=f(x1,...,x,) depends onp variables and the matricefrl,(f)}, where
n = (n1,...,np,) is now a multindex, have p-level Toeplitz structure; moreover,
the boundedness assumptionfavas dropped, antiwvas only assumed to be square
integrable over the cub@? (throughout, we denote b the interval(—x, 7)). In
the nonhermitian case, an analogous result was proved concerning singular values.
In the recent paper [12], Tyrtyshnikov and Zamarashkin proved that the results from
[11] still hold whenf is only supposed to be integrable ow@?; finally, such results
are further extended in [10] to the case whérie simultaneouslyp-variate and
matrix-valued, thus embracing as particular cases all the previously known results
on the asymptotic spectral distribution of Toeplitz-related matrices.

In this paper, we prove the existence of limits analogous to (1) for multilevel block
Hankel matrices generated by the Fourier coefficients of a matrix-valued multivariate
measure whose singular part is a finite sum of point masses. For positive natural
numbersp, h, k, let u be a matrix-valued measure, defined @A, with values in
C"k; throughout, the symbat always denotes the multindex= (n1, ..., n,),
andm(n) denotes the produet; - - - n,,. The p-level block Hankel matrixH,, (1)
generated by has ordef 7 (n) x k 7w (n) and is defined by

2n1—-1 2111,—1

Hw=Y Y kPe ok @a,..w. @)
./121 ./17:1

In the above equalitﬂ(,ﬁf) denotes the matrix of orden whose(i, j) entry equals
1if j +i =14 1 and equals zero otherwise; the matrigg8, 1 = 1,...,2m — 1,
are the natural basis of the linear spacenok m Hankel matrices, and the tensor
notation emphasizes thelevel Hankel structure off,(w); finally, the innermost
b|OCkSaj1“_.,jp (i) areh x k matrices, and they are the Fourier coefficients pf

~ @2n)p

wherex = (xg, ..., x,) ranges oveQ?’.

/ e—i(j1x1+..-+jpxp) d“/(-x) S Cths
or
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The above definitions off,, (1) andajl,,_,,jp (i) generalize the more usual defin-
itions of Fourier coefficiermjl,_,_,jp(f) of an integrable functiorf,

— 1 / £ (x) e 1(1xat-+jpxp) dx, ©)

(27.[)[) or
and of the Hankel matri¥/,, ( f) generated by it. In fact, whem is univariate, scalar
valued (that is, wheh = k = p = 1) and absolutely continuous, the above defined
H, (w) is just the Hankel matrit, (f) = {ai+./—l}?,/:1 of ordern generated by the
functionf such thatf (x) dx = du(x). ’

Spectral properties of Hankel matrices where pioneered by Widom [13], as finite
counterparts of certain integral operators. Boundedness and compactness of Hankel
operators it spaces were studied by Nehari and Hartman, see [8]. Moreover, eigen-
values of finite Hankel matrices play an important role in best rational approximation
theory, in particular, in the Carathéodory—Fejér and Nehari problems. We refer to the
book [9] for a recent account on Hankel matrices and operators. More recent res-
ults connecting spectral properties of Hankel matrices to problems in approximation
theory can be found in [4,7].

In this paper, we consider unbounded sequences of Hankel matrices. Our results
concern the asymptotic spectral distributionfHf(i1) asn tends to infinity, and that
of A, + H, (1) whereA,, is any sequence of matrices which has some given spectral
distribution. We remark that the notation “lim ».” stands for “limMningn; o0, that
is, not only the size off, (u), but also the size of each inner Hankel leveHf i)
must diverge.

The following theorem characterizes the spectral distribution of block multilevel
Hankel matrices, and it states that their spectra are always clustered at zero. It extends
a previous result in [5], which covered the particular case whéxg = du(x)/ dx
is univariate, scalar-valued and bounded.

Theorem 1. If u(x) is a matrix-valued measure ifi”, with values inC"**, whose
singular part is finitely supportedhen for any function Funiformly continuous and
bounded oveR,

. 1
lim ————
n—00 (h A k) 7 (n)

(hAk)T (n)
> F(oj(Hy(n)) = F(0), (4)
j=1

whereh A k = min{h, k} ando; (H, (1)) denotes theth singular value oA, (11).
Moreover if the involved matrices are hermitiathen a similar limit holds for

eigenvalues as well.

In other words, the asymptotic spectral measure of the matfig€g) is the
Heavyside step function with the jump at zero, or, according to the definition of
a cluster found in [11], the sef0} is a cluster for the singular values &f;,(w).
Moreover, adding a sequence of such Hankel matrices to a sequence with a given
spectral distribution does not affect the spectral distribution itself. As a particular
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case, we obtain a result on spectral distributions of Toeplitz-plus-Hankel matrices,
which generalizes the results from [5] concerning the one-level scalar case.

After introducing some definitions and preliminary results in Section 2, we give
the proof of Theorem 1 and other related results in Section 3.

2. Notations and preliminary results

If A e C" we denote by ;(A) thejth singular value of, and ifAis hermitian,
we denote by, ; (A) thejth eigenvalue oA (both sets are arranged in nondecreasing
order, counting multiplicities). Throughout, we end@#”* with the so calledrace
norm,
hnAk
1Al =)0 (A),
j=1
whereh A k = min{h, k}. For the basic properties of the trace norm, we refer the
reader to [1].
We consider functions belonging to the Banach sgac@?, C"*¥) of all matrix-
valued functions which are integrable ow@f. The L1-norm is that induced by the
trace norm, that is,

1
f el € = Iflu= G /Q 1 )l e < +oo.

It is clear that any other matrix norm of*** would lead to the same space of
functions; nevertheless, the choice of the trace norm will turn out to be natural in our
setting.
Giveng € L1(QP, C"**), thep-level block Toeplitz matrixt}, (g) generated by
has ordern: 7 (n) x k (n), and in analogy with (2), is defined by
ni p ) .
T = Y - I @ ®aj. (), 5)

Jj1=—n1 Jp=—np

WhereJ,ﬁf) denotes the matrix of ordenwhose(, j) entry equals 1iff —i =/ and
equals zero otherwise; as for Hankel matrices, the innermost biggks;, (¢) are
h x k matrices, namely the Fourier coefficientgpflefined as in (3).

The following result is a particular case of Mirsky’s theorem, and will be used
in Section 3; a proof and more details can be found in the book of Bhatia [1, pp.
100,101].

Lemma 2. For any two matricest, B € C"*¥, we have

hnrk

Y |oj(4) —o;(B)| < 1A — Bl (6)
j=1
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If, moreover A and B are hermitianthen also
k
> |4 =2 (B)| < A = Bl ©)
j=1

Finally, let © denote the set of all sequendés,} of i (n) x km(n) matrices such
that 1
lim — | Knlltr = 0. (8)

n—o00 1 (n)
The classt” plays an important role in the study of asymptotic spectral properties
of sequences of matrices, see e.g. [3, Sections 5.6 and 5.7]. Its relevance is clarified
by the fact that the term-by-term sum of a sequencé in a sequence of matrices
leaves unchanged the asymptotic spectral distribution of the latter:

Theorem 3. Suppose thatkK,} is a sequence i and {A,} is a sequence of
matrices such that,, and K, are h 7 (n) x k 7 (n) and such that the limit

. 1 (hA k) (n)
n&mwm jZ::l F(oj(An)) 9

exists for all F uniformly continuous and bounded o#erThen the singular values
of A, + K, are distributed as those of,,, that is the limit

- 1 (hA k) (n)
n||_)moo m ; F(Uj (A, + Kp)) (10)

exists and is equal to the lim({®).
Moreover if all the involved matrices are hermitiathen the same results hold
for eigenvalues as well.

Proof. For any multindex: = (n1, ..., n,) we let
1 (hAk)m (n) (hAk)m(n)
D= Zl F(0;(An + Kp)) — Zl F(oj(An)|.
J= J=

In order to prove that (9) equals (10) it suffices to show thaj lim D,, = 0. Sup-
pose first thafF is smooth and| F’||s = sup|F’(x)| < +oo. Using the mean value
theorem and Lemma 2 we obtain

1F oo "™ il
© 00
s ; 0 CAn + Kn) = 0 (An)] < =5 1Kl

Taking the limit forn — oo, the proof is completed. The general case can be man-
aged by a standard approximation argumentF Ifs uniformly continuous and
bounded oveR, let{F,,} be a sequence 6f(R) functions such thatF — F, |leo <

¢ for all ¢ and sufficiently largen. Then we have
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1 (hAK)T (1)
Dy, P )<||F lloo | K lltr + Z |F(0j(Kp)) — Fp(oj(Kp))l
j=1

(hAk) T (n)

+ Y |F<o,-(An+Kn>)—Fm<a,-<An+Kn)>|)
j=1

_ Il

D)

Consequently, limsyp, ., D, < 2(h A k)e, and since > 0 can be chosen arbitra-
lily, we arrive at the assertion.

Finally, if all the matrices are hermitian, in order to prove the statements concern-
ing singular values, it suffices to repeat step by step the above arguments replacing
oj with 1; and using (7) in place of (6).0]

1 Knller 4+ 2(h A k)e.

3. Main results
Consider the following inequality concerning block multilevel Toeplitz matrices:

Lemma 4. If g € L1(QP, C"**) then for any multiindex n

(1 ) 1T (@l < 2lIgllLy- (11)

For a proof, see [10, Lemma 3.1], where the estimate is proved wheg; the
general case can be easily obtained by adding a suitable number of dummy null rows
(if h < k) or columns (ifz > k), which does not affect the norms.

Here we prove an analogous inequality for( f); the idea is that of passing from
Hankel to Toeplitz structure by a suitable permutation of rows.

Lemma 5. If f € L1(QP, C"¥) then for any multindex n

pp )”Hn(f)”tr <2 fllzy- (12)

Proof. We observe that the matrK(’”) is the “reverse” permutation matrix of order
m; to point it out, we denote it bR,,. Moreover, let,,, = J(O) be the identity matrix
of orderm. It is immediate to see that

Ry KW = gh=m  p =12 .. 2m—1, (13)
that is, R, turns a Hankel matrix into a Toeplitz. This holds also in the multilevel
case; indeed, observing thAt ;) = Ry, ® - - - ® Ry,,, we obtain from (2), (5) and
(13),
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(Rn(n) ® Ih) H,(f)
2011 2np—1 ) )
=Y Y (R k) @@ (R K) © a0
=1 jr=1
2n1—1 2np—1

Z Z J(/l n1) L ® Jn(ljfin”) Raj,..., jp(f)

j1:l /p—l

( )
= Z Z J(]l) /1 ® ajytny.,..... /'p+np(f)
J1=—n1 Jp=—np
= Tu(g),
whereg(x1, ..., xp,) = 0¥ HFm%) £(xq . x,). The trace norm is unitarily

invariant (see [1]). Therefore we obtaji, ()|« = |7, (2)ll«r- Since the singular
values off (x) coincide with those 0§ (x), we have|gll., = || fllz,, and from (11),
we obtain (12). [

Theorem 6. If f € L1(Q?, C"*¥), then the sequenddi, (f)} belongs ta®.

Proof. Whenf isa trigonometric polynomial,

f(-xla cee xp) Z Z ajy,....j |(/lx1+ +/po) (14)

Ji=—d ]p—*
by removing null rows and columns (which does not affect the trace norm), we obtain

1H (Ol = | Z Z kKP®- K @aj i, (Ol
=l jp=1
and hencd| H, (f)|l does not depend om Therefore, equality (8) is trivially ful-
filled with K,, = H,,(f).
When f € L1(Q?, C"™k), let { f,,} be a sequence of functions of the kind (14)
(whered may depend om) converging tof in the L1-norm. For any givem, from
the triangular inequality and Lemma 5 it follows

1
o )II n ()l < ( )II n () ller +- o )II n(f = Sl

< %”Hn(fm)”tr +21f = fmllLs-

Taking the limit as: — oo yields

1
||m3Up—)||H(f)||tr <2f = fallLy

n— oo (

for any fixedm. Finally, taking the limit asn — oo we complete the proof. [
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As an immediate consequence we have that,dfL1(Q?, C"*ky then

k(n) k
. 1
Jim ; Floj(Tu(®) + () = s fQ p;F(o,-(g(x)» dr.

(15)

The proof of (15) is but a particular case of Theorem 3, whAgrequalsT;, (g); the

fact that the spectra df, (g) are distributed as the right-hand side of (15) was proved
in [10]. Note that Eqg. (15) was shown in [5] in the one-level scalar case under the
additional hypothesis that boftandg are bounded.

Proof of Theorem 1. By hypothesis, we have = g + us, Whereu, is absolutely
continuous angks is finitely supported. lfx is scalar valued ands consists of just a
unitmass at = (&1, ...,x,) € QF, then, for any multiindices = (i1, ..., i,) and
J=01, -, jp) with L< iy, jx <npfork=1,..., p, the(i, j) entry of H,(s)
is

(i1 DR =D
it ji=Liptip-1He) = 5 75 € Ut =D+ Cptip=Dp)

4 N P oA
—c 1_[ e ik 1_[ e 1k¥k
k=1 k=1

wherec = dW1t+%) /(27)P. Hence the rank oH, (us) is 1. Analogously, when

Ws is supported it points andus(x) € C"*k, we see that the rank @, (us) is not
greater thari(h A k). Consequently, iftg = 0, equality (4) holds since only a finite
number (independently af) of singular values and eigenvalues are different from
zero andF is bounded. In the general case, the assertion follows if we define the
sequenced, = H,(us) andK, = H,(f), wheref is the density associated tq,

and use Theorems 3 and 6 in the decompositiptit) = H,(u1a) + H,(us). O
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