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Abstract 

After proving that any Hankel matrix generated by moments of positive functions is conditioned essentially the same 
as the Hilbert matrix of the same size, we show a preconditioning technique, i.e., a congruence transform of the original 
Hankel matrix that drastically reduces its ill-conditioning. Applications of this result to classical orthogonal polynomial 
sequences and to modified moment problems are given. Also, we outline an efficient algorithm for the computation of the 
function f(x) = w(x)exp(p(x)), where w(x) is positive and p(x) is a polynomial of degree n - 1, from the knowledge of its 
first n moments. 

Keywords: Preconditioning; Hankel matrices; Finite moment problems 

AMS Classification: 65F35; 33A65; 45L10 

1. Introduction 

Hankel matrices whose skew-diagonal entries are moments of weight functions arise naturally in 
the numerical solution of finite moment  problems, as well in some discretizations of integral 
operators and in the study of orthogonal polynomial sequences [14, 18]; moreover, their relation- 
ship with Vandermonde matrices and their spectral properties are research subjects of its own 
interest in numerical linear algebra [3, 9, 17]. This paper is concerned with Hankel matrices 
generated by moments  of positive weight functions in the interval [0, 1]. One of our main results 
states that they are conditioned essentially the same as Hilbert matrices. This severe ill-condition- 
ing motivates the search for a preconditioner, that is a congruence transform, that can reduce it. In 
essence, preconditioning is a technique for improving the condition number of a matrix, and is 
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a widely used tool when iterative methods are employed for the numerical solution of linear 
systems. In fact, it can drastically reduce the number of iterations needed to obtain a good 
approximation to the exact solution. More specifically, suppose that M is a symmetric, positive- 
definite matrix that is close, in some sense, to another positive-definite matrix A. Thus, we can solve 
A x  = b indirectly by solving the precond i t ioned  s y s t e m  M - I A x  = M - l b  or, equivalently, 
C A C * y  = Cb where M-1  = C * C  and C * y  = x. The matrix M is called a precondi t ioner .  More 
details and references on preconditioning techniques can be found in the recent survey [1]. 

The preconditioning of discrete ill-posed problems has received little attention in the literature, 
even though they often originate from questions of applied analysis. A preconditioning technique is 
introduced in [-11] for the solution of linear systems in electrical impedance tomography; FFT- 
based preconditioners for Toeplitz-block systems arising in signal processing and image deblurring 
are considered in [2, 8, 10], and a short mentioning to preconditioning issues in general ill-posed 
problems is done in [7]. The lack of attention in this area is particularly evident with respect to the 
literature in the field of numerical solutions of PDEs, where preconditioning is a popular tool. 
Presumably, it happens so because ill-posed problems are prevalently approached through regular- 
ization techniques that lead to well-conditioned matrices. However, observe that regularization 
differs from preconditioning in that the solution of a regularized problem is not the same as the 
solution to the same problem without regularization. Indeed, in [2, 8, 10] preconditioning tech- 
niques are also applied to regularized problems. 

A remark is in order here: Linear systems occurring in practical finite moment  problems are of 
small sizes, and iterative methods may be regarded as inappropriate in this context. Indeed, our 
purpose is to introduce preconditioning into a class of problems, rather than in their solution 
technique. The applications we have in mind, in particular some nonlinear problems, do benefit 
from being restated in the preconditioned form. 

The main aim of this paper is to show a preconditioner for the above-mentioned matrices that 
improves drastically their conditioning. The preconditioner we are going to introduce is indepen- 
dent of their weight function, and this feature is of relevance for its effectiveness in nonlinear 
problems. After some preliminaries and notations, we state in Section 3 our main results. In Sec- 
tion 4 we present their applications to some finite moment  problems, with an emphasis on the link 
between our preconditioning technique and a modified version of the finite moment  problem. As 
a by-product, a new estimate on the conditioning of orthogonal polynomial bases is also present. In 
the last section we provide some numerical examples. 

2. Preliminaries and notations 

Throughout  this paper, let w(x)  be a positive integrable function on [0, 1], w(x ) />  ( > 0, 

• i XiW mi = (x) dx ,  i = 0 , 1 , 2 , . . .  

be its moments,  M, - (mi+j-2), for i, j = 1, . . . ,  n, be the nth order positive-definite Hankel matrix 
with the moments  of w(x) in its skew-diagonals and H ,  - (hij), hij = 1/(i + j - 1), for i , j  = 1, .. .  ,n ,  
be the Hilbert matrix. The superscript * denotes transposition. Let lo(x), l l (x) ,  .. .  be the shifted 
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Legendre polynomials  on [0, 1] normalized so that  II li(x)ll2 = 1 and II l i(x)ll  2 = 2i + 1 [13], with 
positive leading coefficient. Let x(A) denote  the spectral condi t ioning of the matrix A, i.e., the ratio 
between its largest and smallest singular value. Let # 5 p denote the cardinality of the finite set 5 e. 
A sequence of configurations of points {x(m)}, where x t " )=  (X~l :'), ...,x~m)), is said to have the 
asymptotic distribution function g(x) [3] if 

lim # {i: x~ m) < x}  = g(x). 
m ---~ Ot3 m 

Example 2.1. Let x] m), . . . ,  x~ m) be the zeros of the ruth degree or thogonal  polynomial  relative to 
a generalized Jacobi weight function in [0, 1], and x ~m) = (x] m), . . . ,  x~m)). Then the sequence {x ~m) } 
has the asymptot ic  distr ibution function (see [3, L e m m a  2.1]) 

1 
g(x) = - a r c c o s  (1 - 2x). 

7[ 

For  later reference, we restate here one case of the main result of [3], concerning the spectral 
condi t ioning of rectangular Vandermonde  matrices. 

Theorem 2.2. Let  {x tin)} be a sequence o f  configurations o f  nodes having a differentiable asymptotic 
distribution function g(x), such that g'(x) ~> 7 > 0, and 

lim m(g(x~ )) - g ( x ~ _  1) ) = 1 (1) 
m - - *  O0 

for  every integer sequence {kin} such that k,, e {1, ... ,m}. Let  V,,m -- (Vii), Vii = X} m)'-I be the n x m 
Vandermonde matrix built on the nodes x ~m). Then, we have 

7 l£(Vn m) 2 n 
- -  < lim ~ '  < 
2n - 1 m-~ ~ ~(H,) 7" 

Observe that  the nodes in Example  2.1 satisfy condi t ion (1), see [13, Theorem 6.11.1]. 

3. Spectral properties of Hankel matrices 

In this section we state our  main  results concerning spectral properties of the matrices M,. The 
seminal paper  on spectral properties of Hankel  matrices is probably [18]; more  recent results are 
found in [15, 17]. Specifically, it was proved in [15] that  

lim inf(x(M,)) 1/" ~> 4, 

while in [17] it is shown that  the bound  

~:(M,) I> 3.2"-6 



148 D. Fasino /Journal of Computational and Applied Mathematics 65 (1995) 145-155 

holds for any positive-definite Hankel matrix M,. In the subsequent theorem, a new asymptotic 
estimate on tc(M,) is given. To start with, we assess in the following proposition a more-or-less 
known fact, exibiting a qualitative behaviour of all Hankel matrices with moments  of weight 
functions in their skew-diagonals. 

Theorem 3.1. The eigenvector relative to the ith largest eigenvalue of M,  has exactly i sign changes in 
its entries, i.e., the matrix M,  is oscillatory. 

Proof. The matrix M, can be factored as M, = VDV* where V is the Vandermonde matrix with 
nodes Xx, . . . ,  x,,  D = Diag(21, . . . ,  2,), and xi, 2i are the Christoffel numbers of a Gaussian quadra- 
ture formula relative to w(x). The result follows since Vandermonde matrices with positive nodes 
are oscillatory and the product of an oscillatory matrix by another  or by positive diagonal matrices 
is still oscillatory, see I-5, II, pp. 98-105]. []  

Note that the positivity of w(x) is not used in the above theorem; more quantitative results about 
the "closeness" of the matrices M, are given in the next two theorems. 

Theorem 3.2. In the notations of the preceding section, it holds: 

lim Oc(M,)) 1/" = lim (K(H,)) 1/" = e 3'525"''. 
n---~ QO n---* O0 

Proof. Since scaling a matrix does not affect its conditioning, we can suppose, without loss of 
generality, that the (1,1) entry of M,  is 1. Let 

fo g(x) = w(t) dt, 

x! m ) = 9  , i = l , . . . , m ,  m = l , 2 , . . . .  (2) 

Then the sequence of configurations {x tin)} has the asymptotic distribution function g(x) and 
fulfills the hypotheses of Theorem 2.2, the limit (1) being easily verified. Let V,,m be the n x m 
rectangular Vandermonde matrix whose nodes are given by (2); then, from a simple computation,  
we have 

1V , lim - - . ,  m V n * ,  rn = M,, 
m-*o~ m 

and, by continuity, 

lim K(V,,m) 2 = ~c(m,). 
m---* oo  

The result follows from Theorem 2.2 and the classical estimate [-16] 

lim (~:(H,,)) 1/" = e 3'525"'" [] 
n ---~ o(3 
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The above proposi t ion  relates the condi t ion number  of the matrix M,  to that  of the Hilbert 
matrix H,. One can show, by similar arguments  and some results of [3], that  their ratio is bounded  
from above and below by constants  if w(x) is positive and bounded.  It is then quite remarkable  that  
the boundedness  of w(x) can be relaxed wi thout  degrading too much  that  estimate. The following 
theorem essentially states that  the Hilbert matrix is a good precondi t ioner  for this class of matrices, 
as the condi t ioning of the precondi t ioned matrix grows at most  linearly with n. 

Theorem 3.3. Let L, be the inverse of the lower triangular Cholesky factor of the Hilbert matrix H,, 
L* L, = H21. 

(1) the smallest eigenvalue of L,M,L* is not smaller than ~; 
(2) the largest eigenvalue of L,M,L* is not greater than 2n - 1. As a consequence, 

K( L .M .L * ) < < . -  
2n -- 1 

Proof. It is well known  (see, e.g., [14]) that  the entries of L , - - ( l u )  are the coefficients of the 
Legendre polynomials  li(x), 

i 

l (x) = l , y .  
j = O  

Let c = (Co, . . . ,  c,_ 1)* be any vector, p(x) be the (n - 1)th degree polynomial  

n - 1  

p(x) = y "  cili(x), (3) 
i = 0  

the sequence {x (m)} be as in (2) and V,,,, be the n x m rectangular Vandermonde  matrix with nodes 
x (r"), as in t roduced in the proof  of Theorem 3.2. Then 

c*L,M,L*c = lim --1 c*L.V,,mV*mL*c 
,,-. oo m 

n - 1  n - 1  

lim ~ y' (m) ~m) Cicjli(Xk )lj(Xk ) 
m " ~  i = 0  j = O  k = l  

= lim 1 ~ p(x~,)2 
m ~ o v  m k = l  

m 
1/m ~ p(xg~))2(x(k~) _ x~_) 1) 

>1 m-.o~lim max(x~") - x~m-)l) k=l 
k 

£ /> inf W(X) p(x) 2 dx 
O < x < l  

(4) 

=  c*c. 
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Fig. 1. Log-log plot of the extreme eigenvalues of the preconditioned Hankel matrices relative to the first kind 
Chebyshev weight function. 

This proves the first assertion of the theorem. Moreover,  from (3) and (4), 

c*L,M,L* c <<. tl p(x)II 2 ~< c*c(2n - 1), 

because of the above-mentioned properties of the polynomials li(x). Then the largest eigenvalue of 
L,M,L* is not greater than 2n - 1, and the proof is complete. []  

Example 3.4. Fig. 1 shows a plot of the largest and smallest eigenvalues of the preconditioned 
matrix L,M.L* for n = 3, . . . ,  30, where w(x) = 1/(n x / ~  - x)) is the first kind Chebyshev weight 
function in [0, 1]. The linear behaviour of the largest eigenvalue is apparent. 

4. Applications to finite moment problems 

4.1. Polynomial solutions of finite modified moment problems 

It is worth noting that solving a linear system having L,M,L* as coefficient matrix amounts  
precisely to finding a particular representation of a polynomial that solves a modified moment  
problem. In fact, for the Four ier-Legendre  coefficients Co . . . . .  c,_ 1 of the (n - 1)th degree poly- 
nomial (3) such that 

ili(x)p(x)w(x)dx = vi, i = 0, ... ,n - 1, (5) 
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it holds 

L . M . L  c1 = 

Cn !- 1 

v° t Vl 
• . 

/)n ~- 1 

(6) 

Thus, precondi t ioning the matrix M,  by means of H,  is equivalent to using Legendre poly- 
nomials li(x) in place of monomia ls  x i for both  the expression of the moment s  and the expansion of 
p(x). It is well known  that  the expression of a polynomial  in the monomia l  basis is far worse 
condi t ioned than  its expansion in Legendre polynomials  [6], and the use of or thogonal  expansions 
in the numerical  solution of finite m o m e n t  problems is a s tandard  procedure,  see, e.g., [4, 14]• In 
this paragraph we investigate analytically the stability of the polynomial  p(x) satisfying (5), with 
respect to errors in the data  Vo, . . . ,  v,_ x. In what  follows, the constant  e plays the role of an upper  
bound  on the Euclidean norm of that  data  error• Let ZOo(X), rrs(X) . . . .  ,rc,_l(x) be the first 
n o r thonormal  polynomials  relative to the weight function w(x). Let A, ~- (a 0 be the n x n upper  
tr iangular matrix such that  

i 

li(x) : ~ aiiTri(x). (7) 
j = 0  

Observe that  A,,(Co, . . . ,  c,,_ 1)* = (do, . . . ,  d,_ 1)* if and only if 
n - 1  n - 1  

Z cili(x)= ~ diTci(x), 
i = 0  i = 0  

that  is, the matrix A. is associated with an o r thonormal  basis change in a space of polynomials  
equipped with two different inner products.  Since A* A. = L . M . L * ,  as a direct inspection shows, 
the singular values of A. are just the square roots of the eigenvalues of L . M . L * .  Then, as 
a consequence of Theorem 3.3, we can state the following theorem that can be compared  with the 
result in [6]. 

Theorem 4.1. K(A,) ~< ((2n -- 1)/~) 1/2. 

Theorem 4.2. In the notations o f  the preceding sections, i f  p(x) is an (n - 1)th degree polynomial such 
that 

lk(X)p(x)w(x)dx ~ e 2, 
k=O ,)0 

then it holds: 

p(x) w(x) dx --;. 
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Proof.  There exist coefficients Co, . . . ,  c,_ 1 and  do, . . . ,  d ,_ 1 such tha t  

n - 1  n - 1  

p(x) = F, c,l,(x)= 
i = 0  i = 0  

P(X) 2dx = 2 c~, p(x)2w(x)dx = ~ d~. 
i = 0  i = 0  

Let c = (co . . . .  ,C,_l)*, d = (do . . . . .  d ,_ t)*. Using Eucl idean vector and  matr ix  norms,  we can 
rewrite the hypothesis  as I[L,M,L*cl[  ~ e- Consequent ly ,  II c fl ~< I I ( L . M . L * ) - I  II ~ ~< ~/~ by 
Theorem 3.3. This proves the first inequali ty.  Moreover ,  

[[g,M,g * c [[ = 11L,M,L * A21d  [[ = [IA*d[[, 

where A, is as in (7). Finally,  

82 

[Idl[ 2 ~ [ [ A n a l [ 2 ~  2 = I[(L,M,L*)- l l le  2 <~ ~ .  [] 

4.2. Computing best entropy approximations 

Let us consider  the numerical  compu ta t i on  of an u n k n o w n  positive funct ion f ,(x) tha t  satisfies 
the constra ints  

foXif,(x) dx = i -- 0, n - 1, (8) Pi, I q O ~ 

provided tha t  they are consistent.  In practical  applicat ions we are given a positive a priori  est imate 
w(x) of f , (x)  and we want  to choosef , (x )  as the minimizer  of the cross-entropy funct ional  [12] 

fo log f(x) Ew(f )  = f (x )  - ~ d x ,  

tha t  is, we pick the funct ion which has the smallest cross-entropy a m o n g  all funct ions having those 
first n moments .  The solut ion to this problem is k n o w n  to be [-12] 

f , (x)  = w(x)exp ajx j , (9) 
\ j = O  / 

where the unknow ns  ao, . . . ,  a ,_  1 are solut ions of  the nonl inear  system 

~bg(ao . . . .  ,a,-1) = xiw(x) exp ajx j dx = pi, i = 0, ... ,n - 1. (10) 
\ j = O  / 

A reasonable  approach  to this problem is to use a descent or  Newton- l ike  m e t h o d  where, at each 
iteration, we need to solve a l inear system having the Jacobian  of # as coefficient matrix.  This 
Jacobian  turns out  to be a Hankel  matr ix  with the momen t s  of  the current  approx ima t ion  off , (x)  in 
its skew-diagonals.  As Theorem 3.2 proves, this is a very i l l -condit ioned matrix.  However ,  since the 
solut ion of  this system is necessary only to make  a step toward  the solut ion sought ,  it is often 
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sufficient to solve it approximately, and a preconditioned iterative method can be a good choice. In 
particular, this is the case when data are affected by noise and one is looking for an approximation 
that satisfies the constraints within some tolerance, usually by means of some a posteriori criterion 
such as the discrepancy or the L-curve [7]. Thus preconditioning all the matrices occurring in the 
algorithm by means of the Hilbert matrix is attractive from the point of view of computation,  
because it leads to a better convergence rate of the iterations and a lesser sensitivity of the solution 
to noise in the data. The whole computat ional  procedure can therefore be very effective. 

5. Numerical examples 

In all subsequent experiments, we consider as input the moments/~ = (/~o, . . . ,  #,-1)* and use 
Eucledean vector norms. The function w(x) is always the first kind Chebyshev weight function in 

[0, 1], w ( x ) =  1/ (~zx/x(1-  x)). Noisy data are simulated by adding random numbers having 
a normal distribution with zero mean and variance a to exact data. 

We adopt the strategy of converting the da ta / t  into modified moments  v = L,/~ before comput- 
ing the approximations sought. In fact, by virtue of Theorem 4.2, we expect a much better stability 
of the output if we use modified moments  instead of classical moments  as input. However, the 
computat ion of the product L,/~ is very unstable, due to the presence of large entries, both positive 
and negative, in the matrix L,. Only for moderate  n, say, up to 15, this computat ion is feasible in 
double precision arithmetics, since for larger dimensions the errors in last entries of the computed 
vector grow exponentially. Instead, the matrix L ,  1 is nonnegative, with decreasing entries, and it 
can be multiplied times a vector in a numerically stable way. Thus, we suggest using a least-squares 
approach to the approximation of the vector v of modified moments,  namely, 

minimize [lull 2 subject to IlL~-av - / t l ]  2 ~< g2, (11) 

where e is some tolerance, eventually related to the noise amplitude in the data. A number  of 
techniques are available for such task. They are substantially equivalent each other, due to the 
uniqueness of the optimum. Clearly, other approaches are also possible, since the goal is to 
compute,  in a stable way, a reasonable approximation to the vector L,/~. Note that (11) is actually 
a sort of regularization. The following examples are based on the above minimization procedure. In 
particular, the parameter  e is chosen as to minimize the error in the computed solution, since it is 
not the purpose of this paper to investigate the optimal choice of e. 

Fig. 2 shows the relative error Hu(x) - p(x)ll/Hu(x)]l in the computed solution p(x) to the finite 
weighted moment  problem 

l x ip(x)w(x)dx  = i = 0 - 1, 

with respect to the variance o- of the data error and the number  n of moments  considered. Here p(x) 
is computed from (3) and (6), and the exact data are the moments  of the function u(x )=  
1/(1 + 125(x -0.5)2).  

Further,  the numerical solution of the problem (8) and (9) is considered, by means of the Newton 
method, for n = 15, 20, 25, 30. In this case, the data /~o, . . . , / t ,_  1 are moments  of the function 
f (x )  = w(x)/(1 + 1 2 5 ( x -  0.5)z). We follow the approach based on (11) and our preconditioning 
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Fig. 2. Relative error  in the computed  solut ion vs. noise variance for n = 20, 25, 30. 

Table  1 
Relative error  achieved by the precondi t ioned Newton  
method  

n Exact  da ta  a = 10 -6 6 : i0  -4  

15 7.5- 10 -9 2.5' 10 -6  2.5' 10 -4  
20 1.7" 10 7 2.8" 10 -6 2.8' 10 -4  
25 7.8' 10 -7 3.2" 10 -6 3.1" 10 -4  
30 1.3' 10 -6 3.8" 10 -6 3.7" 10 -~  

technique. A straightforward implementation of the Newton method to Eq. (10) is completely 
unreliable because of the reasons discussed in the previous section. 

Transforming classical moments into modified moments, we restate the problem so that 
preconditioned matrices L,M,L* are involved rather than M, as before. Note that the global 
convergence of the method is assured since the cross-entropy functional is convex. In Table 1 we 
summarize the relative error II (f,(x) -f(x))/w(x)II/Ilf(x)/w(x)l[ achieved in the computed solutions, 
using exact (a = 0) or perturbed data. The number of iterations to convergence ranges from 15 to 
22, showing to be relatively insensitive to the size of the problem. Iterations always start from the 
null vector and stop when the residual reduces by a factor of 10-6. 
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