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Abstract
We first generalize an identity involving the generalized Fibonacci numbers and
then apply it to establish some general identities concerning special sums. We also
give a sufficient condition on a generalized Fibonacci sequence {Un} such that Un

is divisible by an arbitrary prime r for some 2 < n ≤ r − 2.

1. Preliminaries

The generalized Fibonacci and Lucas numbers are defined, respectively, by Binet’s
formula, as follows

Un(p, q) =
αn − βn

α− β
, Vn(p, q) = αn + βn,

where α = 1
2 (p +

√
p2 − 4q) and β = 1

2 (p−
√

p2 − 4q). The numbers Un(p, q) and
Vn(p, q) can be defined recursively by

Un(p, q) = −qUn−2(p, q) + pUn−1(p, q),
Vn(p, q) = −qVn−2(p, q) + pVn−1(p, q),

for all integers n, where U0 = 0, U1 = 1, V0 = 2 and V1 = p. Throughout the
paper, p and q denote the real numbers, Un and Vn stand for Un(p, q) and Vn(p, q),
respectively, and ∆ = p2 − 4q.

A sequence {Gn} is said to be a (p, q)-sequence if Gn satisfies the recursive
relation

Gn = −qGn−2 + pGn−1,

for all integers n. Clearly, the (p, q)-sequences, which are identified at two consec-
utive indices should be equal.

It is known that the formula

Ua+b = −qUa−1Ub + UaUb+1
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is valid for any generalized Fibonacci sequence {Un(p, q)} and all integers a, b.
We intend to present a generalization of this identity and derive some of its ap-

plications, which are the general solutions of some solved and unsolved problems
concerning the generalized Fibonacci numbers. In Section 2, we prove our claim
and give its generalization. In Section 3, we apply our identity to evaluate some
summations involving that of Mansour [4] (see also [5]), the sum of powers of the
generalized Fibonacci numbers and etc. In final section, we use our identity to get
a divisibility property of the generalized Fibonacci numbers.

Remark 1. In the sequel we shall frequently use the fact that if a finite ratio-
nal expression P contains some terms of a generalized Fibonacci sequence, which is
not identically zero but it vanishes with respect to a special sequence {Un}, we can
always choose a sequence of the generalized Fibonacci sequences {Um

n }∞m=1 such that
P does not vanishes over these sequences, while {Um

n }∞m=1 tends to {Un}. Without
loss of generality, we may assume that all the sequences under the consideration do
not vanish over the expressions, which might appear in the denominators.

2. Main Results

It is well-known that if {Un(p, q)} is a generalized Fibonacci sequence, then

Ua+b = −qUa−1Ub + UaUb+1,

for all integers a, b. It is also proved in [2, Lemma 2.1(c)] that the identity

Fa+b+c−3 = FaFbFc + Fa−1Fb−1Fc−1 − Fa−2Fb−2Fc−2

is valid, for all integers a, b, c. We give a generalization of these identities in terms
of the generalized Fibonacci sequences.

Theorem 2. If {Un} is a generalized Fibonacci sequence, then for all natural
numbers m,

Ua1+···+am−(m+1
2 ) =

m∑

i=1

{
m

i

}
Ua1−i · · ·Uam−i, (1)

where a1, . . . , am are integers and

{
m

i

}
=




m∏

j=1
j !=i

Uj−i





−1

.

Proof. First suppose that a1, . . . , am are equal to 1, 2, . . . , i, i + 2, i + 3, . . . ,m + 1,
in some order. Without loss of generality, we may assume that a1 = 1, . . . , ai = i,
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ai+1 = i+2, . . . , am = m + 1. If j #= i+1, then Ua1−j · · ·Uam−j = 0 holds and if j =
i+1, then Ua1−j · · ·Uam−j = U−i · · ·U−1U1 · · ·Um−i so that

{m
j

}
Ua1−j · · ·Uam−j =

Um−i. On the other hand, Ua1+···+am−(m+1
2 ) = Um−i and in this case the equality

holds. If Un = Un(p, q), then clearly the both sides of (1) are (p, q)-sequences with
respect to each ai and also they identify on the cube (1, 2, . . . ,m) + {0, 1}m. Hence
the both sides of (1) should be equal over all the integer values of a1, . . . , am. The
proof is now complete. !

Theorem 2 can be generalized in the following manner.

Theorem 3. If {Un} is a generalized Fibonacci sequence, then for each natural
numbers m and n (with the same parity),

Ua1+···+an−(m+1
2 ) =

1
∆ 1

2 (m−n)

m∑

i=1

{
m

i

}
Ua1−m1i · · ·Uan−mni,

where m = m1 + · · · + mn and m1, . . . ,mn are odd natural numbers.

Proof. Let Uk = Uk(p, q) and m,m1, . . . ,mn be natural numbers such that
m = m1 + · · ·+ mn and m1, . . . ,mn are odd. By putting am−mn+1 = · · · = am = k
in Theorem 2, we get

Ua1+···+am−mn+mnk−(m+1
2 ) =

m∑

i=1

{
m

i

}
Ua1−i · · ·Uam−mn−iU

mn
k−i. (2)

By definition, Uk = (αk−βk)/(α−β), where α = (p+
√

∆)/2 and β = (p−
√

∆)/2.
Hence if ∆ > 0, then β < α and so limk→∞ Uk/αk = 1/(α−β), from which together
with (2) we obtain

(α− β)mn−1αa1+···+am−mn−(m+1
2 ) =

m∑

i=1

{
m

i

}
Ua1−i · · ·Uam−mn−iα

−mni. (3)

A simple computation shows that αk = −qUk−1 +Ukα, for each integer k. Suppose
that p and q are rational but α is irrational. This together with (3) yields

(α− β)mn−1Ua1+···+am−mn+(m+1
2 )−1 =

m∑

i=1

{
m

2

}
Ua1−i · · ·Uam−mn−iU−mni−1

and

(α− β)mn−1Ua1+···+am−mn+(m+1
2 ) =

m∑

i=1

{
m

2

}
Ua1−i · · ·Uam−mn−iU−mni,
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from which we obtain

(α− β)mn−1Ua1+···+am−mn+bn+(m+1
2 ) =

m∑

i=1

{
m

2

}
Ua1−i · · ·Uam−mn−iUbn−mni, (4)

for all integers bn. Now, since the left and right hand sides of (4) are of the forms
P (p, q) + Q(p, q)∆ and P ′(p, q) + Q′(p, q)∆, respectively, where P,Q,P ′ and Q′ are
polynomials, the equation (4) should be held for all real values of p and q. The
desired claim will be obtained by repeating the above procedure (n− 1) times. !

3. Applications

In this section, we use Theorem 2 to obtain some identities involving the general-
ized Fibonacci numbers. Our approach provides an alternative proof of Mansour’s
results [4] and general solutions of some summations, which are partially known.

Definition. Let m and k be any natural numbers. Then for any n ≥ 1,

Sm(n; p, q; k) :=
∑

a1+···+am=n

Uka1 · · ·Ukam .

In terms of the Fibonacci numbers, Vajda [6, Identity 98] and Dunlap [1, Identity
55] proved that

S2(n; 1,−1; 1) =
∑

a+b=n

FaFb =
1
5

(nLn − Fn) ,

for each n ≥ 1. Following the Vajda’s and Dunlap’s results, Zhang in [7] obtained
Sm(n; 1,−1; 1), when m ≤ 4. Recently, Zhao and Wang [8] have proved Zhang’s
results in terms of the generalized Fibonacci numbers. Mansour in [4] has also
obtained the following generalization of Zhao’s and Wang’s results, when m is an
arbitrary natural number. For n ≥ m,

m∑

i=0



(4qk)m−i




i∑

j=0

(−1)j

(
i

j

)
(i + 1− j)m




(

V 2
k (p, q)− 4qk

Uk(p, q)

)i

× Si+1(n + i−m; p, q; k)





=
m∑

i=1



 (−1)m−1(2qk)m−i

(i− 1)!




i−1∑

j=0

(−1)j

(
i− 1

j

)
(j + 1)m−1





×




i∑

j=0

vm,i,jU(n+i−m−j)k(p, q)
(

i

j

)





 ,
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where vm,i,j = (−2qk)jV i−j
k (p, q)

∏i
l=1(n + i + m− j − l).

Now, in the following, we give a different identity for Sm(n; p, q; k), by using
Theorem 2.

Theorem 4. Let m and k be natural numbers. Then for any n ≥ 1,

Sm(n; p, q; k)
Uk(p, q)m

=
(bm + pam)δm,n+m2 − amδm,n+m2+1 + a2

mSm−1(n + 1; p̄, q̄; 1)
b2
m + pambm + qb2

m

,

where (p̄, q̄) = (Vk(p, q), qk),

δm,n = αm,n −
m−1∑

i=1

(aiγm,n,i + biβm,n,i),

γm,n,i = −qUm(p̄, q̄)
m∑

i=1

Ui−m−1(p̄, q̄)Sm−1(n− i; p̄, q̄; 1)

+Um+1(p̄, q̄)
m−1∑

i=1

Ui−m(p̄, q̄)Sm−1(n− i; p̄, q̄; 1),

βm,n,i = −qUm−1(p̄, q̄)
m−1∑

i=1

Ui−m(p̄, q̄)Sm−1(n− i; p̄, q̄; 1)

+Um(p̄, q̄)
m−2∑

i=1

Ui−m+1(p̄, q̄)Sm−1(n− i; p̄, q̄; 1),

αm,n =
(

n− 1
m− 1

)
Un−(m+1

2 )(p̄, q̄)−
m∑

i=1

{
m

i

} m−1∑

j=1

(
m

j

)

×
n−(i+1)(m−j)∑

k=1




∑

a1,...,aj<i
a1+···+aj=k

Ua1−i(p̄, q̄) · · ·Uaj−i(p̄, q̄)





×Sm−j(n− k − i(m− j)); p̄, q̄; 1)

and
[
a0

b0

]
=

[
0
0

]
,

[
ai

bi

]
=

[
Um+1 Um

−qUm −qUm−1

] [
ai−1

bi−1

]
+

[
0{m
i

}
]
,

for i = 1, . . . ,m.

Proof. Let m and k be natural numbers. Since
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Un(p, q) =
αkn − βkn

α− β

=
αk − βk

α− β
·
(
αk

)n −
(
βk

)n

αk − βk
= Uk(p, q)Un

(
Vk(p, q), qk

)
,

we have

Sm(n; p, q; k) = Uk(p, q)mSm(n;Vk(p, q), qk; 1).

Thus we may assume that k = 1. Let Un = Un(p, q) and Sm(n) = Sm(n; p, q; 1).
By Theorem 2,
(

n− 1
m− 1

)
Un−(m+1

2 ) =
∑

a1+···+am=n

Ua1+···+am−(m+1
2 )

=
m∑

i=1

{
m

i

} ∑

a1+···+am=n

Ua1−i · · ·Uam−i

=
m∑

i=1

{
m

i

}


Sm(n− im) +
∑

a1+···+am=n
∃j:aj<i

Ua1−i · · ·Uam−i



 .

Hence
{

m

1

}
Sm(n−m) + · · · +

{
m

m

}
Sm(n−m2) = αm,n, (5)

where

αm,n =
(

n− 1
m− 1

)
Un−(m+1

2 ) −
m∑

i=1

{
m

i

} m−1∑

j=1

(
m

j

)

×
n−k−(i+1)(m−j)∑

k=1




∑

a1,...,aj<i
a1+···+aj=k

Ua1−i · · ·Uaj−i





×Sm−j(n− k − i(m− j)).

Applying Theorem 2, when m = 2, gives

Ua+b = −qUa−1Ub + UaUb+1,

from which we obtain
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Sm(n) =
∑

a1+···+am=n

Ua1 · · ·Uam

= −qUm−1

∑

a1+···+am=n

Ua1−mUa2 · · ·Uam

+Um

∑

a1+···+am=n

Ua1−m+1Ua2 · · ·Uam

= −qUm−1Sn−m + UmSn−m+1

−qUm−1

m−1∑

i=1

Ui−mSm−1(n− i) + Um

m−2∑

i=1

Ui−m+1Sm−1(n− i).

Hence for each 0 ≤ i <
[

n
m

]
,

Sm(n− im) = −qUm−1Sm(n− (i + 1)m) + UmSm(n− (i + 1)m + 1) + βm,n,i, (6)

where

βm,n,i = −qUm−1

m−1∑

i=1

Ui−mSm−1(n− i) + Um

m−2∑

i=1

Ui−m+1Sm−1(n− i).

Similarly, it can be shown that for each 0 ≤ i <
[

n
m

]
,

Sm(n− im+1) = −qUmSm(n−(i+1)m)+Um+1Sm(n−(i+1)m+1)+γm,n,i, (7)

where

γm,n,i = −qUm

m∑

i=1

Ui−m−1Sm−1(n− i) + Um+1

m−1∑

i=1

Ui−mSm−1(n− i).

Now, let [
a0

b0

]
=

[
0
0

]

and [
ai

bi

]
=

[
Um+1 Um

−qUm −qUm−1

] [
ai−1

bi−1

]
+

[
0{m
i

}
]
,

for i = 1, . . . ,m. Then, by using (5), (6) and (7), it can be easily shown that for
i = 1, . . . ,m,

aiSm(n− im + 1) + biSm(n− im) +
m∑

j=i+1

{
m

j

}
Sm(n− jm)

(8)

= αm,n −
i−1∑

j=1

(ajγm,n,j + bjβm,n,j).
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Replacing i by m in (8), we get

amSm(n−m2 + 1) + bmSm(n−m2) = δm,n, (9)

where

δm,n = αm,n −
m−1∑

i=1

(aiγm,n,i + biβm,n,i).

By (9) we have

δm,n+1 = amSm(n−m2 + 2) + bmSm(n−m2 + 1)

= am(−qSm(n−m2) + pSm(n−m2 + 1) + Sm−1(n−m2 + 1))

+bmSm(n−m2 + 1),

that is

−qamSm(n−m2) + (bm + pam)Sm(n−m2 + 1)
(10)

= δm,n+1 − amSm−1(n−m2+).

Solving the equations (9) and (10) we obtain

Sm(n−m2) =
(bm + pam)δm,n − am(δm,n+1 − amSm−1(n−m2 + 1))

b2
m + pambm + qa2

m

,

whence the result follows. !

Now, suppose that {Un(p, q)} is a generalized Fibonacci sequence. Then, by
utilizing Binet’s formulas,

n∑

x=1

Uax+b =
qaUna+b − U(n+1)a+b − qaUb−a + Ub

1 + qa − Va
− Ub (11)

and
∑

x+y=n

Uax+bUcy+d =
[
(qcVa − qaVc)UdU(n+1)a+b − q2cUd−cU(n+1)a+b

+q2aUdUna+b − q2a+cUd−cU(n−1)a+b + qa+2cUd−2cUna+b

+(qaVc − qcVa)UbU(n+1)c+d − q2aUb−aU(n+1)c+d (12)

+q2cUbUnc+d − qa+2cUb−aU(n−1)c+d + q2a+cUb−2aUnc+d

]

/
[
(qa + qc)2 + qa(V2c − Va+c − qaVc−a) + qc(V2a − Va+c − qcVa−c)

]

−UbUnc+d − Una+bUd.
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Note that, the identity (12) generalizes the case m = 2 in Theorem 4. In the re-
mainder of this section we use identities (11) and (12) to evaluate some summations
involving the generalized Fibonacci numbers.

Theorem 5. Let {Un} be a generalized Fibonacci sequence and let m be a nat-
ural number. Then for any n ≥ 1,

n∑

i=1

Um
i =

1∑m
i=1

{m
i

}




n∑

i=1

Uim−(m+1
2 ) +

m∑

i=1

{
m

i

} i∑

j=1

(Um
n−i+j − Um

j−i)



 .

Proof. Using Theorem 2, when a1 = · · · = am, we get

n∑

i=1

Uim−(m+1
2 ) =

m∑

j=1

{
m

j

} n∑

i=1

Um
i−j

=
m∑

j=1

{
m

j

}(
n∑

i=1

Um
i +

j∑

i=1

(Um
i−j − Um

n−j+i)

)

=

(
m∑

i=1

{
m

i

})
n∑

i=1

Um
i +

m∑

i=1

{
m

i

} i∑

j=1

(Um
j−i − Um

n−i+j),

which gives the result. !

It is known than the sequence of Fibonacci numbers satisfies the property that
F−n = (−1)n−1Fn, for all integers n. In general, if {Un} is a generalized Fibonacci
sequence then U−n = −Un/qn, for all integers n and if q = 1 and m is even, or
q = −1 and 4 | m, then

{
m

i

}
+

{
m

j

}
= 0,

when i + j = m. Hence
∑m

i=1

{m
i

}
= 0.

Now, from the proof of Theorem 5 we may deduce the following.

Corollary 6. If
∑m

i=1

{m
i

}
= 0, then

n∑

i=1

Uim−(m+1
2 ) =

m∑

i=1

{
m

i

} i∑

j=1

(Um
j−i − Um

n−i+j).

In particular, the equality holds when 4 | m and {Un} is the sequence of Fibonacci
numbers.
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Definition. Let m ≥ 1. Then for any n ≥ 1,

Tm(n; p, q) :=
n−1∑

i=1

Un−iU
m
i .

By the above definitions, T1(n; p, q) = S2(n; p, q; 1), which is known from [8], [4]
and Theorem 4. Using a group theoretical tool, the author in [3] proves that for
Fibonacci numbers

T2(n; 1,−1) =
(

Fn+1

2

)
−

(
Fn

2

)

and utilizing this tool once more, it can be proved that

T3(n; 1,−1) =
1
2
Fn−1FnFn+1 −

(
Fn + 1

3

)
,

for all integers n.
Now, we extend the above results by computing Tm(n; p, q), for each natural

number m.

Theorem 7. Let m be a natural number. Then for any n ≥ 1,

Tm(n) =
qam+1βm,n+2m+1 + bm+1βm,n+2m+2 − am+1bm+1Um

n

b2
m+1 + pam+1bm+1 + qa2

m+1

,

where

βm,n = αm,n −
m∑

j=1

(ajU
m
n−2j + bjU

m
n−2j−1),

αm,n =
n−1∑

i=1

U(m−1)i+n−(m+2
2 )

−
m+1∑

j=1

{
m + 1

j

} j−1∑

i=1

(
Un−j−iU

m
i−j + Ui−jU

m
n−j−i

)
,

and
[
a0

b0

]
=

[
0
0

]
,

[
ai

bi

]
=

[
−q p
p −q

] [
ai−1

bi−1

]
+

[
0{m+1
i

}
]
,

for i = 1, . . . ,m + 1. Also

Tm(n) =
qam−1βm,n+m−1 + bm−1βm,n+m − am−1bm−1Um

n

b2
m−1 + pam−1bm−1 + qa2

m−1

,
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where

βm,n = αm,n −
m−1∑

i=1

aiU
m
n−i−1,

αm,n =
n−1∑

i=1

Un−iUmi−(m+1
2 ) −

m∑

j=1

{
m

j

} j−1∑

i=1

Un−iU
m
i−j

and [
a−1

b−1

]
=

[
0
0

]
,

[
ai

bi

]
=

[
p 1
−q 0

] [
ai−1

bi−1

]
+

[
0{ m

i+1

}
]
,

for i = 0, 1, . . . ,m.

Proof. By Theorem 2,

Un−x+mx−(m+2
2 ) =

m+1∑

i=1

{
m + 1

i

}
Un−x−iU

m
x−i

so that

n−1∑

i=1

U(m−1)i+n−(m+2
2 ) =

m+1∑

j=1

{
m + 1

j

} n−1∑

i=1

Un−j−iU
m
i−j

=
m+1∑

j=1

{
m + 1

j

}


n−j−1∑

i=j+1

Un−j−iU
m
i−j +

j∑

i=1

Un−j−iU
m
i−j

+
n−1∑

i=n−j

Un−j−iU
m
i−j





=
m+1∑

j=1

{
m + 1

j

}(
n−2j−1∑

i=1

Un−2j−iU
m
i

+
j−1∑

i=1

(
Un−j−iU

m
i−j + Ui−jU

m
n−j−i

)
)

.

Hence
{

m + 1
1

}
Tm(n− 2) + · · · +

{
m + 1
m + 1

}
Tm(n− 2m− 2) = αm,n, (13)

where
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αm,n =
n−1∑

i=1

U(m−1)i+n−(m+2
2 )

−
m+1∑

j=1

{
m + 1

j

} j−1∑

i=1

(
Un−j−iU

m
i−j + Ui−jU

m
n−j−i

)
.

We have

Tm(n) =
n−1∑

i=1

Un−iU
m
i (14)

= −q
n−1∑

i=1

Un−2−iU
m
i + p

n−1∑

i=1

Un−1−iU
m
i

= −qTm(n− 2) + pTm(n− 1) + Um
n−1.

Now, put
[
a0

b0

]
=

[
0
0

]

and [
ai

bi

]
=

[
−q p
p −q

] [
ai−1

bi−1

]
+

[
0{m+1
i

}
]
,

for i = 1, . . . ,m + 1. Using (13) and (14), it can be easily verified that

aiTm(n− 2i + 1) + biTm(n− 2i) +
m+1∑

j=i+1

{
m + 1

j

}
Tm(n− 2j)

(15)

= αm,n −
i−1∑

j=1

(ajU
m
n−2j + bjU

m
n−2j−1).

Replacing i by m + 1 in (15), we get

am+1Tm(n− 2m− 1) + bm+1Tm(n− 2m− 2) = βm,n, (16)

where

βm,n = αm,n −
m∑

j=1

(ajU
m
n−2j + bjU

m
n−2j−1).

By (16),

βm,n+1 = am+1Tm(n− 2m) + bm+1Tm(n− 2m− 1)

= am+1(−qTm(n− 2m− 2) + pTm(n− 2m− 1) + Um
n−2m−1)

+bm+1Tm(n− 2m− 1),
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which gives

(bm+1 + pam+1)Tm(n− 2m− 1)− qam+1Tm(n− 2m− 2)
(17)

= βm,n+1 − am+1U
m
n−2m−1.

Now, by solving the system of equations (16) and (17), we obtain

Tm(n− 2m− 1) =
qam+1βm,n + bm+1(βm,n+1 − am+1Um

n−2m−1)
b2
m+1 + pam+1bm+1 + qa2

m+1

,

which proves the result.
To prove the second identity we proceed in a similar way. By Theorem 2,

Umx−(m+1
2 ) =

m∑

i=1

{
m

i

}
Um

x−i,

from which

n−1∑

i=1

Un−iUmi−(m+1
2 ) =

m∑

j=1

{
m

j

} n−1∑

i=1

Un−iU
m
i−j

=
m∑

j=1

{
m

j

}(
n−j−1∑

i=1

Un−j−iU
m
i +

j−1∑

i=1

Un−iU
m
i−j

)
.

Hence
{

m

1

}
Tm(n− 1) + · · · +

{
m

m

}
Tm(n−m) = αm,n, (18)

where

αm,n =
n−1∑

i=1

Un−iUmi−(m+1
2 ) −

m∑

j=1

{
m

j

} j−1∑

i=1

Un−iU
m
i−j .

Now, put
[
a−1

b−1

]
=

[
0
0

]

and [
ai

bi

]
=

[
p 1
−q 0

] [
ai−1

bi−1

]
+

[
0{ m

i+1

}
]
,

for i = 0, 1, . . . ,m. Using (18) and (14), it can be easily verified that

aiTm(n− i) + biTm(n− i− 1) +
m∑

j=i+2

Tm(n− j) = αm,n −
i−1∑

j=1

aiU
m
n−j−1. (19)
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Replacing m− 1 by i in (19), we obtain

am−1Tm(n−m + 1) + bm−1Tm(n−m) = βm,n, (20)

where

βm,n = αm,n −
m−1∑

i=1

aiU
m
n−i−1.

By (20),

βm,n+1 = am−1Tm(n−m + 2) + bm−1Tm(n−m + 1)
= am−1(−qTm(n−m) + pTm(n−m + 1) + Um

n−m+1)
+bm−1Tm(n−m + 1),

from which we get

(bm−1 + pam−1)Tm(n−m + 1)− qam−1Tm(n−m + 1)
(21)

= βm,n+1 − am−1U
m
n−m+1.

Now, by solving the system of equations (20) and (21), we obtain

Tm(n−m + 1) =
qam−1βm,n + bm−1(βm,n+1 − am−1Um

n−m+1)
b2
m−1 + pam−1bm−1 + qa2

m−1

,

from which the result follows. !

4. A Divisibility Property

In section 3, we gave some applications of Theorem 2 consisting some summations
involving the generalized Fibonacci numbers. Now, we apply Theorem 2 to prove
that if p, q are integers and r is an odd prime such that r ! p, q,∆, then r divides
Ui, for some 2 < i ≤ r − 2, when q = 1, or q = −1 and 4|r − 1. To do this, we first
obtain some properties of the generalized Fibonacci numbers.

Theorem 8. Let r be an odd prime. Then for any m ≥ 0,

(i) Un(p, q) =
∑m

i=0 pi(−q)m−i
(m

i

)
Un−m−i(p, q);

and if p, q are integers, then

(ii) Un(p, q)
r≡ −qUn−2rm(p, q) + pUn−rm(p, q);

(iii) Urn(p, q)
r≡ Ur(p, q)Un(p, q);

(iv) Ur+1(p, q)
r≡ 1

2p
((

∆
r

)
+ 1

)
, Ur(p, q)

r≡
(
∆
r

)
and if r ! q, then Ur−1(p, q)

r≡
p
2q

((
∆
r

)
− 1

)
,
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where
(
a
b

)
denotes the Legendre’s symbol.

Proof. First suppose that d and k are integers and {Gn} is a recursive sequence
satisfying Gn

k≡ aGn−2d + bGn−d, for all integers n. Then for each m ≥ 1,

Gn
k≡

m∑

i=0

biam−i

(
m

i

)
Gn−(m+i)d. (22)

In fact, if (22) holds for m, then we have

Gn
k≡

m∑

i=0

biam−i

(
m

i

)
Gn−(m+i)d

k≡
m∑

i=0

biam−i

(
m

i

)
(aGn−(m+i+2)d + bGn−(m+i+1)d)

k≡
m+1∑

i=0

biam+1−i

(
m + 1

i

)
Gn−(m+1+i)d.

(i) it is obvious by (22).
(ii) Clearly, it is true when m = 0 and we may assume the result for m. Then,

by (22),

Un(p, q)
r≡

r∑

i=0

pi(−q)r−i

(
r

i

)
Un−(r+i)rm

r≡ −qUn−2rm+1 + pUn−rm+1 .

(iii) By the definition, we have U0(p, q)
r≡ Ur(p, q)U0(p, q) and Ur(p, q)

r≡ Ur(p, q)
U1(p, q). Now, suppose that the result holds for n−2 and n−1. Then, by part (ii),

Urn(p, q)
r≡ −qUr(n−2)(p, q) + pUr(n−1)(p, q)
r≡ −qUr(p, q)Un−2(p, q) + pUr(p, q)Un−1(p, q)
r≡ Ur(p, q)Un(p, q).

(iv) Using Binet’s formula, we obtain

Un(p, q) =
αn − βn

α− β
(23)

=
1

2n−1

((
n

1

)
pn−1 +

(
n

3

)
pn−3∆ +

(
n

5

)
pn−5∆2 + · · ·

)
.

Now, by putting n = r− 1, r and r + 1, respectively, in (23), we obtain the desired
results. !
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Theorem 9. Let p and q be integers and r be an odd prime such that r ! p, q,∆.
If q = 1, or q = −1 and 4 | r − 1, then r | Ui for some 2 < i ≤ r − 2. If r | Ur−1,
then r | U r−1

2
.

Proof. We first prove that r | Ui, for some i = 1, . . . , r − 1. If r ! Ui, where
i = 1 . . . , r − 2, then we may apply identity (1) modulo r to get

U(r−1)a−(r
2)

r≡
r−1∑

i=1

{
r − 1

i

}
Ur−1

a−i . (24)

Moreover, if r ! Ur−1, then by putting a = r in (24), we obtain

U(r
2)

r≡
r−1∑

i=1

{
r − 1

i

}
Ur−1

r−i

r≡
r−1∑

i=1

{
r − 1

i

}
r≡ 0.

But, by Theorem 8(iii), U(r
2)

r≡ UrU r−1
2

and by Theorem 8(iv), Ur
r≡ ±1. Hence

U r−1
2

r≡ 0, which is a contradiction.
Clearly, the result holds if r ! Ur−1. Thus we can assume that r | Ur−1. Since

r | Ur−1, by Theorem 8(iv),
(
∆
r

)
= 1 and so Ur

r≡ 1. Hence for all integers n,

Un+r−1 = −qUn−1Ur−1 + UnUr
r≡ Un,

from which we get

U r−1
2

= Ur−1− r−1
2

r≡ U− r−1
2

= −
U r−1

2

q
r−1
2

= −U r−1
2

.

Therefore r | U r−1
2

and the proof is complete. !

5. Open Problems

We strongly believe that the following conjecture is true.

Conjecture. Let {Un} be a generalized Fibonacci sequence with
∑m

i=1

{m
i

}
= 0,

for some m. Then

m+n∑

i=1

{
m + n

i

}
Ux1−n1i · · ·Uxk−nki = 0,

where n ≥ 0, n1 + · · · + nk = n and x1, . . . , xk are arbitrary integers.
Note that, if the above conjecture is true for n1 = · · · = nk = 1, then by applying

a similar technique as in the proof of Theorem 3, it remains true for arbitrary
n1, . . . , nk.
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