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Abstract 

A family of new generating functions for the Gegenbauer polynomials is presented. This work is based upon the 
elementary manipulation of series and is motivated by the recent appearance of these polynomials in certain aspects of 
applied mathematics. 
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The Gegenbauer or ultraspherical polynomials have been the subject of investigations by many 
authors, in particular on account of their relation to Legendre functions [1, p. 179]. Further recent 
interest has also arisen in connection with other topics, such as theories of neutron transport and 
radiative transfer [3] and the quantum relativistic harmonic oscillator [5] and [4]. This provides 
some motivation for deducing the new generating functions discussed in this study. 

An approach to this matter is based upon the elementary manipulation of series. Consider the 
supposed absolutely convergent series 

S = ~ D(m + n + p + q) V(2m + 2n + p + q) (x2y)m(s2t)"xPs q 

m!n!p!q! 
(1) 

where it is assumed throughout that all indices of summation run over all of the nonnegative 
integers and that any values of parameters leading to results which do not make sense are tacitly 
excluded. The generalised coefficients D and V will be suitably specialised subsequently. 

The series (1) is now rearranged by replacing p and q, respectively, by M - 2m and N - 2n, when 
we see that 

S = Y" D ( M  + N - m - n) V ( M  + N ) x M y ' s N t "  

m! n! (M - 2m) ! (N - 2n) ! 
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xM s N 
= Z ~.N~. V (M + N)  

~M, m)(2 - ½M, m)( - ½N, n)(½ - ½N, n)ymt"4 m+" x ~ D ( M  + N _ m _ n ) ( _ l  _t 

re!n! 
(2) 

As usual, the P o c h h a m m e r  symbol (a, n) is given by 

(a,n) = a(a + 1)(a + 2). . -(a + n - 1) = F(a + n)/F(a), (a, 0) = 1. (3) 

The two forms of S, (1) and (2) may  be equated, and by a further simple rearrangement  of( l )  and 
a slight modification of the notat ion,  we obtain a general generating function, namely, 

~(x2y)m(s2t)n,~D(m + n + p + q) V(2m + 2n + p + q)xPs q 

-~r.n ~ p!q! 

= ~.~ xms n V (m -~- n) 

~ D ( m  + n - p - q) ( - ½m, p)(½ - ½m, p)( - ½n, q)(½ - ½n, q) y ' tq4 "+q 
X pIq! (4) 

As an elementary consequence of the binomial theorem, the left-hand member  of (4) can be 
written as 

(xZy)m(s2t)" ,~D(m + n + p) V (2m + 2n + p)(x + s) p 
Z , .  p! (s) 

Making  use of an idea employed by Exton [2], put  s = - x, when the inner series of (5) reduces to 
O(m + n) V (2m + 2n), so that  (4) becomes 

x " + " (  - 1)" V(m + n) 

re!n! 

~ D ( m  + n - p - q) ( - kin, p) (½ - kin, p)( - ½n, q)(½ - ½n, q) yPta4 p+q 
x 2., p!q! 

= ~ (x2y)m(x2t)"D(m + n) V(2m + 2n) 
m!n! (6) 

Further,  on letting t = 0, we have the general result in its final form: 

xm+"( -- 1)" V(m + n) 

~" m!n! 

. - . D ( m  + n - p ) (  - kin,  p ) (½ - ½m, p ) y - 2 . (  _ 1)v 
x 2., p! 

~ ( - ¼x2Y-2)r"O(m) V (2m) 
m! ' (7) 

where, for convenience, y has been replaced by - ¼y-2. 
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If we let 

D(N) = (d, N), 

the polynomial generated by (7) takes the form 

Z (d, m + n - p ) ( -  ½m, p)(½ - ½m, p ) ( -  y-Z)p 
p~ 

= (d, m + n) 2 F 1 ( -  ½m, ½ - ½m; 1 - d - m - n; y-2).  

This last expression can be written as a Gegenbauer polynomial 

m! (d, n) (2y)- " C~ +"(y) 

by means of a result quoted by Erd61yi [1, p. 176]. 

is 

(8) 

(9) 

(10) 

Hence, we obtain the family of generating functions of the Gegenbauer polynomials sought, that 

xm+n( -- 1)" V (m + n) (d' n) (ZY)-" cd+ " (y) = Z ( - ¼ x2y-  2)m (d' m) V (zm) (11) 
n! m! 

Since the coefficient V(N)  is disposable, some degree of flexibility of (11) is furnished, so that 
various new generating functions of the Gegenbauer polynomials can be written down. For 
example, if we put V(N)  equal to F(d)/F(d + ½N) and 1/(2d, n), respectively, we have 

F, xm+"( - l)"r(d)(d,n)(Zy) 
,,=o ,=o n!F(d + ½m + ½n) C~+"(y) = e x p ( -  ¼x2y -2) (12) 

and 

~ x '+"(  - 1)"(d ,n)(Zy)-"  n+ 
,.=o.=o n!(2d, m + n) Cm "(y) 

= oF1( - ;d + ½; - ¼xZy -2) = F(d -~ ½)Jd-1/2 • (13) 

It is interesting to note that these generating relations involve both the order and degree of the 
polynomials generated. Many other cases can be constructed. 
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