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We consider weighted large and small Schröder paths with up steps
(1, 1), down steps (1, −1) assigned the weight of 1 and with level
steps (2, 0) assigned the weight of t, where t is a real number. The

weight of a path is the product of the weights of all its steps. Let r
(t)
ℓ

and s
(t)
ℓ be the total weight of all weighted large and small Schröder

paths from (0, 0) to (2ℓ, 0), respectively. For constants α, β , we de-
rive the generating functions and the explicit formulae for the deter-

minants of theHankelmatrices (αr
(t)
i+j−2+βr

(t)
i+j−1)

n
i,j=1, (αr

(t)
i+j−1+

βr
(t)
i+j)

n
i,j=1, (αs

(t)
i+j−2+βs

(t)
i+j−1)

n
i,j=1 and (αs

(t)
i+j−1+βs

(t)
i+j)

n
i,j=1 com-

binatorially via suitable lattice path models.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Hankel determinants of Catalan, Motzkin, and Schröder numbers

Let {aℓ}ℓ≥0 be a sequence. For a nonnegative integer k, let A
(k)
n denote the Hankel matrix of order n

of the sequence {aℓ}ℓ≥0 of the form

A(k)
n = (ak+i+j−2)

n
i,j=1. (1)
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When {aℓ}ℓ≥0 is one of the three classical combinatorial sequences (Catalan,Motzkin and Schröder

numbers) arising from lattice path enumeration, the problem to evaluate the determinant det(A
(k)
n )

has been extensively studied. Readers may be referred to [3,16,18,20] for more examples, especially
the comprehensive references listed in [20].

We give a quick introduction. The Catalan number cℓ = 1
ℓ+1

(

2ℓ
ℓ

)

counts the number of Dyck

paths of length ℓ, which are the lattice paths in the plane Z × Z from (0, 0) to (2ℓ, 0) using up

steps U = (1, 1) and down steps D = (1, −1) that never pass below the x-axis. It is folklore that
det1≤i,j≤n(ci+j−2) = 1, det1≤i,j≤n(ci+j−1) = 1 and det1≤i,j≤n(ci+j) = n+ 1. Desainte-Catherine and

Viennot [12] proved that det1≤i,j≤n(ci+j+k−2) = ∏

1≤i≤j≤k−1
i+j+2n

i+j
. Gessel and Viennot [15] gave

an evaluation of det0≤i,j≤n−1(cαi+j) for nonnegative integers α0, α1, . . . , αn−1. An extension of this
study is recently given by Krattenthaler [20].

The Motzkin numbers {mℓ}ℓ≥0 = {1, 1, 2, 4, 9, 21, 51, . . .} count the number of Motzkin paths
of length ℓ, which are the lattice paths from (0, 0) to (ℓ, 0) using up steps, down steps and unit level
steps (1, 0) that never pass below the x-axis. It is known that det1≤i,j≤n(mi+j−2) = 1 for all positive
integer n and det1≤i,j≤n(mi+j−1) equals 1 if n ≡ 0, 1 (mod 6), equals 0 if n ≡ 2, 5 (mod 6), and equals
−1 if n ≡ 3, 4 (mod 6). See for instance [2,24].

The large Schröder numbers {rℓ}ℓ≥0 = {1, 2, 6, 22, 90, 394, 1806, . . .} count the number of large
Schröder paths of length ℓ, which are the lattice paths from (0, 0) to (2ℓ, 0) using up steps, down
steps and level steps L = (2, 0) that never pass below the x-axis. Furthermore, the small Schröder
numbers {sℓ}ℓ≥0 = {1, 1, 3, 11, 45, 197, 903, . . .} count the number of small Schröder paths of
length ℓ, which are large Schröder paths of length ℓ without level steps on the x-axis. By apply-

ing the Lindström–Gessel–Viennot lemma, Eu and Fu [13] proved that det1≤i,j≤n(ri+j−2) = 2(
n
2),

det1≤i,j≤n(ri+j−1) = 2(
n+1
2 ), det1≤i,j≤n(si+j−2) = 2(

n
2), and det1≤i,j≤n(si+j−1) = 2(

n
2). At the same

time, Brualdi and Kirkland also obtained the results in the case of large Schröder numbers via linear
algebra [6].

Note that once det(A
(0)
n ) and det(A

(1)
n ) are determined, the evaluation of det(A

(k)
n ) can be obtained

for all k ≥ 2 by the following relation:

det(A
(k)
n+1) det(A

(k+2)
n−1 ) = det(A(k)

n ) det(A(k+2)
n ) − det(A(k+1)

n )2, (2)

for n ≥ 1, which is known as the condensation identity. This statement is due to Desnanot, and the first
rigorous proof is given by Jacobi; see [5, Ch. 4,17, Sec. 3,21, pp. 140–142].

1.2. Hankel determinants of sums of two consecutive terms

A variation is to consider the Hankel determinant of the sequence {aℓ + aℓ+1}ℓ≥0, i.e., to evaluate

det
1�i,j�n

(ak+i+j−2 + ak+i+j−1).

For Catalan numbers, Cvetković, Rajković and Ivković [11] proved algebraically that

det
1≤i,j≤n

(ci+j−2 + ci+j−1) = f2n+1 and det
1≤i,j≤n

(ci+j−1 + ci+j) = f2n+2, (3)

where fn is the nth Fibonacci number. This elegant result stimulated several follow-up papers; see for
instance [4,8–10,20,22].

The case for Motzkin numbers was also done by several authors [7,10]. One can generalize to a
weighted version. For a real number t, a t-Motzkin path is a Motzkin path in which the up step, down
step, and unit level step have weights 1, 1 and t, respectively, and the weight of a path is the product

of the weights of all its steps. Let m
(t)
ℓ be the total weight of all t-Motzkin paths of length ℓ, then the
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Hankel determinants det1≤i,j≤n(m
(t)
k+i+j−2) and det1≤i,j≤n(m

(t)
k+i+j−1) were computed in [18,23], for

example. By using lattice path arguments, Cameron and Yip [7] also obtained recurrence formulae for
the determinant

det
1≤i,j≤n

(m
(t)
k+i+j−2 + m

(t)
k+i+j−1) (4)

in the case where k = 0 or k = 1.
In this paper, by aweighted large (or small) Schröder pathwemean a large (or small) Schröder path

in which the steps U, D, L have weights 1, 1 and t, respectively. Let r
(t)
ℓ (respectively, s

(t)
ℓ ) denote the

total weight of all weighted large (respectively, small) Schröder paths of length ℓ. Note that r
(t)
0 = s

(t)
0

and r
(t)
ℓ = (1 + t)s

(t)
ℓ , for ℓ ≥ 1. Recently, Sulanke and Xin [23] proved that

det
1≤i,j≤n

(r
(t)
i+j−2) = (1 + t)(

n
2) and det

1≤i,j≤n
(r

(t)
i+j−1) = (1 + t)(

n+1
2 ). (5)

Hence it is natural to consider the Hankel determinants of the sequence of sum of weighted large or
small Schröder numbers. Rajković, Petković, and Barry [22] gave the following explicit formula:

det
1≤i,j≤n

(

r
(t)
i+j−2 + r

(t)
i+j−1

)

=
L(

n
2)

2n+1
√

L2 + 4

((
√

L2 + 4 + L

) (
√

L2 + 4 + L + 2

)n

+
(

√

L2 + 4 − L

) (

L + 2 −
√

L2 + 4

)n)

,

(6)

where L = 1 + t. Their proof was done algebraically in terms of orthogonal polynomials.

1.3. Main results

In this paper, we will evaluate Hankel determinant of the sequence of linear combinations of two
consecutive weighted large (or small) Schröder numbers. For n ≥ 1, define

�n = (1 + t)−(n2) det
1≤i,j≤n

(

αr
(t)
i+j−2 + βr

(t)
i+j−1

)

,

�n = (1 + t)−(n+1
2 ) det

1≤i,j≤n

(

αr
(t)
i+j−1 + βr

(t)
i+j

)

,

�n = (1 + t)−(n2) det
1≤i,j≤n

(

αs
(t)
i+j−2 + βs

(t)
i+j−1

)

,

Ŵn = (1 + t)−(n2) det
1≤i,j≤n

(

αs
(t)
i+j−1 + βs

(t)
i+j

)

.

For initial conditions, let �0 = �0 = �0 = Ŵ0 = 1. Here are our main results.

Theorem 1.1. We have the following generating functions:

(i)
∑

n≥0

�n(t)z
n =

1 − βz

1 − (α + β(2 + t))z + β2(1 + t)z2
.

(ii)
∑

n≥0

�n(t)z
n =

1

1 − (α + β(2 + t))z + β2(1 + t)z2
.

(iii)
∑

n≥0

�n(t)z
n =

1 − β(1 + t)z

1 − (α + β(2 + t))z + β2(1 + t)z2
.
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(iv)
∑

n≥0

Ŵn(t)z
n =

1

1 − (α + β(2 + t))z + β2(1 + t)z2
.

As for the explicit formulae, we have the following.

Theorem 1.2. For n ≥ 1 and two constants α, β , let

fn =
n

∑

m=0

2m−n
∑

k=0

k
∑

ℓ=0

(−1)n−m

(

m

2m − n

)(

2m − n

k

)(

k

ℓ

)

αℓβn−ℓ(1 + t)m−k.

Then the following identities hold.

(i) det
1≤i,j≤n

(

αr
(t)
i+j−2 + βr

(t)
i+j−1

)

= (1 + t)(
n
2)(fn − βfn−1).

(ii) det
1≤i,j≤n

(

αr
(t)
i+j−1 + βr

(t)
i+j

)

= (1 + t)(
n+1
2 )fn.

(iii) det
1≤i,j≤n

(

αs
(t)
i+j−2 + βs

(t)
i+j−1

)

= (1 + t)(
n
2)(fn − β(1 + t)fn−1).

(iv) det
1≤i,j≤n

(

αs
(t)
i+j−1 + βs

(t)
i+j

)

= (1 + t)(
n
2)fn.

Note that if letting t = 0, α = β = 1 in (i) and (ii) of Theorem 1.2, we obtain the results in Eq.
(3). If letting α = 1, β = 0 in (i) and (ii) of Theorem 1.2, we obtain the results in Eq. (5). If letting
α = β = 1 in (i) of Theorem 1.2, we obtain the result in Eq. (6).

We will derive recurrence relations for ‘normalized’ expressions of the above determinants (see
Proposition 6.2).We prove those relations combinatorially by applying the Lindström–Gessel–Viennot
lemma on suitable lattice path model. Readers are referred to [1,14,19] for more information.

Here wewould like tomake some points about the proofs. The proofs are unusual in the sense that,
from a conceptual viewpoint, (i), (ii) and (iii) of Theorem 1.2 are proved simultaneously, while (iv) of
Theorem 1.2 is merely a direct consequence of (ii). The reason is that, in order to obtain the results on
weighted large Schröder numbers, one needs the corresponding results on weighted small Schröder
numbers (of smaller size) and vice versa. These ‘intertwined’ facts are reflected in two lemmas (Key
Lemmas I and II) in Section 3 and two lemmas (Lemmas 4.1 and 4.2) in Section 4.

The rest of this paper is organized as follows. We introduce the lattice path model in Section 2. We
prove the key lemmas in Section 3. After more intermediate results in Sections 4 and 5, we complete
the proof of Theorem 1.2 in Section 6.

2. Lattice path model

Let G denote the directed graph with vertex set {(x, y) ∈ Z
2 : y ≥ 0} and edge set {(i, j) →

(i+2, j)}∪{(i, j) → (i+1, j+1)}∪{(i, j) → (i+1, j−1)}, where the level edges {(i, j) → (i+2, j)}
are of weight t and the other edges are of weight 1. Then a weighted large (or small) Schröder path is a
directed path on Gwhich starts from and ends at the x-axis. Now, we introduce our lattice pathmodel.

2.1. Lattice path model

We consider the following two classes of path families.

(i) Let 	
(k)
n (respectively, 


(k)
n ) be the set of n-tuples (π0, π1, . . . , πn−1) of weighted large (re-

spectively, small) Schröder paths satisfying the following two conditions (see Fig. 1).
• The path πj runs from (−k − 2j, 0) to (k + 2j, 0), for 0 ≤ j ≤ n − 1.
• Any two paths πi and πj do not touch each other.
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Fig. 1. A triple (π0, π1, π2) ∈ 	
(1)
3 and a triple (π0, π1, π2) ∈ 	

(0)
3 .

Fig. 2. A triple (π0, π1, π2) ∈ 	
(1)
3,2 and a triple (π0, π1, π2) ∈ 	

(0)
3,2 .

(ii) For 0 � i � n, let	
(k)
n,i (respectively,


(k)
n,i ) be the set ofn-tuples (π0, π1, . . . , πn−1)ofweighted

large (respectively, small) Schröder paths satisfying the following three conditions (see Fig. 2).
• The path πj runs from (−k − 2j, 0) to (k + 2j, 0), for 0 ≤ j ≤ i − 1.
• The path πj runs from (−k − 2j, 0) to (k + 2j + 2, 0), for i ≤ j ≤ n − 1.
• Any two paths πi and πj do not touch each other.

For an n-tuple µ = (π0, π1, . . . , πn−1) of paths, the weight of µ is defined to be the product of
the weights of π0, π1, . . . , πn−1. For a set X of n-tuples, the wight of X , denoted by |X|, is the total
weight of all the n-tuples in X .

2.2. Lindström–Gessel–Viennot lemma

A family (p1, p2, . . . pn) of lattice paths is called non-intersecting if no two paths in this family
have a point in common. The Lindström–Gessel–Viennot lemma associates determinants with non-
intersecting path families in an acyclic directed graph with weighted edges. The following simplified
version serves our need.

Lemma 2.1 (Lindström–Gessel–Viennot). Consider the graph G. Let X1, X2, . . . , Xn and Y1, Y2, . . . , Yn
be lattice points on the x-axis. Then the total weight of all families (p1, p2, . . . , pn) of non-intersecting

lattice paths, pi running from Xi to Yi, is given by the determinant

det
1≤i,j≤n

(ai,j),

where ai,j is the total weight of the lattice paths from Xi to Yj .

For the weighted large and small Schröder numbers {r(t)ℓ }ℓ≥0 and {s(t)ℓ }ℓ≥0, we define their Hankel
matrices

H(k)
n = (r

(t)
k+i+j−2)

n
i,j=1 and G(k)

n = (s
(t)
k+i+j−2)

n
i,j=1. (7)

From the Lindström–Gessel–Viennot lemma, we immediately obtain the weight of the sets 	
(k)
n

and 

(k)
n .
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Lemma 2.2. For integers n, k ≥ 0, we have

∣

∣	
(k)
n

∣

∣ = det(H(k)
n ) and

∣

∣

(k)
n

∣

∣ = det(G(k)
n ).

For each 0 ≤ i ≤ n, wewrite A
(k)
n,i for the n×nmatrix obtained from A

(k)
n+1 by deleting the (n+1)th

row and the (i + 1)th column, i.e.,

A
(k)
n,i =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ak ak+1 · · · ak+i−1 ak+i+1 · · · ak+n

ak+1 ak+2 · · · ak+i ak+i+2 · · · ak+n+1

...
...

. . .
...

...
. . .

...

ak+n−1 ak+n · · · ak+i+n−2 ak+i+n · · · ak+2n−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×n

. (8)

ThematricesH
(k)
n,i andG

(k)
n,i areobtained fromH

(k)
n+1 andG

(k)
n+1 accordingly. Similarly, fromtheLindström–

Gessel–Viennot lemma, we obtain the weight of the sets 	
(k)
n,i and 


(k)
n,i .

Lemma 2.3. For integers n, k ≥ 0, we have

(i)
∣

∣	
(k)
n,0

∣

∣ = det(H
(k)
n,0) = det(H

(k+1)
n ) =

∣

∣	
(k+1)
n

∣

∣.

(ii)
∣

∣

(k)
n,0

∣

∣ = det(G
(k)
n,0) = det(G

(k+1)
n ) =

∣

∣

(k+1)
n

∣

∣.

(iii)
∣

∣	
(k)
n,n

∣

∣ = det(H
(k)
n,n) = det(H

(k)
n ) =

∣

∣	
(k)
n

∣

∣.

(iv)
∣

∣

(k)
n,n

∣

∣ = det(G
(k)
n,n) = det(G

(k)
n ) =

∣

∣

(k)
n

∣

∣.

(v)
∣

∣	
(k)
n,i

∣

∣ = det(H
(k)
n,i ), for 1 ≤ i ≤ n − 1.

(vi)
∣

∣

(k)
n,i

∣

∣ = det(G
(k)
n,i ), for 1 ≤ i ≤ n − 1.

3. Two key lemmas

Our proof of the main results is based on two key lemmas. The following lemma relates certain
families of weighted large Schröder paths with the determinants of certain weighted small Schröder

numbers. Let 	
(1)∗
n,i ⊆ 	

(1)
n,i be the set of n-tuples of weighted large Schröder paths in which none of

their paths touches the point (2i + 1, 0). See Fig. 3(a) for an example.

Lemma 3.1 Key Lemma I. For 1 � i � n, we have

∣

∣	
(1)∗
n,i

∣

∣ = (1 + t)n det(G
(0)
n,i ).

Proof. We partition the set 	
(1)∗
n,i into two subsets X and Y , each of which can be directly counted. Let

X (respectively, Y) be the set of n-tuples (π0, π1, . . . , πn−1) with π0 = L (respectively, π0 = UD).

(i) There is a bijection between X and 	
(2)
n−1,i−1, which sends (π0, π1, . . . , πn−1) ∈ X to

(ω1, ω2, . . . , ωn−1) ∈ 	
(2)
n−1,i−1, where πj = UωjD, for 1 � j � n − 1. See Fig. 3 for an

example.
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Fig. 3. A triple (π0, π1, π2) ∈ X ⊆ 	
(1)∗
3,2 mapped to (ω1, ω2) ∈ 	

(2)
2,1 .

Fig. 4. A triple (π0, π1, π2) ∈ Y ⊆ 	
(1)∗
3,2 mapped to (ω0, ω1, ω2) ∈ 	

(0)
3,2 .

Hence the weight of (π0, π1, . . . , πn−1) ∈ X equals t times the weight of (ω1, ω2, . . . , ωn−1) ∈
	

(2)
n−1,i−1. Therefore,

|X| = t
∣

∣	
(2)
n−1,i−1

∣

∣ = det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

t r
(t)
1 r

(t)
2 · · · r

(t)
i−1 r

(t)
i+1 · · · r

(t)
n

0 r
(t)
2 r

(t)
3 · · · r

(t)
i r

(t)
i+2 · · · r

(t)
n+1

...
...

...
. . .

...
...

. . .
...

0 r
(t)
n r

(t)
n+1 · · · r

(t)
n+i−2 r

(t)
n+i · · · r

(t)
2n−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×n

. (9)

(ii) There is a weight-preserving bijection between Y and 	
(0)
n,i , which sends (π0, . . . , πn−1) ∈ Y

to (ω0, . . . , ωn−1) ∈ 	
(0)
n,i , where πj = UωjD, for 0 ≤ j ≤ n − 1. See Fig. 4 for an example. Hence

|Y | =
∣

∣	
(0)
n,i

∣

∣ = det

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

r
(t)
0 r

(t)
1 · · · r

(t)
i−1 r

(t)
i+1 · · · r

(t)
n

r
(t)
1 r

(t)
2 · · · r

(t)
i r

(t)
i+2 · · · r

(t)
n+1

...
...

. . .
...

...
. . .

...

r
(t)
n−1 r

(t)
n · · · r

(t)
n+i−2 r

(t)
n+i · · · r

(t)
2n−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

n×n

. (10)

Now, by the fact that r
(t)
0 = 1, s

(t)
0 = 1, r

(t)
m = (1 + t)s

(t)
m for m ≥ 1 and direct computation with

Eqs. (9) and (10), we have

∣

∣	
(1)∗
n,i

∣

∣ = |X| + |Y | = (1 + t)n det(G
(0)
n,i )

as desired. �

The following lemma relates determinants of certain weighted small Schröder numbers to deter-
minants (of smaller size) of certain other weighted Schröder numbers.

Lemma 3.2 Key Lemma II. For 1 � i � n, we have

det(G
(0)
n,i ) = det(H

(1)
n−1,i−1) + (1 + t)n−1 det(G

(0)
n−1,i).
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Fig. 5. A quadruple (π0, π1, π2, π3) ∈ X ⊆ 

(0)
4,2 mapped to (ω1, ω2, ω3) ∈ 	

(1)
3,1 .

Fig. 6. A quadruple (π0, π1, π2, π3) ∈ Y ⊆ 	
(0)
4,2 mapped to (ω0, ω1, ω2) ∈ 	

(1)∗
3,2 .

Proof. By applying the Key Lemma I to det(G
(0)
n−1,i) and by (v),(vi) of Lemma 2.3, we see that it suffices

to prove

∣

∣

(0)
n,i

∣

∣ =
∣

∣	
(1)
n−1,i−1

∣

∣ +
∣

∣	
(1)∗
n−1,i

∣

∣.

Fix an i (1 ≤ i ≤ n). Consider an n-tuple (π0, π1, . . . , πn−1) ∈ 

(0)
n,i . Note that the endpoints of

πi−1 and πi are (2i − 2, 0) and (2i + 2, 0), respectively. We partition 

(0)
n,i into two subsets X and

Y . The set X (respectively, Y) consists of the n-tuples (π0, π1, . . . , πn−1) such that πi does not touch
(respectively, πi touches) the point (2i, 0).

(i) There is aweight-preservingbijectionbetweenX and	
(1)
n−1,i−1,which sends (π0, π1, . . . , πn−1)

∈ X to (ω1, . . . , ωn−1) ∈ 	
(1)
n−1,i−1, where πj = UωjD for 1 ≤ j ≤ n − 1. See Fig. 5 for an example.

Hence, we have

|X| =
∣

∣	
(1)
n−1,i−1

∣

∣.

(ii) For each n-tuple (π0, π1, . . . , πn−1) ∈ Y , the path πi can be factorized as πi = UωiDUD

for some large Schröder path ωi above the line y = 1. Thus there is a weight-preserving bijection

between Y and 	
(1)∗
n−1,i, which sends (π0, π1, . . . , πn−1) ∈ Y to (ω1, . . . , ωn−1) ∈ 	

(1)∗
n−1,i, where

πi = UωiDUD and πj = UωjD for 1 ≤ j ≤ n − 1, j �= i. See Fig. 6 for an example. Hence, we have

|Y | =
∣

∣	
(1)∗
n−1,i

∣

∣,

and the proof is completed. �

4. Evaluation of det(H
(1)
n,i ) and det(H

(0)
n,i )

In this section, we use the key lemmas to derive recurrence formulae for det(H
(1)
n,i ) and det(H

(0)
n,i )

combinatorially, which involve weighted small Schröder numbers.
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Lemma 4.1. For 1 � i � n, we have

det(H
(1)
n,i ) = (1 + t)n det(H

(1)
n−1,i−1) + (1 + t)n+1 det(H

(1)
n−1,i) + (1 + t)2n−1 det(G

(0)
n−1,i).

Proof. Since det(H
(1)
n,i ) = (1 + t)n det(G

(1)
n,i ), it suffices to prove

∣

∣

(1)
n,i

∣

∣ =
∣

∣	
(1)
n−1,i−1

∣

∣ + (1 + t)
∣

∣	
(1)
n−1,i

∣

∣ + (1 + t)n−1∣
∣


(0)
n−1,i

∣

∣.

The approach is the same as in the proof of Lemma 3.2. Fix an i (1 ≤ i ≤ n). Consider an n-tuple

(π0, π1, . . . , πn−1) ∈ 

(1)
n,i . Noth that the endpoints of πi−1 and πi are (2i − 1, 0) and (2i + 3, 0),

respectively. We distinguish the n-tuples by three cases depending on the path πi.

(i) πi does not touch the point (2i, 1), i.e., the first down step of πi descending from the line y = 2
to the line y = 1 occurs from (2i + 1, 2) to (2i + 2, 1).

(ii) πi touches the point (2i, 1) but does not touch the point (2i + 1, 2).
(iii) πi touches both of the points (2i, 1) and (2i + 1, 2).

We partition 

(1)
n,i into three subsets X , Y and Z. Let X be the subset consisting of the n-tuples

(π0, π1, . . . , πn−1) such that the path πi has property (i), let Y be the subset corresponding to (ii),
and let Z be the subset corresponding to (iii).

• There is a weight-preserving bijection between X and 	
(1)
n−1,i−1, which sends (π0, π1, . . . , πn−1)

∈ X to (ω1, . . . , ωn−1) ∈ 	
(1)
n−1,i−1, where πj = UUωjDD, for 1 � j ≤ n − 1. (Note that

π0 = UD.) Hence, we have

|X| =
∣

∣	
(1)
n−1,i−1

∣

∣.

• For each n-tuple (π0, π1, . . . , πn−1) ∈ Y , the path πi can be factorized as πi = UUωiDLD or as
πi = UUωiDDUD for some large Schröder path ωi. Thus there is a two-to-one correspondence

between Y and 	
(1)
n−1,i, which sends (π0, π1, . . . , πn−1) ∈ Y to (ω1, . . . , ωn−1) ∈ 	

(1)
n−1,i, where

πi = UUωiDLD or πi = UUωiDDUD, and πj = UUωjDD for 1 ≤ j ≤ n − 1, j �= i. Hence, we
have

|Y | = (1 + t)
∣

∣	
(1)
n−1,i

∣

∣.

• For each n-tuple (π0, π1, . . . , πn−1) ∈ Z , the path πi can be factorized as πi = UUωiDUDD.
Then the n-tuple corresponds to an (n − 1)-tuple (ω1, . . . , ωn−1), where πi = UUωiDUDD and
πj = UUωjDD, for 1 ≤ j ≤ n − 1, j �= i. Note that none of the paths ω1, . . . , ωn−1 touches point

(2i + 1, 0), i.e., (ω1, . . . , ωn−1) ∈ 	
(1)∗
n−1,i. By Lemma 3.1, we have

|Z| =
∣

∣	
(1)∗
n−1,i

∣

∣ = (1 + t)n−1 det(G
(0)
n−1,i) = (1 + t)n−1∣

∣

(0)
n−1,i

∣

∣.

The proof is completed. �

Lemma 4.2. For 1 � i � n, we have

det(H
(0)
n,i ) = det(H

(1)
n−1,i−1) + t det(H

(1)
n−1,i) + (1 + t)n−1 det(G

(0)
n−1,i).

Proof. Theapproach is the sameas above. Fix an i (1 ≤ i ≤ n). Consider ann-tuple (π0, π1, . . . , πn−1)

∈ 	
(0)
n,i . Noth that the endpoints of πi−1 and πi are (2i − 2, 0) and (2i + 2, 0), respectively. We

distinguish the n-tuples by three cases depending on the path πi:
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(i) πi does not touch the point (2i, 0), i.e., the first the down step of πi descending from the line
y = 1 to the line y = 0 occurs from (2i + 1, 1) to (2i + 2, 0).

(ii) πi touches the point (2i, 0) but does not touch the point (2i + 1, 1).
(iii) πi touches both of the points (2i, 0) and (2i + 1, 1).

Let X be the subset consisting of the n-tuples (π0, π1, . . . , πn−1) such that the path πi has property
(i), let Y be the subset corresponding to (ii), and let Z be the subset corresponding to (iii).

• There is a weight-preserving bijection between X and 	
(1)
n−1,i−1, which sends (π0, π1, . . . , πn−1)

∈ X to (ω1, . . . , ωn−1) ∈ 	
(1)
n−1,i−1, where πj = UωjD, for 1 � j ≤ n − 1. Hence, we have

|X| =
∣

∣	
(1)
n−1,i−1

∣

∣ = det(H
(1)
n−1,i−1).

• There is a bijection between Y and	
(1)
n−1,i, which sends (π0, π1, . . . , πn−1)∈Y to (ω1, . . . , ωn−1)

∈ 	
(1)
n−1,i, where πj = UωjDL, for 1 ≤ j ≤ n − 1. Hence, we have

|Y | = t
∣

∣	
(1)

n−1,i

∣

∣ = t det(H
(1)
n−1,i).

• There is a bijection between Z and 	
(1)∗
n−1,i, which sends (π0, π1, . . . , πn−1) ∈ Z to (ω1, . . . ,

ωn−1) ∈ 	
(1)∗
n−1,i, where where πj = UωjDUD, for 1 ≤ j ≤ n − 1. Hence, we have

|Z| =
∣

∣	
(1)∗
n−1,i

∣

∣ = (1 + t)n−1 det(G
(0)
n−1,i).

The proof is completed by combining the three identities. �

5. Two recurrences

In this section, we derive a recurrence formula for det(H
(0)
n,i ) and det(H

(1)
n,i ), respectively.

For simplicity, for 0 � i � n, let

Pn,i = (1 + t)−(n2) det(H
(0)
n,i ),

Qn,i = (1 + t)−(n+1
2 ) det(H

(1)
n,i ),

Rn,i = (1 + t)−(n2) det(G
(0)
n,i ),

with P0,0 = Q0,0 = R0,0 = 1 and Pi,j = Qi,j = Ri,j = 0 if j > i. The following identities are the direct
translations of Lemmas 3.2, 4.1, and 4.2.

Lemma 5.1. For 1 � i � n, we have

(i) Rn,i = Qn−1,i−1 + Rn−1,i.
(ii) Qn,i = Qn−1,i−1 + (1 + t)Qn−1,i + Rn−1,i.
(iii) Pn,i = Qn−1,i−1 + tQn−1,i + Rn−1,i.

First, we deal with the cases i = 0 and i = n.

Lemma 5.2. We have

(i) Qn,0 = 1 + (1 + t)Qn−1,0 and Qn,n = 1.
(ii) Pn,0 = (1 + t)Pn−1,0 and Pn,n = 1.
(iii) Rn,0 = Rn,n = 1.
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Proof. (i) We have Qn,n = Qn−1,n−1 = · · · = Q0,0 = 1 by Lemma 5.1(ii). By Lemma 2.3, Qn,0 = (1+
t)−(n+1

2 ) det(H
(1)
n,0) = (1 + t)−(n+1

2 ) det(H
(2)
n ). We use the following condensation identity (obtained

from Eq. (2)) to compute det(H
(2)
n ):

det(H
(0)
n+1) det(H

(2)
n−1) = det(H(0)

n ) det(H(2)
n ) − det(H(1)

n )2.

By applying the known formulae for det(H
(0)
n ), det(H

(1)
n ) and some simple calculation, we arrive at

Qn,0 = Qn−1,0 + (1 + t)n.

This can be solved to obtain Qn,0 = ∑n
k=0(1 + t)k . Therefore

Qn,0 = 1 + (1 + t)Qn−1,0.

(ii) We have Pn,n = Qn−1,n−1 = 1 by (i) and Lemma 5.1(iii). By Lemma 2.3, we have det(H
(0)
n,0) =

det(H
(1)
n ) = det(H

(1)
n,n). Thus

Pn,0 = (1 + t)−(n2) det(H
(0)
n,0) = (1 + t)−(n2) det(H(1)

n,n) = (1 + t)nQn,n = (1 + t)n.

Hence, we have

Pn,0 = (1 + t)Pn−1,0.

(iii) We have Rn,n = Qn−1,n−1 = 1 by (i) and Lemma 5.1(i). Besides,

Rn,0 = (1 + t)−(n2) det(G
(0)
n,0) = (1 + t)−(n2) det(G(1)

n ) = (1 + t)−(n+1
2 ) det(H(1)

n ).

Here, we have used the fact sm = (1 + t)−1rm for m � 1. Thus

Rn,0 = (1 + t)−(n+1
2 ) det(H(1)

n ) = (1 + t)−(n+1
2 ) det(H(1)

n,n) = Qn,n = 1

as desired. �

The last pieces we need are the recurrence formulae for Pn,i and Qn,i, for 1 ≤ i ≤ n.

Lemma 5.3. For 1 � i � n, we have

Qn,i = (1 + t)Qn−1,i +
n

∑

k=i

Qk−1,i−1.

Proof. Repeatedly applying Lemma 5.1(i), we obtain

Rn,i =
n−1
∑

k=i

Qk,i−1 + Ri,i.

Since Ri,i = Qi−1,i−1 = 1, we have

Rn,i =
n

∑

k=i

Qk−1,i−1.

This is substituted into Lemma 5.1(ii) to complete the proof of the lemma. �



2296 S.-P. Eu et al. / Linear Algebra and its Applications 437 (2012) 2285–2299

Lemma 5.4. For 1 � i � n,

Pn,i = (1 + t)Pn−1,i +
n

∑

k=i

Pk−1,i−1.

Proof. We have

Pn,i = Qn−1,i−1 + tQn−1,i + Rn−1,i = Qn,i − Qn−1,i

by (ii) and (iii) of Lemma 5.1. Applying the result of Lemma 5.3, we obtain

Pn,i =

⎛

⎝(1 + t)Qn−1,i +
n

∑

k=i

Qk−1,i−1

⎞

⎠ −

⎛

⎝(1 + t)Qn−2,i +
n−1
∑

k=i

Qk−1,i−1

⎞

⎠

= (1 + t)
(

Qn−1,i − Qn−2,i
)

+
n

∑

k=i+1

(

Qk−1,i−1 − Qk−2,i−1
)

+ Qi−1,i−1

= (1 + t)Pn−1,i +
n

∑

k=i

Pk−1,i−1

as required. �

6. Proof of the main theorem

For a sequence {aℓ}ℓ≥0, recall the Hankel matrix A
(k)
n = (ak+i+j−2)

n
i,j=1 in Eq. (1) and the matrices

A
(k)
n,i defined inEq. (8), for0 ≤ i ≤ n. First,weneed the followingsimple fact aboutHankeldeterminants

of the sequence {αaℓ + βaℓ+1}ℓ≥0. We omit the proof.

Lemma 6.1. For n ≥ 1 and constants α, β , we have

det
1≤i,j≤n

(αak+i+j−2 + βak+i+j−1) =
n

∑

i=0

αiβn−i det(A
(k)
n,i ).

To prove the main theorem, we derive recurrence relations for �n, �n, �n, and Ŵn.

Proposition 6.2. We have the following recurrence relations:

(i) �n = β(1 + t)�n−1 + α
n−1
∑

m=0

βm
�n−1−m.

(ii) �n = βn + β(1 + t)�n−1 + α
n−1
∑

m=0

βm
�n−1−m.

(iii) �n = −tβn + β(1 + t)�n−1 + α
n−1
∑

m=0

βm
�n−1−m.

(iv) Ŵn = βn + β(1 + t)Ŵn−1 + α
n−1
∑

m=0

βm
Ŵn−1−m.
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Proof. (i) Expanding �n by Lemma 6.1, we have �n = ∑n
i=0 αiβn−iPn,i. Splitting the sum into two

parts and applying Lemmas 5.2 and 5.4, we have

�n = βnPn,0 +
n

∑

i=1

αiβn−iPn,i

= βn(1 + t)Pn−1,0 +
n

∑

i=1

αiβn−i

⎛

⎝(1 + t)Pn−1,i +
n

∑

k=i

Pk−1,i−1

⎞

⎠

= β(1 + t)
n−1
∑

i=0

αiβn−1−iPn−1,i +
n

∑

i=1

αiβn−i

⎛

⎝

n
∑

k=i

Pk−1,i−1

⎞

⎠

= β(1 + t)�n−1 +
n

∑

k=1

αβn−k

⎛

⎝

k
∑

i=1

αi−1βk−iPk−1,i−1

⎞

⎠

= β(1 + t)�n−1 + α
n−1
∑

m=0

βm
�n−1−m

as desired.
(ii) The proof is similar to above. Expanding �n by Lemma 6.1, we have �n = ∑n

i=0 αiβn−iQn,i.
Splitting the sum into two parts and applying Lemmas 5.2 and 5.3, we have

�n = βnQn,0 +
n

∑

i=1

αiβn−iQn,i

= βn (

1 + (1 + t)Qn−1,0
)

+
n

∑

i=1

αiβn−i

⎛

⎝(1 + t)Qn−1,i +
n

∑

k=i

Qk−1,i−1

⎞

⎠

= βn + β(1 + t)�n−1 +
n

∑

k=1

αβn−k
k

∑

i=1

αi−1βk−iQk−1,i−1

= βn + β(1 + t)�n−1 + α
n−1
∑

m=0

βm
�n−1−m

as desired.
(iii) We prove this relation by induction on n. The case n = 1 holds trivially. By Lemma 6.1 and the

definition of Rn,i, we can expand �n into

�n = αnRn,n +
n−1
∑

i=1

αiβn−iRn,i + βnRn,0.

Now, by Lemma5.1,wehaveRn,i = Qn−1,i−1+Rn−1,i, for 1 ≤ i ≤ n−1.Moreover,Rn,n = Qn−1,n−1 =
1 and Rn,0 = Rn−1,0 = 1 by Lemma 5.2. Substituting these findings in the above identity, we arrive at

�n = αnQn−1,n−1 +
n−1
∑

i=1

αiβn−i (Qn−1,i−1 + Rn−1,i
)

+ βnRn−1,0

= α
n−1
∑

j=0

αjβn−1−jQn−1,j + β
n−1
∑

j=0

αjβn−1−jRn−1,j

= α�n−1 + β�n−1.
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Then by (ii) and the induction hypothesis, we get

�n = α�n−1 + β�n−1

= α

⎛

⎝βn−1 + β(1 + t)�n−2 + α
n−2
∑

m=0

βm
�n−2−m

⎞

⎠

+ β

⎛

⎝−tβn−1 + β(1 + t)�n−2 + α
n−2
∑

m=0

βm
�n−2−m

⎞

⎠

= −tβn + αβn−1
�0 + β(1 + t)(α�n−2 + β�n−2)

+ α
n−2
∑

m=0

βm(α�n−2−m + β�n−2−m)

= −tβn + β(1 + t)�n−1 + α
n−1
∑

m=0

βm
�n−1−m,

and the proof is completed.
(iv) By (ii) and the identity rn = (1 + t)sn for n � 1, we are done. �

Now we are ready to prove the main theorem.

Proof of Theorem 1.1 and Theorem 1.2. From the proposition above it is easy to derive the following
recurrence relations:

(i) �n = (α + β(2 + t))�n−1 − β2(1 + t)�n−2, with �0 = 1, �1 = α + β(1 + t).

(ii) �n = (α + β(2 + t))�n−1 − β2(1 + t)�n−2, with �0 = 1, �1 = α + β(2 + t).

(iii) �n = (α + β(2 + t))�n−1 − β2(1 + t)�n−2, with �0 = 1, �1 = α + β .

(iv) Ŵn = (α + β(2 + t))Ŵn−1 − β2(1 + t)Ŵn−2, with Ŵ0 = 1, Ŵ1 = α + β(2 + t).

The generating functions and the explicit formulae can then be derived routinely. �

7. Concluding notes

Different expansions may lead to other explicit formulae. For example, we can have

det
1≤i,j≤n

(αr
(t)
i+j−2 + βr

(t)
i+j−1) = (1 + t)(

n
2)

n
∑

m=0

m
∑

k=0

(

m

k

)(

n − m + k − 1

n − m

)

αkβn−k(1 + t)m−k,

or

det
1≤i,j≤n

(αr
(t)
i+j−2 + βr

(t)
i+j−1) = (1 + t)(

n
2)

n
∑

k=0

n−k
∑

ℓ=0

(

k + ℓ

ℓ

)(

n + k

n − k − ℓ

)

αkβn−ktℓ.

A natural extension is to consider the Hankel determinants in which each entry is the linear com-
bination of more than two consecutive terms of t-large (or small) Schröder numbers. However, an
approach using lattice pathmodels turns out to bemessy and seems not so attractive. Another natural
generalization is to put different weights with respect to heights, or to consider q-analogues. We leave
these interesting problems to the readers.
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