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Abstract

In this paper, we compute the congruences of Catalan and Motzkin numbers modulo 4 and 8. In
particular, we prove the conjecture proposed by Deutsch and Sagan that no Motzkin number is a multiple
of 8.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Congruences of several well-known combinatorial numbers have been attracting much
research interest. The most famous as well as age-old one is the Pascal’s fractal which is
formed by the parities of binomial coefficients

( n
k

)
[14]. As a pioneer of this problem, Kummer

formulated the maximum power of a prime number p dividing
(m+n

m

)
, by counting the number

of carries that occurs when [m]p and [n]p are added as p-adic notations, where [m]p :=

〈mr . . . m1m0〉p denotes the sequence of digits representing n in base p [9]. Lucas, another

pioneer, also used the p-adic notation to develop a useful tool such that
( n

k

)
≡p

∏
i

(
ni
ri

)
, where

“≡p” denotes congruence modulo p (a prime) [11]. A generalization of Lucas’ Theorem for
prime powers was established by Davis and Webb [2]. The classical problem on Pascal’s triangle
also has modulo 4 and modulo 8 versions [3,8]. Several other combinatorial numbers have been
studied on their congruences, too; like the Apéry numbers [7,12] and the central Delannoy
numbers [6], not to mention the Catalan numbers.
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The sequence of the Catalan numbers, 〈Cn〉
∞

n=0 = 〈1, 1, 2, 5, 14, 42, 132, . . .〉, defined by

Cn :=
1

n + 1

(
2n

n

)
,

is one of the most important sequences in combinatorics for its ubiquitous appearances in
numerous problems and areas. Closely related and also well known is the sequence of the
Motzkin numbers, 〈Mn〉

∞

n=0 = 〈1, 1, 2, 4, 9, 21, 51, . . .〉, which can be defined in terms of the
Catalan numbers by

Mn :=

∑
k≥0

( n

2k

)
Ck .

There are many ways to define Mn , but in order to calculate the congruences, we choose the
above definition. Readers may refer to [5,13] for further information.

It is well known that Cn is odd if and only if n = 2k
− 1 for a nonnegative integer k. The rare

appearance of odd Catalan numbers partitions even Catalan numbers into consecutive runs of
length bi = 2i

− 1. This fact was generalized by Alter and Kubota [1] who also investigated the
corresponding problem of Cn modulo any prime p. They also studied the divisibility of Catalan
numbers with respect to primes and prime powers. Deutsch and Sagan [4] took one step further
and derived the formula for the highest power of 2 dividing Cn . However, there is a lack of studies
on the nonzero congruences for Cn . Part of our paper is devoted to this.

On the other hand, the studies on the congruences of the Motzkin numbers Mn are few
and were energized very recently. Luca and Klazar proved that the Motzkin numbers are never
periodic modulo any prime [10]. It seems that Deutsch and Sagan started the first systematical
study on the congruences for the Motzkin numbers [4]. The congruences of Mn modulo 2, 3 and
5 are computed exactly in their paper.

However, even in the light of [1], there are few exact results concerning the nonzero
congruences of Cn and Mn modulo a prime power. This paper is our first attempt to compensate
this situation. The congruences of Cn modulo 4 and 8 are fully investigated in this paper. As for
Mn , all even congruences modulo 4 and 8 are studied and this result proves a conjecture stated
as follows.

Conjecture 1.1. We have Mn ≡4 0 if and only if

n = (4i + 1)4 j+1
− 1 or n = (4i + 3)4 j+1

− 2,

where i and j are nonnegative integers. Furthermore we never have Mn ≡8 0.

This conjecture was first given by Deutsch and Sagan [4], and part of the conjecture was due to
their personal communication with Amdeberhan.

Since Cn is constructed by factorials 2n! and n!, a full understanding of the congruences of
factorials is crucial for solving that of Cn . Furthermore, via the defining-equality of Motzkin
number Mn =

∑
k

( n
2k

)
Ck and our result on Ck , we settle the even congruences of Mn by

computing
( n

2k

)
and dealing with the summation.

The paper is organized as follows. In Section 2, we develop the main tool E4(3, ·) and
compute the congruences of Catalan numbers modulo 4. In Section 3, we prove the first part
of Conjecture 1.1 (for modulo 4). Section 4 is devoted to Catalan numbers modulo 8. The similar
tool E8(t, ·) is developed for t = 3, 5, 7. Finally, we prove the second part of Conjecture 1.1 by
showing all even congruences of Motzkin numbers modulo 8 in Section 5.
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2. Catalan numbers modulo 4

Define [a, b] := {a, a +1, . . . , b} for two positive integers a and b with a ≤ b. Given positive
integers n and p, let [n]p := 〈nr nr−1 . . . n1n0〉p denote the sequence of digits representing n in
base p, i.e., n = nr pr

+ nr−1 pr−1
+ · · · + n1 p + n0 with ni ∈ [0, p − 1] and nr 6= 0 for some

integer r . For convenience, we let nr+1 = nr+2 = · · · = 0, but these digits do not belong to
the sequence [n]p. We can even define [0]p as an empty sequence, while 00 = 01 = · · · = 0.
Reversely, given a sequence of nonnegative integers 〈nr nr−1 . . . n1n0〉p with 0 ≤ ni ≤ p − 1 for
0 ≤ i ≤ r , we define |〈nr nr−1 . . . n1n0〉p| := nr pr

+ nr−1 pr−1
+· · ·+ n1 p + n0. We use p = 2

in the whole paper, so sometimes we will skip the subscript 2.
Now let [n]2 = 〈nr nr−1 . . . n1n0〉2. Define dk(n) :=

∑
i≥k ni , which counts the number of the

digit 1’s from nk to nr . We also let d(n) = d0(n) for it will be used frequently. For a statement S,
we set χ(S) = 1 if S is true, otherwise χ(S) = 0. Let us define c2(n) :=

∑
i≥0 χ(ni = ni+1 = 1)

as the number of the consecutive pairs of 1’s in the sequence [n]2, and r(n) the number of runs
of digit 1’s in 〈n〉2. Clearly, c2(n) = d(n) − r(n).

Given a positive integer n, let α(n) be the highest power index of base 2 such that 2α(n)

divides n. Let m1, m2, . . . , mk be positive integers. For the formal product
∏k

i=1 mi , we define
E4(3,

∏k
i=1 mi ) :=

∑k
i=1 χ(mi/2α(mi ) ≡4 3). For instance, E4(3, 3×4×6) = 2 and E4(3, 72) =

0 even though 3 × 4 × 6 = 72. In the following two lemmas, we compute α(n!) and the parity of
E4(3, n!).

Lemma 2.1. Let [n]2 = 〈nr nr−1 . . . n1n0〉2 and 2α(n!) be the highest power of 2 which divides
n!. The power index α(n!) equals

∑r
k=1(2

k
− 1)nk , and also equals n − d(n).

Proof. Notice that α(n!) =
∑r

k=1bn/2k
c = |〈nr nr−1 . . . n2n1〉2| + |〈nr nr−1 . . . n2〉2| + · · · +

|〈nr 〉2|, for bn/2k
c counts the number of integers in [1, n] that are multiples of 2k . From this

equation, the total contribution of nk to α(n!) is (2k−1
+ 2k−2

+ · · · + 1)nk ; thus α(n!) =∑r
k=1(2

k
− 1)nk = n − d(n) and the proof follows. �

Lemma 2.2. We have E4(3, n!) ≡2 d2(n) + c2(n); also E4(3, n!) ≡2 r(n) + n0 + n1.

Proof. Suppose [n]2 = 〈nr nr−1 . . . n1n0〉2. For those m ∈ [1, n] with the same value of α(m),
say i , the sum of their χ(m/2α(m)

≡4 3) equals b(b n
2i c + 1)/4c. Therefore, we have

E4(3, n!) =

∑
i≥0

⌊
b

n
2i c + 1

4

⌋
(1)

=

∑
i≥2

(2i−1
− 1)ni +

∑
i≥0

χ(ni = ni+1 = 1) (2)

≡2

∑
i≥2

ni +

∑
i≥0

χ(ni = ni+1 = 1)

= d2(n) + c2(n),

where the second summation in (2) counts the effect caused by the addend 1 on the right-hand
side of (1), while the first summation in (2) is obtained by ignoring this 1.

Since d2(n) = d(n)−n0−n1 and c2(n) = d(n)−r(n), we get d2(n)+c2(n) ≡2 r(n)+n0+n1,
and then the second statement of this lemma is proved. �
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For a formal quotient
∏k

i=1 mi/
∏l

j=1 q j , define E4(3,
∏k

i=1 mi/
∏l

j=1 q j ) := E4(3,∏k
i=1 mi ) − E4(3,

∏l
j=1 q j ). Let mrr1(n) or mrr1([n]2) be the length of the most right run

of 1’s in the sequence [n]2 starting at n0; similarly, mrr0(n) or mrr0([n]2) is defined for the most
right run of 0’s. For instance, mrr1(2n) = 0 for (2n)0 = 0, mrr0(2n +1) = 0 for (2n +1)0 = 1,
and mrr0(0) = 0 for [0]2 is an empty sequence. We are now ready to compute the congruences
of the Catalan numbers modulo 4.

Theorem 2.3. Let Cn be the nth Catalan number. First of all, Cn 6≡4 3 for any n. As for other
congruences, we have

Cn ≡4


1 if n = 2a

− 1 for some a ≥ 0;

2 if n = 2a
+ 2b

− 1 for some b > a ≥ 0;

0 otherwise.

Proof. We shall first consider the case that Cn =
1

n+1

(
2n
n

)
is an odd integer. This case occurs if

and only if α(n + 1) = α
((

2n
n

))
. By Lemma 2.1, we get

α

((
2n

n

))
= α(2n!) − 2α(n!)

= 2n − d(n) − 2[n − d(n)]

= d(n). (3)

On the other hand, α(n + 1) is equal to mrr0(n + 1), which is also equal to mrr1(n); so, we
derive that α(n + 1) = d(n) if and only if n = 2a

− 1 for some integer a ≥ 0. Because
E4(3, n + 1) = E4(3, 2a) = 0, the congruence of this odd Cn satisfies

Cn ≡4(−1)
E4

(
3, 1

n+1

(
2n
n

))
= (−1)E4(3,(2n)!)−2E4(3,n!)

= (−1)E4(3,(2a+1
−2)!)

= 1,

where the last equality is due to Lemma 2.2 provided that both r(2a+1
− 2) and (2a+1

− 2)1 are
the same (they could be both 0) and (2a+1

−2)0 = 0. Now the proof of Cn 6≡4 3 and the situation
of Cn ≡4 1 follows.

The proof will be done after finishing the situation of Cn ≡4 2. Congruence 2 happens if and

only if α(n + 1) = α
((

2n
n

))
− 1 = d(n) − 1, while the parity of E4(3, Cn) is irrelevant here,

because for 2 × 3 ≡4 2. Notice that α(n + 1) = d(n) − 1 holds if and only if n = 2a
+ 2b

− 1
for some b > a ≥ 0, i.e., [n]2 is of the form 〈1, 0, 0, . . . , 0, 1, 1, . . . , 1〉2. The whole proof
follows. �

In Theorem 2.3, we set the second condition as “n = 2a
+ 2b

− 1, for some b > a ≥ 0”. This
unusual form (b > a ≥ 0 not a > b ≥ 0) is more convenient for notational purposes in many
proofs.

Remark. We use Lemma 2.1 to find α
((

2n
n

))
(see Eq. (3)). Actually there is a well-known

formula for α
(( n

k

))
due to Kummer [9], namely it is the number of carries that occurs when

[n − k]2 and [k]2 are added as binary notations. In the following, Eqs. (6) and (10) can also be
derived by Kummer’s formula. Part of Theorem 2.3 (as well as Theorem 4.2 given later) is also a
previous work of Deutsch and Sagan (see Theorem 2.1 in [4]). They showed a very neat formula

α(Cn) = d(n + 1) − 1. (4)
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3. Motzkin numbers module 4

Let us define S4(i, C) = {k ∈ N | Ck ≡4 i} for i = 0, 1, 2, 3, where N is the set of nonnegative
integers. By Theorem 2.3,

S4(1, C) = {2a
− 1 | a ≥ 0},

S4(2, C) = {2a
+ 2b

− 1 | b > a ≥ 0}, and

S4(3, C) = ∅.

Using the defining-equality of the Motzkin number, Mn =
∑

k

( n
2k

)
Ck , we derive that

Mn ≡4

∑
k∈S4(1,C)

( n

2k

)
+ 2

∑
k∈S4(2,C)

( n

2k

)
. (5)

We will analyze the above two summations to verify the conjecture that Mn ≡4 0 if and only if
n = (4i + 1)4 j+1

− 1 or n = (4i + 3)4 j+1
− 2 for integers i, j ≥ 0. In short, let us define

f (n) :=

∑
k∈S4(1,C)

( n

2k

)
.

Since the second summation of (5) is even, Mn ≡4 0 happens only if f (n) is even. Now we claim
the first lemma as follows. This lemma is our stepping stone for solving the even congruences of
Mn .

Lemma 3.1. The summation f (n) :=
∑

k∈S4(1,C)

( n
2k

)
is even if and only if n = X · 4 j+1

− δ

for X, j ∈ N with X being odd and δ = 1 or 2.

Proof. We shall apply the Lucas’ Theorem [11] that claims
( n

m

)
≡p

∏
i

(
ni
mi

)
, where [n]p =

〈. . . n1n0〉p and [m]p = 〈. . . m1m0〉p. Here we take p = 2 and then
( n

2k

)
≡2 1 if and only

if ni+1 ≥ ki for all i ≥ 0. We have either k = 0 or that [k]2 is a sequence of all 1’s for
k ∈ S4(1, C). Therefore,

( n
2k

)
≡2 1 if and only if mrr1(〈. . . n2n1〉2) is not less than the length of

[k]2. (Recall mrr1(·) in the paragraph before Theorem 2.3.) And then, no matter what n0 is, we
have

f (n) ≡2

∣∣∣{k ∈ S4(1, C)

∣∣∣( n

2k

)
≡2 1

}∣∣∣ = mrr1(〈. . . n2n1〉2) + 1.

Thus, f (n) is even if and only if mrr1(〈. . . n2n1〉2) is odd. Suppose mrr1(〈. . . n2n1〉2) = 2 j + 1
for j ∈ N and we conclude that f (n) is even if and only if n = X · 4 j+1

− δ for X, j ∈ N with
X being odd and δ = 1 or 2, where δ depends on n0. �

As X is odd, we say X = 4i + ε with ε = 1 or 3. Now we narrow down to only four types
of n depending on ε and δ. The layout of the sequence [n]2 = [(4i + ε)4 j+1

− δ]2 is important
for the rest of the paper. From left to right, the sequence [n]2 has four parts (four subsequences):
A := [i]2, B := 〈

ε−1
2 0〉2, C := 〈11..1〉2, where 〈11..1〉2 is of length 2 j + 1, and the single digit

D := 〈2 − δ〉.
To investigate the even congruences of Mn modulo 4, first we need to see the congruences of( n

2k

)
for those n = (4i + ε)4 j+1

− δ and k = 2a
− 1 and we still need the following two lemmas.
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Lemma 3.2. Given n = (4i + ε)4 j+1
− δ and k = 2a

− 1 for a, i, j ∈ N, ε = 1, 3 and δ = 1, 2,
we have

α
(( n

2k

))
=

0 if a ≤ 2 j + 1;

1 if a = 2 j + 2 and ε = 3;

2 if i ≡2 1 and either (i) a = 2 j + 2 and ε = 1 or (ii) a = 2 j + 3

otherwise α
(( n

2k

))
≥ 3.

Proof. By Lemma 2.1, we have

α
(( n

2k

))
= [n − d(n)] − [2k − d(2k)] − [(n − 2k) − d(n − 2k)]

= −d(n) + d(k) + d(n − 2k)

= −d(n) + a + d(n − 2k). (6)

We take more efforts on the value of d(n − 2k). Let us observe the change of A, B, and C as
we subtract 2k from n, while the unchanged D is ignored. The discussion is listed as four cases
below. This discussion can also be done by Kummer’s formula. Notice that k = 2a

− 1 means
[k]2 is an all 1 sequence of length a, and so is C whose length is 2 j + 1.

(a) When a ≤ 2 j + 1, there are a digits 1’s in C eliminated by subtracting 2k; so
d(n − 2k) = d(n) − a and then α

(( n
2k

))
= 0.

(b) When a = 2 j +2 and ε = 3, not only all 1’s in C are eliminated, but also B = 〈10〉2 turns
into 〈01〉2. We find d(n − 2k) = d(n) − a + 1 and then α

(( n
2k

))
= 1.

(c) As for a = 2 j + 2 and ε = 1, we must have i ≥ 1 otherwise
( n

2k

)
= 0 for n < 2k.

After subtracting 2k, all 1’s in C are eliminated, B = 〈00〉2 becomes 〈11〉2. Also A becomes a
sequence with at least d(i) − 1 digit 1’s, while this minimum happens if and only if i is odd.
Therefore, if i is odd then d(n − 2k) = d(n) − a + 2 and α

(( n
2k

))
= 2; if i is even then

d(n − 2k) ≥ d(n) − a + 3 and α
(( n

2k

))
≥ 3.

(d) Finally, let us check the remaining case a ≥ 2 j + 3. After subtracting 2k, all 1’s in C are
eliminated and B = 〈

ε−1
2 0〉2 turns into 〈

ε−1
2 1〉2. Also A becomes [i − (2a−2 j−3

− 1) − 1]2 =

[i − 2a−2 j−3
]2. Notice that d(i − 2a−2 j−3) ≥ d(i) − 1 while the equality holds if and only

if ia−2 j−3 = 1. Therefore, we have α
(( n

2k

))
≥ a − 2 j − 1 in this case. We conclude that

if a = 2 j + 3 and i ≡2 1 then d(n − 2k) = d(n) − a + 2 and α
(( n

2k

))
= 2; otherwise

d(n − 2k) ≥ d(n) − a + 3 and α
(( n

2k

))
≥ 3. �

Lemma 3.3. Given n = (4i + ε)4 j+1
− δ and k = 2a

− 1 for a, i, j ∈ N, ε = 1, 3 and δ = 1, 2,
we have( n

2k

)
≡4

(−1)χ(a≥1)χ(δ=2)+χ(a=2 j+1) if a ≤ 2 j + 1,

2 if a = 2 j + 2 and ε = 3;

0 otherwise,

and ∑
k∈S4(1,C)

( n

2k

)
≡4 2( j + χ(ε = 3)) + (−1)χ(δ=1)

+ 1.

Proof. For the first equivalence, the congruences 2 and 0 are direct consequences of Lemma 3.2;
so we only need to calculate the nontrivial case when a ≤ 2 j + 1. In this condition,
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2k

)
≡4(−1)E4(3,( n

2k )). We have

E4

(
3,

( n

2k

))
≡2 E4(3, n!) + E4(3, (2k)!) + E4(3, (n − 2k)!)

≡2 [r(n) + (2 − δ) + 1] + [r(2k) + 0 + k0]

+ [r(n − 2k) + (2 − δ) + (1 − k0)] (7)

≡2 r(n) + r(2k) + r(n − 2k) (8)

≡2 r(n) + χ(a ≥ 1) + [r(n) + χ(a ≥ 1)(2 − δ) − χ(a = 2 j + 1)] (9)

≡2 χ(a ≥ 1) + χ(a ≥ 1)(2 − δ) + χ(a = 2 j + 1)

= χ(a ≥ 1)(3 − δ) + χ(a = 2 j + 1)

≡2 χ(a ≥ 1)χ(δ = 2) + χ(a = 2 j + 1),

as required. Among the above equivalences, (7) is obtained by Lemma 2.2 provided n1 = 1. To
derive the three terms inside the brackets of (9), we shall refer to case (a) in the last proof. In that
case, a digit 1’s are eliminated from C . Of course, nothing changes when a = 0. If 1 ≤ a ≤ 2 j
and δ = 1, then the most right run of [n]2 is bisected. The number of runs remains the same if
a = 2 j + 1 and δ = 1 or if 1 ≤ a ≤ 2 j and δ = 2. As for the last case a = 2 j + 1 and δ = 2,
the new number of runs becomes r(n) − 1. We obtain (9) after summarizing these conditions.

Applying the first equivalence of this lemma, we obtain∑
k∈S4(1,C)

( n

2k

)
≡4

2 j+2∑
a=0

(
n

2 × 2a − 2

)
≡4 1 + 2 j (−1)χ(δ=2)

+ (−1)χ(δ=2)+1
+ 2χ(ε = 3)

≡4 1 + (−1)χ(δ=1)
+ 2( j + χ(ε = 3)),

where the second equivalence is obtained by considering a = 0, 1 ≤ a ≤ 2 j , a = 2 j + 1, and
a = 2 j + 2. The proof is now complete. �

Now we shall turn our attention to the necessary and sufficient condition for∑
k∈S4(2,C)

( n
2k

)
≡2 1 because the second term of Eq. (5) is 2

∑
k∈S4(2,C)

( n
2k

)
.

Lemma 3.4. Given n = (4i + ε)4 j+1
− δ and k = 2a

+ 2b
− 1 for a, b, i, j ∈ N with b > a,

ε = 1, 3 and δ = 1, 2, the value
( n

2k

)
is odd if only if a ≤ 2 j + 1 and nb+1 = 1. Furthermore,∑

k∈S4(2,C)

( n
2k

)
≡2 j .

Proof. Similar to Eq. (6), but this time we have

α
(( n

2k

))
= −d(n) + (a + 1) + d(n − 2k), (10)

because k = 2a
+2b

−1. For d(n −2k), we can consider n −2k as n subtracted by 2(a2
−1) and

then subtracted by 2(2b). Before the second subtraction, the evaluation of α
(( n

2k

))
shall be as

same as in the proof of Lemma 3.2. We refer to cases (a)–(d) in that proof and also compare (10)
with (6); The value of α here is 1 greater than it is in each case there. For the value of d(n − 2k),
the effect from the second subtraction is independent of that from the first one. Subtracting 2(2b)

can at most reduce the value of d by 1 (sometimes, it can even increase d), when the extreme case
happens if and only if nb+1 = 1. Combining nb+1 = 1 and the case (a) in the proof of Lemma 3.2,
which requires a ≤ 2 j + 1, forms the necessary and sufficient condition for α

(( n
2k

))
= 0, as

well as for
( n

2k

)
≡2 1.
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Now for the parity of
∑

k∈S4(2,C)

( n
2k

)
, let us refer to the four parts, A, B, C and D, of the

sequence [n]2 = [(4i + ε)4 j+1
− δ]2. Given a fixed a, we count how many b’s make

( n
2k

)
≡2 1.

If a = 2 j + 1 then there are d(i) + χ(ε = 3) such b’s; if 0 ≤ a ≤ 2 j then there are
d(i) + χ(ε = 3) + (2 j − a). Therefore∑

k∈S4(2,C)

( n

2k

)
≡2 d(i) + χ(ε = 3) +

2 j∑
a=0

[d(i) + χ(ε = 3) + (2 j − a)]

≡2 (2 j + 2)(d(i) + χ(ε = 3)) +

2 j∑
a=0

a

≡2 j (2 j + 1)

≡2 j. �

Proof for the first part of Conjecture 1.1. By Lemmas 3.3 and 3.4, we can simplify Eq. (5)
as Mn ≡4[2( j + χ(ε = 3)) + (−1)χ(δ=1)

+ 1] + 2 j . We simply plug in the four types of
n = (4i + ε)4 j+1

− δ with ε = 1, 3 and δ = 1, 2 and then obtain

Mn ≡4 0 if (ε, δ) = (1, 1) or (3, 2);

Mn ≡4 2 if (ε, δ) = (1, 2) or (3, 1). (11)

Notice that these four types of n are the necessary and sufficient conditions for Mn to be even;
so the proof is complete. �

We not only prove the first part of Conjecture 1.1, but also Eq. (11) in the above proof offers an
auxiliary property as follows.

Theorem 3.5. We have Mn ≡4 2 if and only if

n = (4i + 1)4 j+1
− 2 or n = (4i + 3)4 j+3

− 1, where i, j ∈ N.

4. Factorials and Catalan numbers modulo 8

The process is almost the same. To verify the conjecture that Mn ≡8 0 never happens,
we need first to take care of the congruences of the factorials and the Catalan numbers
modulo 8. For a formal product

∏k
i=1 mi of positive integers, we define E8(t,

∏k
i=1 mi ) :=∑k

i=1 χ(mi/2α(mi ) ≡8 t) for t = 3, 5, 7. Similarly, we define E8(t,
∏k

i=1 mi/
∏l

j=1 q j ) :=

E8(t,
∏k

i=1 mi ) − E8(t,
∏l

j=1 q j ). For example, E8(3, 7!) = 2 and E8(5, 7!) = E8(7, 7!) = 1;
however, E8(3, 5040) = 1 and E8(5, 5040) = E8(7, 5040) = 0. The difference between
E8(t, 7!) and E8(t, 5040) is due to 5 × 7 ≡8 3. The table for the product rules of Z8, as follows,
is useful.

3 5 7 2 4 6
3 1 7 5 6 4 2
5 1 3 2 4 6
7 1 6 4 2

From this table, we are again interested in the parity of E8(t,
∏k

i=1 mi ) because
32

≡8 52
≡8 72

≡8 1.



S.-P. Eu et al. / European Journal of Combinatorics 29 (2008) 1449–1466 1457

Suppose [n]2 = 〈nr . . . n1n0〉2. Some new notation helps us to evaluate the parity of
E8(t,

∏k
i=1 mi ). In the bit sequence [n]2, let r1(n) be the number of isolated 1’s, zr(n) the

number of runs made by 0’s, zr1(n) the number of isolated 0’s. We compute the parity of E8(t, n!)

in the following lemma.

Lemma 4.1. We have

1. E8(3, n!) ≡2 r1(n) + zr(n) + n0 + n2,

2. E8(5, n!) ≡2 r(n) + zr1(n) + n0 + n2, and

3. E8(7, n!) ≡2 r1(n) + n0 + n1 + n2.

Proof. Suppose [n]2 = 〈nr nr−1 . . . n2n1n0〉2. For t = 3, 5, 7, we define At := {[x]2 | t ≤ x ≤

7}, for here [3]2 = 〈011〉2 not 〈11〉2 to make all elements in At of length 3. The argument for
Eqs. (1) and (2) still works here. So we obtain

E8(t, n!) =

∑
i≥0

⌊
b

n
2i c + (8 − t)

8

⌋
=

∑
i≥3

(2i−2
− 1)ni +

∑
i≥0

χ(|〈ni+2ni+1ni 〉2| ≥ t) (12)

≡2 d3(n) +

∑
i≥0

χ(〈ni+2ni+1ni 〉2 ∈ At ) (13)

for t = 3, 5, 7. In the second summation of both (12) and (13), the upper limit of index i is r − 1
or r − 2, because nr+k = 0 for k ≥ 1 and both 〈00nr 〉 and 〈000〉 are irrelevant to the counting.

For the further precise evaluation, we need the following equations. They are easy to check
and left to the reader. Again d(n), r(n), r1(n), zr(n), zr1(n) are irrelevant to those nr+k = 0 for
k ≥ 1 for they do not belong to [n]2.

(a)
∑r−1

i=0 χ(〈ni+2ni+1ni 〉 = 〈011〉) = r(n) − r1(n).

(b)
∑r−2

i=0 χ(〈ni+2ni+1ni 〉 = 〈100〉) = zr(n) − zr1(n).

(c)
∑r−2

i=0 χ(〈ni+2ni+1ni 〉 = 〈101〉) = zr1(n) − n1(1 − n0).

(d)
∑r−2

i=0 χ(〈ni+2ni+1ni 〉 = 〈110〉) = r(n) − r1(n) − n0n1.

(e)
∑r−2

i=0 χ(〈ni+2ni+1ni 〉 = 〈111〉) = c3(n) = d(n) − 2r(n) + r1(n).

By (13) and summing up (c), (d) and (e), we obtain

E8(5, n!) ≡2 d3(n) + [zr1(n) − n1(1 − n0)] + [r(n) − r1(n) − n0n1]

+ [d(n) − 2r(n) + r1(n)]

≡2 r(n) + zr1(n) + n0 + n2.

The checking of the other two is left to the reader. �

With the help of Lemma 4.1, we can bisect each condition in Theorem 2.3 to form a new
conditional equation as a refinement to evaluate Cn modulo 8.
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Theorem 4.2. Let Cn be the nth Catalan number. First of all, Cn 6≡8 3 and Cn 6≡8 7 for any n. As
for other congruences, we have

Cn ≡8



1 if n = 0 or 1;

2 if n = 2a
+ 2a+1

− 1 for some a ≥ 0;

4 if n = 2a
+ 2b

+ 2c
− 1 for some c > b > a ≥ 0;

5 if n = 2a
− 1 for some a ≥ 2;

6 if n = 2a
+ 2b

− 1 for some b − 2 ≥ a ≥ 0;

0 otherwise.

Proof. Since Cn 6≡4 3 for any n, we have Cn 6≡8 3 and Cn 6≡8 7. Now for the other congruences,
by Theorem 2.3, Cn ≡4 1 if and only if n = 2a

−1 for a ≥ 0. Since C0 = C1 = 1, we need only to
check that if n = 2a

−1 for a ≥ 2 then Cn ≡8 5. Let us apply E8(t, ·) on the formal quotient Cn =(
2n
n

)
/(n + 1) with n = 2a

− 1 for a ≥ 2, and obtain E8(t, Cn) = E8(t, (2n)!) − 2E8(t, n!) −

E8(t, n +1) ≡2 E8(t, (2n)!). After deriving E8(3, Cn) ≡2 E8(7, Cn) ≡2 0 and E8(5, Cn) ≡2 1 by
Lemma 4.1, the cases of congruences 1 and 5 are done.

Now for the cases of congruences 2 and 6. By Theorem 2.3, we shall suppose n = 2a
+2b

−1
for b > a ≥ 0. We need to find out the necessary and sufficient condition for Cn ≡8 2. In the ring
Z8, we have four possible products to create congruence 2, but we sort them as two occasions: (i)
2 and 2 × 3 × 5 × 7, (ii) 2 × 5 and 2 × 3 × 7. For α(C2a+2b−1) = 1 we shall consider the possible
combination of the parities of E8(t, n!) for t = 3, 5, 7. Let Wtu := E8(t, Cn) + E8(u, Cn).
Clearly, (W35 + 1)(W37 + 1) ≡2 1 is the necessary and sufficient condition for the occasion (i).
Similarly, W35(W37 + 1) ≡2 1 is the condition for the occasion (ii). We conclude that

C2a+2b−1 ≡8 2 ⇐⇒ W37 ≡2 0. (14)

By Lemma 4.1 and the layout of [2a
+ 2b

− 1]2, we have

W37 ≡2 [E8(3, (2n)!) + E8(7, (2n)!)] + [E8(3, n + 1) + E8(7, n + 1)]

≡2 [zr(2n) + (2n)1] + [E8(3, 2b−a
+ 1) + E8(7, 2b−a

+ 1)]

≡2 [1 + χ(a ≥ 1) + χ(a + 2 ≤ b) + χ(a ≥ 1)] + [χ(a + 1 = b) + χ(a + 2 ≤ b)]

≡2 1 + χ(a + 1 = b).

Therefore, W37 ≡2 0 if and only if a + 1 = b, and the proof of this case follows.
It requires α(Cn) = 2 to get congruence 4. Referring to the proof of Theorem 2.3, it is the

same to require α(n + 1) = d(n) − 2. The checking for the necessary and sufficient condition,
n = 2a

+ 2b
+ 2c

− 1 for c > b > a ≥ 0, is left to the reader. The checking can also be done by
using Deutsch and Sagan’s formula (see (4) of this paper). �

5. Motzkin numbers modulo 8

Now we are ready to prove that Mn ≡8 0 never happens. Actually, we focus on even
congruences 0, 2, 4, and 6 modulo 8, and we shall suppose n = (4i + ε)4 j+1

− δ for i, j ∈ N,
ε = 1, 3 and δ = 1, 2.

We recall that the layout of [(4i + ε)4 j+1
− δ]2, from left to right, consists of four

subsequences: A := [i]2, B := 〈
ε−1

2 0〉2, C := 〈11 . . . 1〉2 of length 2 j + 1, and the single
digit D := 〈2 − δ〉2. In addition, we define Y := 4i + ε − 1 and y := d(Y ). The sequence [Y ]2
is the combination of the first two parts of [n]2, namely A and B.
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Let S8(i, C) := {k ∈ N | Ck ≡8 i} for i = 0, . . . , 7. By Theorem 4.2, we know S8(3, C) =

S8(7, C) = ∅ and also the types of elements in the other S8(i, C). For Mn =
∑

k≥0

( n
2k

)
Ck , we

have

Mn ≡8 A1(n) + 2A2(n) + 4A4(n) + 5A5(n) + 6A6(n),

where At (n) =
∑

k∈S8(t,C)

( n
2k

)
. The following lemma evaluates 4A4(n). It is easy because we

only need to check the parity of the corresponding summation.

Lemma 5.1. Let n = (4i + ε)4 j+1
− δ for i, j ∈ N, ε = 1, 3 and δ = 1, 2. Also let

S8(4, C) = {2a
+ 2b

+ 2c
− 1 | a, b, c ∈ N with c > b > a ≥ 0}. We have

4A4 := 4
∑

k∈S8(4,C)

( n

2k

)
≡8 4 j y + 4 j.

Proof. Suppose [n]2 = 〈nr . . . n1n0〉2. By the Lucas’ Theorem,
( n

2k

)
≡2 1 if and only if nl+1 ≥

kl for all l ≥ 0. Notice that [k]2 consists of a + 2 digit 1’s with 〈kaka−1 . . . k1k0〉 = 〈01 . . . 11〉.
So

( n
2k

)
≡2 1 means a ≤ 2 j + 1 and nb+1 = nc+1 = 1 with c > b > a ≥ 0. The following

is obtained by counting the possible ordered pairs (b, c) with respect to a fixed a ∈ [0, 2 j + 1],
where y = d(Y ).

A4(n) ≡2

2 j∑
a=0

(( y

2

)
+ y(2 j − a) +

(
2 j − a

2

))
+

( y

2

)
≡2 j y +

1
3

j (4 j2
− 1).

We complete this proof after knowing that 1
3 j (4 j2

− 1) ≡2 j and multiplying A4 by 4 under
modulo 8. �

We abuse the notation Wst , once used in the proof of Theorem 4.2, and let Wst :=

E8(s,
( n

2k

)
) + E8(t,

( n
2k

)
). The congruence of

( n
2k

)
/2α(( n

2k )) is crucial, and we can use the
following properties to evaluate it.( n

2k

)
/2α(( n

2k )) ≡8 1 ⇔ (W35 + 1)(W37 + 1) = W35W37 + W57 + 1 ≡2 1,( n

2k

)
/2α(( n

2k )) ≡8 3 ⇔ W35(W57 + 1) ≡2 1, and( n

2k

)
/2α(( n

2k )) ≡8 1 or 5 ⇔ W37 ≡2 0.

Actually (14) was obtained by the last property and the first two properties were discussed in the
same proof.

In the following we compute A1 + 5A5 and 2A2 + 6A6 under modulo 8. Indeed, we can
evaluate A1, A2, A5, and A6 independently, but we pair them up and derive simpler formulas.

Lemma 5.2. We have

A1(n) + 5A5(n) ≡8


2 j + 4 if ε = 1 and δ = 1;

6 j + 2 if ε = 1 and δ = 2;

2 j + 6 if ε = 3 and δ = 1;

6 j if ε = 3 and δ = 2.
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Proof. We shall look at those n = (4i + ε)4 j+1
− δ and k = 2a

− 1. According to the value
of α

(( n
2k

))
illustrated in Lemma 3.2, let us group the contribution of

( n
2k

)
into three classes as

follows, while the case with α
(( n

2k

))
≥ 3 is ignored because of modulo 8. In each class,

( n
2k

)
contributes to A1 when a = 0 and 1; to A5 when a ≥ 2.

Class I. Suppose α
(( n

2k

))
= 2 which is provided by i ≡2 1 (i.e., i0 = 1) and either (i)

a = 2 j + 2 and ε = 1 or (ii) a = 2 j + 3. Both situations make a ≥ 2, so there is no contribution
to A1. The total contribution of

( n
2k

)
to A5 is

4i0(χ(ε = 1) + 1) = 4i0χ(ε = 3) (mod 8), (15)

where 4 is due to α
(( n

2k

))
= 2. For 5 × 4 ≡8 4, the same value contributes to 5A5 as well as

A1 + 5A5 in this class.
Class II. Suppose α

(( n
2k

))
= 0 which is provided by a ≤ 2 j + 1. We will calculate Wst in

this class, because they determine whether
( n

2k

)
≡8 1, 3, 5, or 7. But first we shall deal with r1, r ,

zr1, and zr by plugging in n − 2k:

r1(n − 2k) = r1(n) + χ(δ = 1)χ(a ≥ 1) − χ(δ = 2)χ(a = 1)χ( j = 0)

+ χ(a = 2 j)χ( j ≥ 1),

r(n − 2k) = r(n) + χ(δ = 1)χ(1 ≤ a ≤ 2 j)χ( j ≥ 1) − χ(δ = 2)χ(a = 2 j + 1),

zr1(n − 2k) = zr1(n) + χ(δ = 1)χ(a = 1)χ( j ≥ 1) − χ(δ = 2)χ(a ≥ 1)

− χ(ε = 3)χ(a = 2 j + 1),

zr(n − 2k) = zr(n) + χ(δ = 1)χ(1 ≤ a ≤ 2 j)χ( j ≥ 1)

− χ(δ = 2)χ(a = 2 j + 1). (16)

Basically, these four formulas are derived by observing the layout of the four subsequences, A,
B, C , and D, of [n]2 and [2k]2 = 〈11 . . . 10〉2, which is of length a + 1. As a special case when
a = 0, plugging in n − 2k is as same as plugging in n. Also a = 0, 1, 2 j and 2 j + 1 are special
in some sense. Notice that χ( j ≥ 1) can actually be removed from the formulas of r(n − 2k)

and zr(n − 2k), but it was kept for the convenience of the following calculation.
In general, we define ( f + g)(n) := f (n) + g(n) for briefness. With the help of the above

four formulas and by Lemma 4.1, we have

W35 ≡2 E8

(
3,

( n

2k

))
+ E8

(
5,

( n

2k

))
≡2 [(r1 + r + zr1 + zr)(n) − (r1 + r + zr1 + zr)(n − 2k)]

− (r1 + r + zr1 + zr)(2k)

≡2 [χ(δ = 1)χ(a = 1)χ( j ≥ 1) + χ(δ = 2)χ(a = 1)χ( j = 0)

+ χ(ε = 3)χ(a = 2 j + 1) + χ(a = 2 j)χ( j ≥ 1) + χ(a ≥ 1)] − χ(a ≥ 2)

≡2 χ(δ = 1)χ(a = 1)χ( j = 0) + χ(δ = 2)χ(a = 1)χ( j ≥ 1)

+ χ(ε = 3)χ(a = 2 j + 1) + χ(a = 2 j)χ( j ≥ 1),

W37 ≡2 [zr(n) − zr(n − 2k)] − zr(2k) + [n1 − (2k)1 − (n − 2k)1] (17)

≡2 χ(δ = 1)χ(1 ≤ a ≤ 2 j)χ( j ≥ 1) + χ(δ = 2)χ(a = 2 j + 1) + χ(a ≥ 1),

W57 ≡2 W35 + W37

≡2 χ(δ = 1)χ(2 ≤ a ≤ 2 j)χ( j ≥ 1) + χ(δ = 2)χ(a = 2 j + 1)χ( j ≥ 1)

+ χ(ε = 3)χ(a = 2 j + 1) + χ(a = 2 j)χ( j ≥ 1) + χ(a ≥ 2). (18)
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Table 1
Contribution of

( n
2k

)
(mod 8) to A1 + 5a5 in Class II

j = 0 j = 0 j = 0 j = 0 j ≥ 1 j ≥ 1 j ≥ 1 j ≥ 1
ε = 1 ε = 1 ε = 3 ε = 3 ε = 1 ε = 1 ε = 3 ε = 3
δ = 1 δ = 2 δ = 1 δ = 2 δ = 1 δ = 2 δ = 1 δ = 2 #{a}

a = 0 ∗ 1 1 1 1 1 1 1 1 1
a = 1 ∗ 3 1 7 5 1 3 1 3 1
2 ≤ a ≤ 2 j − 1 1 7 1 7 2 j − 2
a = 2 j ≥ 2 5 3 5 3 1
a = 2 j + 1 ≥ 3 7 1 3 5 1

A ∗
1 4 2 0 6 2 4 2 4

A5 0 0 0 0 2 j + 2 6 j + 6 2 j + 6 6 j + 2
A1 + 5A5 4 2 0 6 2 j + 4 6 j + 2 2 j 6 j + 6

Notice that n1 − (2k)1 − (n − 2k)1 = 0 in (17). We can also use W57 ≡2[(r1 + r + zr1)(n) −

(r1 + r + zr1)(n − 2k)] − (r1 + r + zr1)(2k) + [n1 − (2k)1 − (n − 2k)1] to obtain (18).

Respectively, the necessary and sufficient condition for
( n

2k

)
≡8 1, 3, 5, 7 are the following

four values being odd.

W35W37 + W57 + 1 ≡2 χ(δ = 1)[χ( j = 0, a = 1) + χ( j ≥ 2, 2 ≤ a ≤ 2 j − 1)]

+ χ(δ = 2)[χ( j ≥ 1, a = 1) + χ(a = 2 j + 1)(χ(ε = 3)

+ χ( j ≥ 1))] + χ(a ≥ 2) + 1,

W37(W57 + 1) ≡2 χ(δ = 1, a = 2 j + 1)[χ( j = 0) + χ(ε = 3)]

+ χ(δ = 2, j ≥ 1)[χ(a = 2 j) + (a = 1)],

W35(W37 + 1) ≡2 χ(δ = 1)χ( j ≥ 1, a = 2 j) + χ(δ = 2)χ(ε = 3, a = 2 j + 1),

W37(W35 + 1) ≡2 χ(a ≥ 1) + χ(a = 2 j + 1)[1 + χ(δ = 1)(χ( j = 0) + χ(ε = 1))]

+ χ( j ≥ 1)[χ(a = 2 j) + χ(δ = 1, 1 ≤ a ≤ 2 j − 1)

+ χ(δ = 2, a = 1)].

Now let us summarize the above criteria by Table 1 to evaluate
( n

2k

)
modulo 8, and also the

contribution to A1, A5, and A1 + 5A5. Even though we have to bisect conditions j = 0 and
j ≥ 1 in this table, the final formulas of A1 + 5A5 when j ≥ 1 work for the corresponding
special cases when j = 0.

Class III. Suppose α
(( n

2k

))
= 1 which is provided by a = 2 j + 2 and ε = 3. Since a ≥ 2

there is no contribution to A1. The congruences of
( n

2k

)
in this class can only be 2 and 6. For

5 × 2 ≡8 2 and 5 × 6 ≡8 6. The contribution of
( n

2k

)
to A5 is as same as that to 5A5.

Referring to the similar situation in (14), we know
( n

2k

)
≡8 2 if and only if W37 ≡2 0. Because

k = 22 j+2
− 1 and ε = 3, we have

zr(n − 2k) = zr(n) + i0 − χ(δ = 2)

and then obtain

W37 ≡2 [zr(n) − zr(n − 2k)] − zr(2k) + [n1 − (2k)1 − (n − 2k)1]

≡2 i0 + χ(δ = 2) + 1.
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Therefore,
( n

2k

)
≡8 2 if (i) δ = 1 and i0 = 1 or (ii) δ = 2 and i0 = 0;

( n
2k

)
≡8 6 otherwise. So the

total contribution to A5 as well as to A1 + 5A5 in this class is

χ(ε = 3)[2χ(δ = 1, i0 = 1) + 2χ(δ = 2, i0 = 0)

+6χ(δ = 1, i0 = 0) + 2χ(δ = 2, i0 = 1)]

= χ(δ = 1, ε = 3)(6 + 4i0) + χ(δ = 2, ε = 3)(2 + 4i0) (mod 8). (19)

Now the whole proof is done by summing up the contributions from the above three classes
(see (15), the last line of Table 1 and (19)). For example, when ε = 3 and δ = 2 we have

A1 + 5A5 = 4i0 + (6 j + 6) + (2 + 4i0) = 6 j.

The checking of the other three is left to the reader. �

The next lemma is a preparation for evaluating 2A2 + 6A6.

Lemma 5.3. Given n = (4i +ε)4 j+1
−δ and k = 2a

+2b
−1 for a, b, i, j ∈ N, b > a, ε = 1, 3

and δ = 1, 2, we have

α
(( n

2k

))
=


0 if (1) a ≤ 2 j + 1 and nb+1 = 1;

1 if
(2) a ≤ 2 j + 1, nb+1 = 0, and nb+2 = 1, or
(3) a = 2 j + 2, nb+1 = 1, and ε = 3

otherwise α
(( n

2k

))
≥ 2. Moreover, given condition (1), we must have b 6= 2 j + 1 and( n

2k

)
≡4(−1)E where

(a) E = χ(a ≥ 1, δ = 2) + χ(b = 2 j) if b ≤ 2 j and

(b) E = χ(a = 0) + χ(1 ≤ a ≤ 2 j, δ = 1) + χ(a = 2 j + 1, δ = 2)

+ χ(〈nb+2nb+1nb〉 = 〈111〉 or 〈010〉) if b ≥ 2 j + 2.

Proof. We skip the proof of the first part, because it is not only similar to the proof of Lemma 3.2
but also a follow-up of cases (a) and (b) of that proof. A precise proof needs the technique used
in the first paragraph of the proof of Lemma 3.4.

As for the second part of the lemma, b 6= 2 j + 1 is due to the fact that n2 j+2 (the right digit

of B) is always 0. Since
( n

2k

)
≡4(−1)E4(3,( n

2k )), now we are going to show that E4(3,
( n

2k

)
) ≡2 E

which can be done by using the identity E4(3,
( n

2k

)
) ≡2 r(n) + r(2k) + r(n − 2k) (see (8)).

Clearly, r(2k) = 1 + χ(a ≥ 1) because k = 2a
+ 2b

− 1 and b > a. If b ≤ 2 j , then we have

r(n − 2k) = r(n) + χ(a ≥ 1, δ = 2) + χ(b ≤ 2 j − 1).

If b ≥ 2 j + 2, then we have

r(n − 2k) = r(n) + χ(1 ≤ a ≤ 2 j, δ = 1) − χ(a = 2 j + 1, δ = 2)

− χ(〈nb+2nb+1nb〉 = 〈111〉) + χ(〈nb+2nb+1nb〉 = 〈010〉).

The above two formulas can be checked by the layout of A, B, C and D. Now simplify
r(n) + r(2k) + r(n − 2k) and our proof follows. �

Lemma 5.4. We have 2A2(n) + 6A6(n) equal to

4yχ(ε = 3) + [2 j + 4 jχ(δ = 2)] + [4y( j + χ(δ = 2)) + 4χ(ε = 3)] (mod 8)
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Table 2
Contribution of

( n
2k

)
(mod 8) to 2A2 + 6a6 in Subclass II(a)

j ≥ 1 j ≥ 1
δ = 1 δ = 2 #{(a, b)}

b = 1, a = 0 ∗ 1 1 1
2 ≤ b ≤ 2 j − 1, a = 0, 1 1 2 j − 2
2 ≤ b ≤ 2 j − 1, a ≥ 1, a + 2 ≤ b 1 3 (2 j − 3)( j − 1)

2 ≤ b ≤ 2 j − 1, a ≥ 1, a + 1 = b ∗ 1 3 2 j − 2
b = 2 j , a = 0 3 3 1
b = 2 j , a ≥ 1, a + 2 ≤ b 3 1 2 j − 2
b = 2 j , a ≥ 1, a + 1 = b ∗ 3 1 1

A ∗
2 (mod 4) 2 j + 2 2 j

A6 (mod 4) j + 2 3 j
2A2 + 6A6 (mod 8) 2 j 6 j

or

2A2(n) + 6A6(n) ≡8


2 j + 4 j y if ε = 1 and δ = 1;

6 j + 4 j y + 4y if ε = 1 and δ = 2;

2 j + 4 j y + 4y + 4 if ε = 3 and δ = 1;

6 j + 4 j y + 4 if ε = 3 and δ = 2.

Proof. Notice that S8(2, C) ∪ S8(6, C) = {2a
+ 2b

− 1 | a, b ∈ N, b > a}. According to the
value of α

(( n
2k

))
given in Lemma 5.3, we discuss two classes as follows, while the third case

with α
(( n

2k

))
≥ 2 is irrelevant.

Class I. Suppose α
(( n

2k

))
= 1. Because each

( n
2k

)
is even, so are A2(n) and A6(n).

For 2A2(n) + 6A6(n) ≡8 4(A2(n)/2 + A6(n)/2), we only need to consider the parity of
A2(n)/2 + A6(n)/2, which is exactly the number of

( n
2k

)
’s involved in this class. The number of

those k’s satisfying a ≤ 2 j + 1, nb+1 = 0, and nb+2 = 1 is

r(Y ) − χ(ε = 3) +

2 j∑
a=0

r(Y ) ≡2 χ(ε = 3),

because the digit nb+2 = 1 shall be the last 1 in any run of Y . But there is an unnecessary
counting that happens when χ(ε = 3) and a = b = 2 j + 1. Given ε = 3, the number of those
k’s satisfying a = 2 j + 2 and nb+1 = 1 is

(y − 1)χ(ε = 3).

Therefore, the total contribution to 2A2 + 6A6 in this class is

4yχ(ε = 3). (20)

Class II. Suppose α
(( n

2k

))
= 0 which is provided by k = 2a

+ 2b
− 1 with a ≤ 2 j + 1 and

nb+1 = 1. Actually, we shall evaluate A2 and A6 under modulo 4 not 8, and then multiply them
by 2 and 6 respectively under modulo 8. According the second part of Lemma 5.3, we deal with
the following two subclasses:

(a) Suppose nb+1 = 1 belongs to C which is provided by a + 1 ≤ b ≤ 2 j . For 2 j ≥ a + 1,
we must have j ≥ 1 in this subclass. Now let us refer to Lemma 5.3 and use Table 2 to evaluate
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)
, the contribution to A2, A6 (mod 4), and 2A2 +6A6 (mod 8). In the table, we shall simplify

(2 j − 3)( j − 1) = 2( j − 2)( j − 1) + j − 1 ≡4 j + 3. We conclude that the total contribution of
this subclass is

(2 + 4χ(δ = 2)) jχ( j ≥ 1) ≡8 2 j + 4 jχ(δ = 2). (21)

Even though j ≥ 1 is required in this subclass, the value of the above formula is 0 when j = 0;
so the formula also works for j = 0.

(b) Suppose nb+1 = 1 belongs to Y which is provided by b ≥ 2 j +2 (not b ≥ 2 j +1 because
n2 j+2 is always 0). Lemma 5.3 will be used here again.

We shall first deal with 2A2. In this subclass, there is only one possible situation when( n
2k

)
contributes to 2A2, namely ε = 3 and a + 1 = b = 2 j + 2. The latter one is

because S8(2, C) = {2a
+ 2a+1

− 1 | a ∈ N}, a ≤ 2 j + 1 and b ≥ 2 j + 2. Now for
n2 j+3 = 1 (the left digit of B), we must have ε = 3. In addition if i ≡2 0 then we have
〈n2n+4n2n+3n2n+2〉 = 〈010〉, and then E ≡2 χ(δ = 2)+1 and

( n
2k

)
≡4 1+2χ(δ = 1). Similarly,

if i ≡2 1 then
( n

2k

)
≡4 1 + 2χ(δ = 2). Thus, the contribution to 2A2 is

2χ(ε = 3)[χ(i ≡2 0)(1 + 2χ(δ = 1)) + χ(i ≡2 1)(1 + 2χ(δ = 2))]

≡4 2χ(ε = 3)[1 + 2χ(i ≡2 0)χ(δ = 1) + 2χ(i ≡2 1)χ(δ = 2)]. (22)

The required condition ε = 3 has already been implanted in this formula.
As for 6A6, we analyze E further. Notice that the choices of a and b are independent. This

fact is also revealed by corresponding E in Lemma 5.3. Let us bisect E into two terms as follows:

U (a) := χ(a = 0) + χ(1 ≤ a ≤ 2 j, δ = 1) + χ(a = 2 j + 1, δ = 2) and

V (b) := χ(〈nb+2nb+1nb〉 = 〈111〉 or 〈010〉).

Now we deal with the total contribution of
( n

2k

)
to 6A6. In the following sum, we assume

every
( n

2k

)
in this subclass goes to A6 for convenience. Of course, this is a false assumption

because the only situation causing contribution to A2 might happen. Anyway, we will fix this
false assumption later.

2 j+1∑
a=0

∑
b≥2 j+2
nb+1=1

( n

2k

)
=

2 j+1∑
a=0

∑
b≥2 j+2
nb+1=1

(−1)U (a)+V (b) (23)

=

2 j+1∑
a=0

(−1)U (a)
∑

b≥2 j+2

χ(nb+1 = 1)(−1)V (b)

≡4

2 j+1∑
a=0

(−1)U (a)
∑

b≥2 j+2

χ(nb+1 = 1)(−1)V (b). (24)

Let us deal with the two summations (factors) in (24). The first one can be easily evaluated by a
table of (−1)U (a). See Table 3. We conclude that

2 j+1∑
a=0

(−1)U (a)
≡4 2( j + χ(δ = 2)), (25)

whether j ≥ 1 or not.
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Table 3

Contribution of (−1)U (a) in Subclass II(b)

j = 0 j = 0 j ≥ 1 j ≥ 1
δ = 1 δ = 2 δ = 1 δ = 2 #{a}

a = 0 −1 −1 −1 −1 1
1 ≤ a ≤ 2 j −1 1 2 j
a = 2 j + 1 1 −1 1 −1 1∑2 j+1

a=0 (−1)U (a) 0 2 2 j 2 j + 2

The second summation is evaluated as follows. Notice that the fact Y0 = 0 will be used several
times in the following calculations.∑

b≥2 j+2

χ(nb+1 = 1)(−1)V (b)

=

∑
l≥1

χ(〈Yl+1YlYl−1〉 = 〈011〉 or 〈110〉) −

∑
l≥1

χ(〈Yl+1YlYl−1〉 = 〈111〉 or 〈010〉)

= 2
∑
l≥1

χ(〈Yl+1YlYl−1〉 = 〈011〉 or 〈110〉) − y

= 2
∑
l≥1

[
χ(〈Yl+1Yl〉 = 〈01〉) + χ(〈YlYl−1〉 = 〈10〉) − 2χ(〈Yl+1YlYl−1〉 = 〈010〉)

]
− y

= 2[2r(Y ) − 2r1(Y )] − y

≡4 −y. (26)

By (24)–(26), the contribution to A6 is 2y( j + χ(δ = 2))(mod 4) if we assume that every
( n

2k

)
contributes to A6, and then the contribution to 6A6 is 4y( j + χ(δ = 2))(mod 8).

Now refer to (22) and return the extra value caused by the false assumption in the situation
that ε = 3 and a + 1 = b = 2 j + 2. Therefore, the real contribution to 2A2 + 6A6 in Subclass
(b) is

4y( j + χ(δ = 2)) − (6 − 2)χ(ε = 3)[1 + 2χ(i ≡2 0)χ(δ = 1) + 2χ(i ≡2 1)χ(δ = 2)]

≡8 4y( j + χ(δ = 2)) + 4χ(ε = 3). (27)

Finally, sum up the contribution from Class I and Subclasses II(a) and II(b), i.e., (20), (21)
and (27), to finish the proof. �

With the values obtained from Lemmas 5.1, 5.2 and 5.4, our final main result is obtained as
follows. This result proves that Mn ≡8 0 never happens (the second part of Conjecture 1.1).

Theorem 5.5. The nth Motzkin number Mn is even if and only if n = (4i + ε)4 j+1
− δ for

i, j ∈ N, ε = 1, 3 and δ = 1, 2. Moreover, we have

Mn ≡8

{
4 if (ε, δ) = (1, 1) or (3, 2);

4y + 2 if (ε, δ) = (1, 2) or (3, 1),

where y is the number of digit 1’s in [4i + ε − 1]2.
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