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a b s t r a c t

In this work, we introduce an algebraic operation between bounded Hessenberg matrices
and we analyze some of its properties. We call this operation m-sum and we obtain an
expression for it that involves the Cholesky factorization of the corresponding Hermitian
positive definite matrices associated with the Hessenberg components.

This work extends a method to obtain the Hessenberg matrix of the sum of measures
from the Hessenberg matrices of the individual measures, introduced recently by the
authors for subnormal matrices, to matrices which are not necessarily subnormal.

Moreover,we give some examples andweobtain the explicit formula for them-sumof a
weighted shift. In particular,we construct an interesting example: a subnormalHessenberg
matrix obtained as them-sum of two not subnormal Hessenberg matrices.

© 2011 Elsevier B.V. All rights reserved.

0. Introduction

We consider a positive measure µ supported on a compact set Supp(µ) of the complex plane. In the space P of
polynomials, we consider the inner product of two polynomials Q , R ∈ P given by

⟨Q , R⟩µ =

∫
Supp(µ)

Q (z)R(z)dµ(z).

It is well known that there exists a unique sequence of orthonormal polynomials (ONPS) {Pn}∞n=0 with positive leading
coefficients (see [1,2] or [3]).

The moment matrix of the measure µ, given by M = (cjk)∞j,k=0, where cjk =


Ω
z jzkdµ, j, k ∈ Z+, is the matrix of the

inner product with respect to the canonical basis.
In the space P 2(µ), the closure of the polynomial space P , with the metric induced by ⟨ . , .⟩µ, we consider the

multiplication by z operator

zPn(z) =

n+1−
k=0

dk,nPk(z), n ≥ 0, (1)

with P0 = 1 when c00 = 1.
These coefficients give rise to an infinitematrixD = (di,j)∞i,j=0, where di,j = 0 if i > j+1, hence this is an upperHessenberg

matrix. The numbers dn+1,n are the quotients of the leading coefficients of Pn and Pn+1 and hence they are positive. This
matrix D defines a bounded subnormal operator [4] in ℓ2.

When the support of themeasure is a compact set of the real line, the Hessenbergmatrix is symmetric, hence tridiagonal,
and therefore it is the Jacobi matrix for the orthogonal polynomials. For a measure on the unit circle we obtain the GGT
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representation (see [5]) which is an unitary Hessenbergmatrix ifµ does not belong to the Szegö class. In the Szegö class one
still has D∗D = I , and hence the operator is quasinormal (and thus subnormal). In both cases (real line and unit circle) the
measure µ corresponds to the spectral measure of the normal extension of the subnormal operator D (see [4]).

In [6], Mantica calculates the Jacobi matrix associated with a sum of measures from the Jacobi matrices of each of the
measures (see also [7,8]). Recently [9], the authors have introduced a method, extending Mantica’s spectral techniques, to
obtain the Hessenbergmatrix of a sum ofmeasures from the Hessenbergmatrices of the componentmeasures. The problem
studied was the following: let µ1, µ2, . . . , µm be positive measures on compact sets of the complex plane with Hessenberg
matrices D(1),D(2), . . . ,D(m), and let p1, p2, . . . , pm be positive numbers such that

∑m
i=1 pi = 1. Then, how can we compute

the upper Hessenberg matrix for the measure µ =
∑m

i=1 piµi in terms of the matrices D(1),D(2), . . . ,D(m)? To solve this
problem we used the subnormality property of such Hessenberg operators.

In this work we deal with the same problemwhen the bounded Hessenbergmatrices may represent operators which are
not subnormal, i.e., when there is not a measure as solution of the associated moment problem.

Every infinite Hermitian positive definite matrix M defines an inner product in the space P of polynomials and then,
there still exists a unique orthonormal polynomials sequence with positive leading coefficients (ONPS) {Pn}∞n=0 associated
with thematrixM . We can consider again themultiplication by z operator in the spaceP 2(M), the closure of the polynomial
spaceP . Then, we have the infinite upper HessenbergmatrixD = (djk)∞j,k=0 of this operatorwith respect to the basis of ONPS
{Pn}∞n=0.

In order to solve the problem,we introduce an algebraic operation between boundedHessenbergmatrices. This algebraic
operation consists in obtaining the Hessenberg matrix associated with the Hermitian positive definite matrix given by the
convex sum of the corresponding Hermitian positive definitematrices associatedwith the component Hessenbergmatrices.
Since this operation is related with the sum of measures when the component Hessenberg matrices are subnormal, or
with the sum of the Hermitian positive definite matrices (usually denoted by M) when the Hessenberg matrices are not
subnormal, we will call this operation asm-sum.

In the first section we include some background and previous results that we will need later.
In the second section, we define the m-sum and we prove some of its properties. We obtain an expression that involves

the Cholesky factorization of the corresponding Hermitian positive definite matrices associated with the Hessenberg
components. Moreover, we see that the algorithm given in [9] to compute finite sections of the sum of Hessenberg matrices
can be applied to the m-sum of not subnormal Hessenberg matrices. We give some examples to compute the m-sum,
obtaining the exact value of the finite sections of the Hessenberg matrix.

Finally, in the last section, we obtain the explicit formula for them-sum of a weighted shift. Using Stampfli’s results [10],
we construct different examples, in order to study which properties (subnormality, hyponormality) are preserved under
m-sum. In particular, we construct an interesting example of a subnormal Hessenberg matrix which is the m-sum of two
not subnormal Hessenberg matrices.

For general information on orthogonal polynomials and subnormal operators, we recommend the books [1,4,2,11,3] by
Chihara, Conway, Freud, Halmos and Szegö, respectively.

1. Previous results

Recall that a bounded operator S on a Hilbert space, S is normal if S∗S = SS∗, where S∗ is the adjoint operator, and it is
subnormal if it is the restriction of a normal operator to an invariant subspace (see [4,11]).

In all thiswork,wewill consider bounded upperHessenbergmatrix operators. In this case, theHermitian positive definite
matrix M is a moment matrix if and only if the associated Hessenberg matrix D defines a subnormal operator [12,4,13].

1.1. Hessenberg matrix associated with a sum of measures

Consider a family of measures {µi}
m
i=1 with compact support Ωi ⊂ C and µi(Ωi) = 1. Let µ be the sum measure, i.e.,

dµ =

m−
i=1

pidµi,

where
∑m

i=1 pi = 1 and pi ≥ 0 for all i = 1, 2, . . . ,m. Let {Pn}∞n=0 be the ONPS for this sum measure µ.
Let {D(i)

}
m
i=1 be the associated Hessenberg matrices, and let D = (dij)∞i,j=0 be the Hessenberg matrix associated with µ.

Note that the matrices D(i) are bounded as operators on ℓ2({0, 1, 2, . . .}), shortly ℓ2, because the support of every µi is
compact. Also, remark that every matrix defines a subnormal operator in ℓ2 [12,14,13]. These two properties were used
in [9] to prove the following result which extends Mantica’s spectral techniques [6] to the complex plane, and provides a
technique to calculate D in terms of {D(i)

}
m
i=1. This technique will be applied in the next section to the case of Hessenberg

matrices which are not subnormal.

Theorem 1. Let the sum measure µ, the ONPS {Pn}∞n=0 and the Hessenberg matrices D and {D(i)
}
m
i=1 be as above. Consider the

initial vector v
(i)
0 = (1, 0, 0, . . .)T for every i = 1, . . . ,m. Then the elements of the matrix D = (djk)∞j,k=0 associated with µ can

be calculated recursively from the matrices {D(i)
}
m
i=1 using the following formulas for n = 0, 1, 2, . . .
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dk,n =

m−
i=1

pi⟨D(i)v(i)
n , v

(i)
k ⟩, k = 0, . . . , n (2)

w
(i)
n+1 = [D(i)

− dnnI]v(i)
n −

n−1−
k=0

dk,nv
(i)
k , i = 1, . . . ,m (3)

dn+1,n =

 m−
i=1

pi⟨w
(i)
n+1, w

(i)
n+1⟩, (4)

v
(i)
n+1 =

w
(i)
n+1

dn+1,n
, i = 1, . . . ,m. (5)

1.2. Hermitian positive definite matrix associated with a Hessenberg matrix

An equivalent way to define a sequence of orthogonal polynomials is from the Hessenberg matrix.
Consider an infinite upper Hessenberg matrix D with subdiagonal strictly positive which defines a bounded, but not

necessary subnormal, operator in ℓ2.
Let {ej}∞0 be the canonical basis ℓ2. Then, the infinite matrixM = (cjk)∞j,k=0, given by

cjk = ⟨Dje0,Dke0⟩, j, k ∈ N0c0,0 = 1 (6)

where ⟨ . , . ⟩ is the usual inner product in ℓ2, is a Hermitian positive definite matrix [14], which we call the Hermitian
positive definite matrix associated with D.

The matrix M defines an inner product in the space P of polynomials. Applying the Gram–Schmidt process to zn for
n = 0, 1, 2, . . . , we obtain a ONPS {Pn}∞n=0 associated with this inner product.

The matrix D is the corresponding matrix representation of the multiplication by z operator in the Hilbert space P 2(M)
with respect to the above ONPS.

In the next section we will need to use the matricial identities relating Hessenberg matrix and the associated Hermitian
positive definite matrix, given in the following proposition.

Given an infinite Hermitian positive definitematrixM = (cij)∞i,j=0, wewill denote byM ′ thematrix obtained after deleting
the first column of the matrix M . Mn and M ′

n will be the nth-sections of M and M ′ respectively, i.e., the submatrices formed
by the first n rows and columns.

Proposition 1. The Hermitian positive definite matrix M and its associated Hessenberg matrix D are related by the following
formulas

D = THSRT−H
= T−1M ′T−H , (7)

where T is the infinite matrix whose nth-section is the lower triangular matrix, with real diagonal, obtained from the Cholesky
factorization of the nth-section Mn = TnTH

n of M and SR is the usual shift-right matrix.
Proof. From the well known expression for monic orthogonal polynomials in terms of determinants (see for example [3])

Pn(z) =
1

|Mn|


c0,0 c1,0 . . . cn,0
c0,1 c1,1 . . . cn,1
...

...
. . .

...
1 z . . . zn


it can be proved thatPn(z) = |M−1

n M ′
n − zIn|.

We see now that M−1
n M ′

n is the companion matrix Fn (also called Frobenius matrix, see for example [15]). A as
consequence, it will be the companion matrix of the monic polynomial.

To see this, divideMn in blocks as follows:

Mn =


c0,0 c1,0 . . . cn−1,0
c0,1 c1,1 . . . cn−1,1
...

...
. . .

...
c0,n−1 c1,n−1 . . . cn−1,n−1

 =


Q11 Q12
Q21 Q22


.

Analogously, the matricesM ′
n andM−1

n can be written as

M ′

n =


Q12 S
Q22 T


, M−1

n =


R11 R12
R21 R22


,

where S = (cn,0) and T = (cn,1, cn,2, . . . , cn,n−1)
t .
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SinceM−1
n Mn = In, then

M−1
n Mn =


R11Q11 + R12Q21 R11Q12 + R12Q22
R21Q11 + R22Q21 R21Q12 + R22Q22


=


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1


and hence

M−1
n M ′

n =


R11Q12 + R12Q22 R11S + R12T
R21Q12 + R22Q22 R21S + R22T


=


0 0 . . . 0 a1
1 0 . . . 0 a2
...

...
. . .

...
...

0 0 . . . 1 an

 .

Therefore,M−1
n M ′

n is a Frobenius matrix Fn and then, Dn = TH
n FnT−H

n .
Taking into account the Cholesky factorizationMn = TnTH

n ofMn, we obtainM−1
n = T−H

n T−1
n . Then

Dn = TH
n FnT−H

n = TH
n M−1

n M ′

nT
−H
n = TH

n T−H
n T−1

n M ′

nT
−H
n = T−1

n M ′

nT
−H
n .

Finally, taking limits elementwise, we obtain the following identities between infinite matrices:

D = T−1M ′T−H
= THSRT−H .

Note that all the products are well defined since the matrices T , T−1, TH , T−H are triangular. Observe also that the matrices
D and SR define bounded operators, however, if we consider the pairs of matrices T , T−1 and TH , T−H , in each pair just one
of them defines a bounded operator. �

2. m-sum of Hessenberg matrices

In this section we define an algebraic operation between bounded Hessenberg matrices with subdiagonal real and
positive.

Definition 1. Let {D(i)
}
m
i=1 be a family of bounded upper Hessenberg matrices with subdiagonal strictly positive and

let {M(i)
}
m
i=1 be the associated family of Hermitian positive definite matrices. Consider the Hermitian positive definite

sum matrix M =
∑m

i=1 pi M(i) where
∑m

i=1 pi = 1 and pi > 0. We define the m-sum of the Hessenberg matrices D(i)

with probabilities (p1, p2, . . . , pm) as the Hessenberg matrix D associated withM . We will denote it by

D = D(1)
p1 � · · · � D(m)

pm .

Theorem 2. Let {D(i)
}
m
i=1 and the probabilities (p1, p2, . . . , pm) be as above. Let D = D(1)

p1 � · · · � D(m)
pm be the m-sum. Then D

can be expressed in the following way:

D =

m−
i=1

pi [V (i)
]
HD(i)V (i),

with
V (i)

= [T (i)
]
HT−H , i = 1, . . . ,m,

where T (i) and T are the Cholesky factors of M(i) and M, respectively.
Proof. Consider

M ′
=

m−
i=1

piM ′(i). (8)

Since V (i)
= [T (i)

]
HT−H , then T−H

= [T (i)
]
−HV (i) and T−1

= [V (i)
]
H
[T (i)

]
−1. Multiplying (8) by T−1 and T−H we have:

D = T−1M ′T−H
=

m−
i=1

piT−1
[M ′

]
(i)T−H

=

m−
i=1

pi[V (i)
]
H
[T (i)

]
−1

[M ′
]
(i)

[T (i)
]
−HV (i)

=

m−
i=1

pi[V (i)
]
HD(i)V (i).

This ends the proof of the theorem. �



102 C. Escribano et al. / Journal of Computational and Applied Mathematics 236 (2011) 98–106

Proposition 2. Let {D(i)
}
m
i=1 and the probabilities (p1, p2, . . . , pm) be as above. Let D = D(1)

p1 � · · · � D(m)
pm be the m-sum. Then,

V (i)
j = Pj(D(i))e0, where {Pn} is the ONPS associated with the m-sum D.

Proof. Note that T−H is the basis change from {Pk} to {zk}. Then, we have

T−Hej =


a0j
...
ajj
0
...

 =

j−
k=0

ajk ek =

j−
k=0

ajk [SR]ke0,

where Pj(z) =
∑j

k=0 akjz
k and SR is the shift-right matrix.

Since D(i)
= [T (i)

]
HSR[T (i)

]
−H , then [D(i)

]
k

= [T (i)
]
H
[SR]k[T (i)

]
−H , for every k = 0, 1, 2, . . . , and hence [D(i)

]
k
[T (i)

]
H

=

[T (i)
]
H
[SR]k.

Therefore,

V (i)
j = [T (i)

]
HT−Hej = [T (i)

]
H

j−
k=0

ajk[SR]ke0

=

j−
k=0

ajk([T (i)
]
H
[SR]k)e0 =

j−
k=0

ajk([D(i)
]
k
[T (i)

]
H)e0

=

j−
k=0

ajk[D(i)
]
ke0 = Pj(D(i))e0,

where we have used the identity [T (i)
]
He0 = e0. �

Remark 1. The formulas in Theorem 1 still hold for them-sum. These formulas allow us to define an algorithm to compute,
in a recursive way, the finite n-sections Dn of them-sum D from the n-sections of D(i)

n .

Properties 1 (Properties of the m-Sum). The m-sum satisfies the following:

(a) Dp � D1−p = D.
(b) D(1)

p � D(2)
q = D(2)

q � D(1)
p (commutative).

(c) D(1)
p1 � [D(2)

p2 � D(3)
p3 ] = [D(1)

p1 � D(2)
p2 ] � D(3)

p3 (associative).
(d) If D(1) and D(2) are subnormal matrices, then the m-sum is subnormal.
(e) If D(1) and D(2) are symmetric Jacobi matrices, then the m-sum is a symmetric Jacobi matrix.

We now give some examples of computation of them-sum of Hessenberg matrices.

Example 1. Consider D(1) and D(2) the Hessenberg matrices associated with the Hermitian positive definite matrices with
entries in terms of binomial numbers

c(1)
i,j =


i + j − 2
i − 1


· i · j, and c(2)

i,j =


i + j − 2
i − 1


(i + j − 1),

respectively. Then, the corresponding Hessenberg matrices are

D(1)
=



2 −
1
2

1
3

· · ·
(−1)n+1

n
· · ·

2 1 0 · · · 0 · · ·

0
3
2

1 · · · 0 · · ·

0 0
4
3

· · · 0 · · ·

...
...

...
...

0 0 0 · · · 1 · · ·

0 0 0 · · ·
n + 1
n

· · ·

...
...

...
...

. . .



, n ≥ 2,
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and

D(2)
=



2
−

√
2

2

√
3
3

. . .
(−1)n

√
n

n
. . .

√
2 1 0 . . . 0 . . .

0

√
2
√
3

2
1 . . . 0 . . .

0 0

√
3
√
4

3
. . . 0 . . .

...
...

...
...

0 0 0 . . . 1 . . .

0 0 0 . . .

√
n(n + 1)

n
. . .

...
...

...
...

. . .



, n ≥ 2.

Then, the finite n-sections Dn of them-sumHessenbergmatrix D = D(1)
1
2

�D(2)
1
2

can be computed by the algorithm defined

from Theorem 1 [9]. In particular, the 6th section of D is

2 −

√
3
3

√
6
6

−

√
10
10

√
15
15

−

√
21
21

√
3 1 0 0 0 0

0
√
2 1 0 0 0

0 0

√
5
√
3

3
1 0 0

0 0 0

√
3
√
2

2
1 0

0 0 0 0

√
5
√
7

5
1


.

It is easy to prove that them-sum is the following infinite matrix

D =



2
−

√
3

3

√
6
6

. . .
(−1)n

√
2n2 + 6n + 4

n2 + 3n + 2
. . .

√
3 1 0 . . . 0 . . .

0

√
3
√
6

3
1 . . . 0 . . .

0 0

√
10

√
6

6
. . . 0 . . .

...
...

...
...

0 0 0 . . . 1 . . .

0 0 0 . . .


2n2 + 10n + 12
2n2 + 6n + 4

. . .

...
...

...
...

. . .



n ≥ 1.

Example 2. Consider M(1)
=

1
2 I , and

M(2)
=



1
2

a 0 0 · · ·

a a2 +
1
2

a 0 · · ·

0 a a2 +
1
2

a · · ·

...
...

...
...

. . .


.
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Then, D(1)
= SR, and

D(2)
=


a −a2 a3 . . . (−1)n+1an . . .
1 0 0 . . . 0 . . .
0 1 0 . . . 0 . . .
0 0 1 . . . 0 . . .
...

...
...

...
. . .

 , n ≥ 1,

where a < 1, in order for D(2) to be bounded. Then, them-sum is

D = D(1)
1
2

� D(2)
1
2

=


1 a 0 0 · · ·

a a2 + 1 a 0 · · ·

0 a a2 + 1 a · · ·

...
. . .

. . .
. . .

 .

We are interested in some properties of them-sum for different types of matrix operators, in particular in subnormality
and hyponormality. We will use some definitions and results of operator theory (see [4,11]), that concerns hyponormal and
subnormal operators. An operator A is hyponormal if A∗A − AA∗

≥ 0. Every subnormal operator is hyponormal.
In the first example, the matrices D(1) and D(2) both define operators which are not subnormal and it is easy to check that

them-sum is not hyponormal and therefore is not subnormal.
In the second example, the matrix D(1)

= SR defines a subnormal operator. In this case, the m-sum is not hyponormal
and, therefore, the matrix D(2) is not subnormal.

In the next section we study another example to see which of the properties of subnormality and hyponormality are
preserved underm-sum.

3. m-sum of weighted shifts

Consider the Hilbert space P 2 with orthonormal basis {Pn}∞n=0. Following Stampfli [10], we will call S a monotone shift if
SPn = anPn+1, when theweight sequence {an} is non-decreasing and bounded. Everymonotone shift is hyponormal. Stampfli
studied which weighted shifts are subnormal. We use Stampfli’s results to construct our examples.

Proposition 3. Let {an}∞n=1 and {bn}∞n=0 be two bounded sequences of positive real numbers. Consider Da and Db the following
weighted shifts

Da =


0 0 0 0 0 0
a1 0 0 0 0 0
0 a2 0 0 0 0
0 0 a3 0 0 0
0 0 0 a4 0 0
0 0 0 0 a5 0

 , Db =


0 0 0 0 0 0
b1 0 0 0 0 0
0 b2 0 0 0 0
0 0 b3 0 0 0
0 0 0 b4 0 0
0 0 0 0 b5 0

 .

Then the m-sum D = Da,p � Db,q is a weighted shift with weight sequence given by the following formula

dn =


p

n∏
k=1

a2k + q
n∏

k=1
b2k

p
n−1∏
k=1

a2k + q
n−1∏
k=1

b2k

, for n ≥ 1, (9)

where the product along the empty set is taken as 1.

Proof. The associated Hermitian positive definite matrix Ma for a weighted shift Da is a diagonal matrix. From Eq. (6) we
obtain the expression of the entries of this Hermitian positive definite matrix, which are given by

cnn =

n∏
k=1

a2k for n ≥ 1 and c00 = 1.

Then, it is easy to check that pMa + qMb = M(D) whereM(D) is the Hermitian positive definite associated with them-sum
of Da and Db.
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Fig. 1. Regions of parameters a and b for which Da and Db are subnormal or hyponormal.

In this case the auxiliary vectors which we construct in the process are

v
(a)
0 = e0 and v(a)

n =

n∏
k=1

ak
p

n∏
k=1

a2k + q
n∏

k=1
b2k

en, n = 1, 2, . . .

where {en}∞n=0 are the vectors of the canonical basis of ℓ2. �

Example 3 (A Subnormal Hessenberg Matrix Obtained as m-Sum of Two Hessenberg Matrices Which are not Subnormal). We
consider the weighted shifts Da and Db with weight sequences {an | a1 =

1
2 , a2 = a, an = 1 for all n ≥ 3} and {bn | b1

=
1
2 , b2 = b, bn = 1 for all n ≥ 3}, respectively. Then, using (9) we have that the m-sum D = Da,1/2 � Db,1/2 is a weighted

shift with weight sequence
dn | d1 =

1
2
, d2 =

√
a2 + b2
√
2

, dn = 1 for all n ≥ 3


.

We use the following result in [10]: let Sr be a monotone weighted shift with weight sequence {rn | r1 =
1
2 , r2 = r; rn =

1 for all n ≥ 1}. Then, Sr is subnormal if and only if r2 = 1. Moreover, every monotone weighted shift is hyponormal.
Note that in this example the three weighted shifts Da, Db and D have the same kind of weight sequence a1 = b1 =

d1 =
1
2 , a2 = a, b2 = b, d2 = d and an = bn = dn = 1 for all n ≥ 3. We will study three different cases for the m-sum D

(subnormal, hyponormal but not subnormal, and not hyponormal), using Stampfli’s result in order to take different values
for the parameters a and b according to Fig. 1.

1. Them-sum D = Da, 12
�Db, 12

is subnormal. Thematrix D is subnormal if and only if d2 = 1, which correspond to the circle

a2 + b2 = 2.

We consider two subcases:
(a) A trivial case. Any of the matrices Da or Db is subnormal. In this example, if Da is subnormal then a = 1 and this

implies, in this case, that b = 1 and hence Db = Da = D and both are subnormal.
(b) ThematricesDa andDb are both not subnormal. This is a surprising casewhich does not have an analog in the real case.

We sum twoHermitian positive definitematriceswhich are notmomentmatrices (their Hessenbergmatrices are not
subnormal and hence there is not an associated measure [11,4]). However, we obtain as sum a moment matrix with
an associated measure. In the real case, all bounded Jacobi matrices are self-adjoint and hence subnormal. Therefore
there is always an associated measure.
If we want Da and Db not to be subnormal, it suffices to take a and b, different from 1, in the circle of radius

√
2. Note

that the case when Da and Db are both not hyponormal does not exist on this circle.
In this example, the measure associated to them-sum is the Lebesgue measure in the unit circle with an atom in the
origin. The Hermitian positive definite matrix M associated with D is a diagonal matrix, whose elements are those
of the sequence 1, 1

4 ,
1
4 ,

1
4 , . . .. This matrix satisfies that M =

3
4M1 +

1
4M2 with M1 and M2 diagonal matrices with

elements those of the sequence 1, 0, 0, . . . and 1, 1, 1, . . . respectively, where M1 corresponds to an atom in the
origin andM2 corresponds to Lebesgue measure in the unit circle.
On the other hand, the Hermitian positive definite matrix Ma associated with Da is a diagonal matrix with elements
1, 1

4 ,
a2
4 , a2

4 , a2
4 , . . . (the entries of Mb are analogous). Since M = pMa + (1 − p)Mb, it must be pa2 + (1 − p)b2 = 1.

Moreover, since (a, b) is in the circle of radius
√
2, for every p we have that (a, b) must be in the intersection of the

circle and the ellipse, which is the point (1, 1), except for p = 1/2, in which case the circle and the ellipse agree.
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2. Them-sum D = Da, 12
� Db, 12

is hyponormal but not subnormal.

Since a monotone shift is hyponormal, we take for this case 1
2 ≤ d2 < 1. Then we have the region between the two

circles
1
2

≤ a2 + b2 < 2.

This region is marked in the figure with the symbols +, ◦ and ×, which correspond with the following different
possibilities.
(a) The matrices Da and Db are both hyponormal. This case is marked in the figure with + and corresponds to the region

1
2

≤ a ≤ 1 and
1
2

≤ b ≤ 1.
Moreover, taking a = 1, we have Da subnormal and Db not subnormal.

(b) One of the matrices Da or Db is hyponormal, the other not. This case corresponds with the region marked with ◦ in
the figure.

(c) The matrices Da and Db are both not hyponormal. This case corresponds with the region × in the figure.
3. Them-sum D = Da, 12

� Db, 12
is not hyponormal.

This case corresponds with the values d2 < 1
2 or d2 > 1, i.e. with the region

a2 + b2 <
1
2

or a2 + b2 > 2.

This region ismarked in the figurewith the symbols⊗ and⊕, which correspondwith the followingdifferent possibilities.
(a) One of the matrices Da or Db is hyponormal, the other not. This case corresponds with the region ⊗ in the figure.

Note that in this regions, when we take a = 1 or b = 1, we have that Da or Db is subnormal.
(b) The matrices Da and Db are both not hyponormal. This case corresponds with the region ⊕ in the figure.

Note that in these regions, when a = 1 we have Da is subnormal.
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