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Abstract A q-analogue Hn,q ∈ Mat(n)(C(q)) of the Polya-Vein ma-
trix is used to define the q-Pascal matrix. The Nalli–Ward–AlSalam
(NWA) q-shift operator acting on polynomials is a commutative semi-
group. The q-Cauchy-Vandermonde matrix generalizing Aceto-Trigiante
is defined by the NWA q-shift operator. A new formula for a q-Cauchy-
Vandermonde determinant with matrix elements equal to q-Ward num-
bers is found. The matrix form of the q-derivatives of the q-Bernoulli
polynomials can be expressed in terms of the Hn,q. With the help
of a new q-matrix multiplication certain special q-analogues of Aceto-
Trigiante and Brawer-Pirovino are found. The q-Cauchy-Vandermonde
matrix can be expressed in terms of the q-Bernoulli matrix. With the
help of the Jackson-Hahn-Cigler (JHC) q-Bernoulli polynomials, the
q-analogue of the Bernoulli complementary argument theorem is ob-
tained. Analogous results for q-Euler polynomials are obtained. The
q-Pascal matrix is factorized by the summation matrices and the so-
called q-unit matrices.

1. Introduction

In this paper we are going to find q-analogues of matrix formulas from
two pairs of authors: L. Aceto, & D. Trigiante [1], [2] and R. Brawer
& M.Pirovino [5]. The umbral method of the author [11] is used to
find natural q-analogues of the Pascal- and the Cauchy-Vandermonde
matrices. The paper is organized as follows: In this chapter we give a
general introduction.

In chapter two the first matrix calculations are made. A q-analogue
Hn,q ∈ Mat(n)(C(q)) of the Polya-Vein matrix is used to define the
q-Pascal matrix Pn,q. In order to find proper q-analogues, sometimes
many different q-analogues of the Pascal matrix are invented. The q-
Cauchy-Vandermonde matrix generalizing [1] is defined by the NWA
q-shift operator.
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Let y(t) be a vector of length n. The following q-difference equation
in Rn is of fundamental importance in this paper:

Dqy(t) = Hn,qy(t), y(0) = y0, −∞ < t < ∞. (1)

The solution of the matrix q-difference equation (1) can be expressed
in terms of the Pn,q. The general solution of (1) is the q-Appell poly-
nomial of degree ν and order m. The initial values are then the q-
Bernoulli-, q-Euler- or q-Hermite numbers of order m etc. The initial
value can also be the vector function e0. Then the solution is the vector
function ξ(t). A slight modification of the initial value gives as solu-
tion the q-Cauchy matrix. This elegant property of Appell polynomials
(q = 1) is summarized in Scaravelli [26].

The important q-matrix multiplication is introduced here, it will
have many future applications. A new formula for a q-Cauchy deter-
minant expressed as a product of q-Ward numbers is found, to this
end certain q-Stirling numbers are introduced. The proof by induction
uses Lagrange interpolation. The interested reader can find a historical
introduction to these determinants in [10].

In chapter three the q-Bernoulli matrices are considered, i.e. matrix
forms of q-Bernoulli polynomials. In the fourth chapter corresponding
formulas for q-Euler matrices are given. The q-Cauchy-Vandermonde
matrix can be expressed in terms of the q-Bernoulli matrix. The link is
Ln,q, the definite q-integral of the q- Pascal matrix. There are two types
of q-Bernoulli polynomials, NWA and Jackson-Hahn-Cigler (JHC), and
the same for q-Euler polynomials. Elegant symmetry relations between
the two types, NWA and JHC, for each case are found. Determinant
formulas for the q-Bernoulli- and q-Euler numbers are given. With
the help of the JHC q-Bernoulli polynomials, the q-analogue of the
Bernoulli complementary argument theorem is obtained. Analogous
results for q-Euler polynomials are obtained. In the fifth chapter, some
more formulas for q-Pascal matrices are given. The summation matrix
G and the difference matrix F are used to find q-analogues of [5]. In the
formula for factorization of the q-Pascal matrix, certain q-unit matrices
In,k,q are used. Further formulas of the same character are expected.
In an appendix some combinatorial formulas relevant to the text are
given.

We only do formal computations, the convergence region in certain
cases will have to be figured out by direct computation.

2. First matrix calculations

Definition 1. Matrix elements will always be denoted (i, j). Here i

denotes the row and j denotes the column. The matrix elements range
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from 0 to n − 1. Juxtaposition of matrices will always be interpreted
as matrix multiplication. If z n × n matrix,

Eq(z) ≡

∞∑

k=0

1

{k}q!
zk. (2)

If A and B are matrices of the same dimension, we define A⊕q B as
a matrix with matrix elements A(i, j) ⊕q B(i, j).

Theorem 2.1. If A and B are commuting matrices,

Eq(A ⊕q B) = Eq(A)Eq(B). (3)

If a given matrix has been transformed to Jordan form J = Λ + N ,
with commuting terms Λ (diagonal) and N (nilpotent), and then com-
puting Eq(Λ) and Eq(N), where the second series terminates, formula
(3) gives a way of computing Eq(Λ ⊕q N).

Definition 2. A q-analogue of the Polya-Vein matrix [1, (1), p. 232],[27,
p. 278 (5)], [24, p. 257]. The n × n matrix Hn,q is given by

Hn,q(i, i − 1) ≡ {i}q, i = 1, . . . , n − 1,

Hn,q(i, j) ≡ 0, j 6= i − 1.
(4)

We make the convention that all n × n matrices are denoted by first
index n.

The matrix Hn,q has the property

Hn,qei = {i + 1}qei+1, i = 0, . . . , n − 1, (5)

where ei, i = 0, . . . , n−1 denote the standard unit basis vectors in Rn.
We immediately obtain

Hk
n,qei = {i + 1}k,qei+k, k = 0, . . . , n − 1, (6)

or equivalently a q-analogue of [27, p. 279].

Hk
n,q(i + k, i) = {i + 1}k,q. (7)

According to our notation, ei = 0, i ≥ n because Hk
n,q = 0, k ≥ n.

Example 1.

H4,q =




0 0 0 0
1 0 0 0
0 {2}q 0 0
0 0 {3}q 0


 (8)

H2
4,q =




0 0 0 0
0 0 0 0

{1}2,q 0 0 0
0 {2}2,q 0 0


 (9)
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Definition 3. The matrices In, Sn, An and Dn [5, p. 13] are defined
by

In ≡ diag(1, 1, . . . , 1) (10)

Sn(i, j) ≡

{
1, if j ≤ i,

0, if j > i,
(11)

An(t)(i, j) ≡

{
ti, if j = i,

0, otherwise
(12)

Dn(i, i) ≡ 1 for all i, (13)

Dn(i + 1, i) ≡ −1, for i = 0, . . . , n − 2 (14)

Dn(i, j) ≡ 0, if j > i or j < i − 1 (15)

We have

Sn = D−1
n . (16)

The unique solution of (1) is y(t) = Eq(Hn,qt)y0, where the q-exponential
matrix Pn,q(t) ≡ Eq(Hn,qt) is given by the familiar expression

Definition 4.

Pn,q(t) ≡

∞∑

k=0

tk

{k}q!
Hk

n,q. (17)

This is actually a finite series, whose matrix elements are polynomial
in Hn,q given by a q-analogue of [27, p. 278 (2)].

Pn,q(t)(i, j) =
n−1∑

k=0

tk

{k}q!
Hk

n,q(i, j) =

(
i

j

)

q

ti−j . (18)

The following special case will often be used.

Definition 5. The q-Pascal matrix Pn,q is given by

Pn,q(i, j) ≡ Pn,q(i, j)(1) =

(
i

j

)

q

, i, j = 0, . . . , n − 1. (19)

Furthermore we have the following q-analogue of [1, p. 233 (7)],
which follows from the fact that Pn,q(t) is a q-exponential function.

Pn,q(s ⊕q t) = Pn,q(s)Pn,q(t), s, t ∈ C. (20)

This implies

P k
n,q = Pn,q(kq). (21)
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By (20) we obtain many combinatorial identities. Some of these are
(122) and

i∑

k=j

(
i

k

)

q

(
k

j

)

q

= (2q)
i−j

(
i

j

)

q

, i ≥ j. (22)

The q-Pascal matrix can also be expressed as a a q-analogue of [1,
p. 233, (11)]

Pn,q(t) = An(t)Pn,q(An(t))−1, t 6= 0. (23)

In order to be able to write down certain q-matrix multiplication for-
mulas, the following definition will be convenient.

Definition 6. Let A and B be two n× n matrices, with matrix index
aij and bij , respectively. Then we define

ABf,q(i, j) ≡

n−1∑

m=0

aimbmjq
f(m,i,j). (24)

Whenever we use a q-matrix multiplication, we specify the correspond-
ing function f(m, i, j).

There is also a variant of the q-Pascal matrix.

Definition 7. The symmetric q-Pascal matrix pn,q, a q-analogue of [1,
(12), p. 233], [5, p. 17], is given by

pn,q(i, j) ≡

(
i + j

i

)

q

, i, j = 0, . . . , n − 1. (25)

Theorem 2.2. A q-analogue of [2, p. 19]. The matrix elements of the
symmetric q-Pascal matrix are given by

min(i,j)∑

k=0

(
i

k

)

q

(
j

k

)

q

qk2

=

(
i + j

i

)

q

, i, j = 0, . . . , n − 1. (26)

Proof. Use the first q-Vandermonde theorem. �

Corollary 2.3. A q-analogue of [1, p. 233 (12)], [2, p. 221, (12)]. Let
T denote matrix transposition. The symmetric q-Pascal matrix can be
expressed as the q-matrix multiplication Pn,qP

T
n,q, with f(m, i, j) = m2.

We will need some more notation before we embark on the q-Cauchy
matrix.

Definition 8. The Nalli-Ward-Alsalam q-shift operator [3, p. 242, 3.1]
is given by

E(⊕q)(t
n) ≡ (t ⊕q 1)n (27)
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This can be generalized to

E(⊕q)
a(xn) ≡ (x ⊕q a)n (28)

The Jackson-Hahn-Cigler q-shift operator is given by

E(⊞q)(t
n) ≡ (t ⊞q 1)n (29)

Definition 9. We define a set U , in which for every ordered pair of
elements a, b ∈ U

E(⊕q)
aE(⊕q)

b(xn) ≡ (x ⊕q a ⊕q b)n
. (30)

Theorem 2.4. The set U is a commutative semigroup (or monoid).

Proof. Use the associativity and commutativity of ⊕q. �

The q-difference operator is an infinitesimal generator of the semi-
group.

The following abbreviation will be used.

ξ(t) ≡ (1, t, t2, . . . , tn−1)T . (31)

To save space in the following, we only write formulas for NWA
(Ward) in certain cases.

The corresponding formulas for JHC (Jackson) follow from the next
conversion table.

NWA ⊕q

JHC ⊞q
(32)

The following equations for NWA have JHC equivalents according to
(32): (62), (64), (95).

Theorem 2.5. The operator E(⊕q) operating on ξ(t) is equivalent to
matrix multiplication with Pn,q.

Definition 10. A q-analogue of [1, p. 234, (15)]. The q-Cauchy matrix
is given by

Wn,q(t) ≡ (ξ(t) E(⊕q)ξ(t) E(⊕q)
2qξ(t) · · · E(⊕q)

n−1qξ(t))

≡ (ξ(t) (ξ(t ⊕q 1) (ξ(t ⊕q 2q) · · · (ξ(t ⊕q (n − 1)q)).
(33)

Theorem 2.6. The matrix elements of the q-Cauchy matrix are given
by

Wn,q(t)(i, j) = (t ⊕q jq)
i, i, j = 0, . . . , n − 1. (34)

Theorem 2.7. A q-analogue of [1, p. 234]. The vector function ξ(t)
satisfies (1) with y0 = e0. The q-Cauchy matrix satisfies (1).
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We are now going to find a new formula for a q-Cauchy-Vandermonde
determinant expressed as a product of q-Ward numbers. To this end we
first state a lemma. The proof by induction uses the following q-Stirling
numbers.

Lemma 2.8. [14, p. 60] If A and B are quadratic matrices, not nec-
essarily of the same dimension, then∣∣∣∣

A C

0 B

∣∣∣∣ = detA detB. (35)

Definition 11. Define certain q-Stirling numbers {sn,k(q)}
∞
n,k=0 ∈ C(q)

by the following system of equations
n∑

k=0

sn,k(q)(iq)
k = δi,n{n}q!, i = 0, 1, . . . , n, (36)

It follows that we get the following special value for these q-Stirling
numbers:

sn,n(q) = 1, sn,0(q) = δ0,n (37)

s2,1(q) = −1, s3,1(q) =
1 + q + 2q2

1 + q
, (38)

s3,2(q) =
−2 − 2q − 2q2

1 + q
. (39)

Theorem 2.9. A Cauchy determinant for q-Ward numbers.

det(Wn,q(0)) =
n−2∏

j=1

{n − j}j
q (40)

Proof. We use induction. The theorem is true for n = 1. Assume that
it is true for n − 1.

Then we have

det(Wn,q(0)) =

∣∣∣∣
det(Wn−1,q(0)) A

B (n − 1q)
n−1

∣∣∣∣ , (41)

where
A ≡ ((n − 1q)

0, (n − 1q)
1, . . . , (n − 1q)

n−2)
T
, (42)

B ≡ ((0q)
n−1, (1q)

n−1, . . . , (n − 2q)
n−1) (43)

By (35) it would suffice to prove that if we add sn−1,0(q) to row
0, sn−1,1(q) to row 1 . . . , sn−1,n−2(q) to row n − 2, with the following
constraint:

(iq)
n−1 +

n−2∑

k=0

sn−1,k(q)(iq)
k = 0, i = 0, 1, . . . , n − 2, (44)
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then we would get for the matrix element (n − 1, n − 1).

(n − 1q)
n−1 +

n−2∑

k=0

sn−1,k(q)(n − 1q)
k = {n − 1}q!. (45)

The result now follows from (36), a kind of Lagrange interpolation
in C(q). �

The matrix Pn,q is triangular with the same characteristic polynomial
as for q = 1: P (λ) = (1 − λ)n. This implies that the Frobenius matrix

F = Wn,q(0)−1Wn,q(1) (46)

is identical to the case q = 1 from [1, p. 235].

3. q-Bernoulli matrices and polynomials

In this chapter we will treat q-Bernoulli polynomials, and in the next
chapter we will treat q-Euler polynomials. Both of these polynomials
are special cases of q-Appell polynomials, which we will now define.

Definition 12. For every formal power series f(t), the Φq polynomials
of degree ν have the following generating function

f(t)Eq(xt) =

∞∑

ν=0

tν

{ν}q!
Φν,q(x). (47)

By putting x = 0, we have

f(t) =
∞∑

ν=0

tν

{ν}q!
Φν,q, (48)

where Φν,q is called a Φq number of degree ν.

Definition 13. There are two types of q-Bernoulli polynomials, called
BNWA,ν,q(x), NWA q-Bernoulli polynomials, and BJHC,ν,q(x), JHC q-
Bernoulli polynomials. They are defined by the two generating func-
tions

t

(Eq(t) − 1)
Eq(xt) =

∞∑

ν=0

tνBNWA,ν,q(x)

{ν}q!
, |t| < 2π. (49)

and

t

(E 1

q
(t) − 1)

Eq(xt) =

∞∑

ν=0

tνBJHC,ν,q(x)

{ν}q!
, |t| < 2π. (50)
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Definition 14. The Ward q-Bernoulli numbers [28, p. 265, 16.4], [3,
p. 244, 4.1] are given by

BNWA,n,q ≡ BNWA,n,q(0). (51)

The Jackson q-Bernoulli numbers are given by

BJHC,n,q ≡ BJHC,n,q(0). (52)

The following table lists some of the first Ward q-Bernoulli numbers.

n = 0 n = 1 n = 2 n = 3
1 −(1 + q)−1 q2({3}q!)

−1 (1 − q)q3({2}q)
−1({4}q)

−1

n = 4
q4(1 − q2 − 2q3 − q4 + q6)({2}2

q{3}q{5}q)
−1

The following table lists some of the first Jackson q-Bernoulli numbers.

n = 0 n = 1 n = 2 n = 3
1 −q(1 + q)−1 q2({3}q!)

−1 (q4 − q3)({2}q)
−1({4}q)

−1

n = 4
q4(1 − q2 − 2q3 − q4 + q6)({2}2

q{3}q{5}q)
−1

Theorem 3.1. A symmetry theorem for q-Bernoulli numbers. For ν

even,

BNWA,ν,q = BJHC,ν,q. (53)

For ν odd, ν > 1,

BNWA,ν,q = −BJHC,ν,q. (54)

Proof. Use the generating function (49) with −t and x = 0, multiply
with Eq(t) in denominator and numerator. Finally compare with the
generating function (50). �

The recurrence formula for q-Bernoulli numbers can be written in
the following matrix form for n = 3.




{2}q 0 0
{3}q {3}q 0
{4}q

(
4
2

)
q

{4}q







BNWA,1,q

BNWA,2,q

BNWA,3,q


 =




−1
−1
−1


 . (55)
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The general determinant formula for q-Bernoulli numbers follows from
Cramer’s rule, a q-analogue of [4, p. 131].

BNWA,n,q =
1

{n + 1}q!

∣∣∣∣∣∣∣∣∣∣∣∣∣

{2}q 0 0 . . . . . . −1
{3}q {3}q 0 . . . . . . −1

{4}q

(
4
2

)
q

(
4
3

)
q

. . . . . . −1
...

...
... · · · · · ·

...(
n+1

1

)
q

(
n+1

2

)
q

(
n+1

3

)
q

. . .
(

n+1
n−1

)
q

−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

.

(56)
We will use the following vector forms for these polynomials corre-
sponding to q-analogues of [1, p. 239].

bNWA,q(x) ≡ (BNWA,0,q(x), BNWA,1,q(x), . . . , BNWA,n−1,q(x))T
. (57)

bJHC,q(x) ≡ (BJHC,0,q(x), BJHC,1,q(x), . . . , BJHC,n−1,q(x))T
. (58)

The corresponding vector forms for numbers are

bNWA,q ≡ (BNWA,0,q, BNWA,1,q, . . . , BNWA,n−1,q)
T
. (59)

bJHC,q ≡ (BJHC,0,q, BJHC,1,q, . . . , BJHC,n−1,q)
T
. (60)

Definition 15. The q-integral is defined by
∫ a

0

f(t, q) dq(t) ≡ a(1 − q)
∞∑

n=0

f(aqn, q)qn, 0 < |q| < 1, a ∈ R. (61)

The q-Bernoulli polynomials obey the relations

DqBNWA,i,q(x) = {i}qBNWA,i−1,q(x). (62)

δ0,i =

∫ 1

0

BNWA,i,q(x) dq(x). (63)

These relations can be written in the following vector forms. The first
one is our original q-difference equation (1).

DqbNWA,q(x) = Hn,qbNWA,q(x). (64)

e0 =

∫ 1

0

bNWA,q(x) dq(x). (65)

We will now introduce an important matrix, which turns out to form a
link between the q-Cauchy matrix and a so-called q-Bernoulli matrix.
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Definition 16. The matrix Ln,q is defined by the following equivalent
q-analogues of [1, p. 240].

Ln,q =

∫ 1

0

Pn,q(t) dq(t) =

∫ 1

0

n−1∑

k=0

tk

{k}q!
Hk

n,q dq(t) =

n−1∑

k=0

Hk
n,q

{k + 1}q!
.

(66)

The related matrix L̃n,q is given by

L̃n,q ≡ An(−1)Ln,qAn(−1)−1, (67)

We have

L̃n,q =

n−1∑

k=0

(−Hn,q)
k

{k + 1}q!
. (68)

Example 2.

L4,q =




1 0 0 0
({2}q)

−1 1 0 0
({3}q)

−1 1 1 0

({4}q)
−1 1 {3}q

{2}q
1


 (69)

L̃4,q =




1 0 0 0
−({2}q)

−1 1 0 0
({3}q)

−1 −1 1 0

−({4}q)
−1 1 −{3}q

{2}q
1


 (70)

By (1), (62) we have the following q-analogue of [1, p. 239, (37)].

bNWA,q(x) = Pn,q(x)bNWA,q(0). (71)

From this and (63) we obtain

∫ 1

0

Pn,q(x) dq(x)bNWA,q(0) = Ln,qb(0) = e0. (72)

Theorem 3.2. A q-analogue of [1, p. 240, (40)]. Let the q-matrix

multiplication be defined by f(m, i, j) = q(
m−j

2
).

The matrix Mn,q is obtained by multiplying all matrix elements in
Ln,q, except the diagonal ones, by q.

Then

Mn,q = Pn,qL̃n,qf,q
. (73)
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Proof. By equating the matrix indices of both sides, it will suffice to
prove that when k > 0

q{j + 1}k,q

{k + 1}q!
=

n−1∑

m=0

(−1)m−jq(
m−j

2
){j + 1}m,q

{m + 1}q!

(
j + k

m

)

q

=

k∑

m=0

(−1)mq(
m

2
)(1 − q)〈1; q〉j+k

〈1; q〉1+m〈1; q〉j〈1; q〉k−m

,

(74)

which implies

q =

k∑

m=0

(−1)m

(
k + 1

1 + m

)

q

q(
m

2
), (75)

which is equivalent to the following famous equation of Gauss:

m∑

n=0

(−1)n

(
m

n

)

q

q(
n

2
)an = (a; q)m, (76)

where

(a; q)n ≡





1, n = 0;
n−1∏

m=0

(1 − aqm), n = 1, 2, . . . ,
(77)

�

The matrix L−1
n,q is also interesting. It can be expressed as

L−1
n,q =

n−1∑

k=0

BNWA,k,q

{k}q!
(Hn,q)

k. (78)

Theorem 3.3. A q-analogue of [1, p. 240, (42)], [2, p. 221, (10)].

bNWA,q(x) = L−1
n,qξ(x). (79)

Proof.

bNWA,q(x)
by(71),(72)

= Pn,q(x)L−1
n,qe0 = L−1

n,qPn,q(x)e0
by(17)
= L−1

n,q

n−1∑

k=0

tk

{k}q!
Hk

n,qe0

by(6)
= L−1

n,q

n−1∑

k=0

tkek

by(31)
= L−1

n,qξ(x).

(80)

�
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Let us now introduce the q-Bernoulli matrix

BNWA,n,q(x) ≡ (bNWA,q(x) E(⊕q)bNWA,q(x) · · · E(⊕q)
n−1bNWA,q(x)).

(81)
This implies that the q-Cauchy matrix can be written as the following
q-analogue of [1, p. 241, (46)].

Wn,q(x) = Ln,qBNWA,n,q(x). (82)

We also have the following q-analogue of [2, p. 221]

Pn,q = In + Hn,qLn,q. (83)

The q-analogue of the Bernoulli complementary argument theorem [11,
p. 51, (3.134)] can be written in the matrix form

bJHC,q(x) = An(−1)bNWA,q(1 ⊖q x). (84)

4. q-Euler matrices and polynomials

There are two types of q-Euler polynomials, called FNWA,ν,q(x), NWA
q-Euler polynomials, and FJHC,ν,q(x), JHC q-Euler polynomials. They
are defined by the two generating functions

2Eq(xt)

(Eq(t) + 1)
=

∞∑

ν=0

tν

{ν}q!
FNWA,ν,q(x), |t| < π. (85)

and
2Eq(xt)

(E 1

q
(t) + 1)

=

∞∑

ν=0

tν

{ν}q!
FJHC,ν,q(x), |t| < π. (86)

We will use the following notation for q-Euler numbers:

FNWA,ν,q ≡ FNWA,ν,q(0), (87)

and the same for JHC. The following table lists some of the first q-Euler
numbers FNWA,n,q.

n = 0 n = 1 n = 2 n = 3
1 −2−1 2−2(−1 + q) 2−3(−1 + 2q + 2q2 − q3)

n = 4
2−4(q − 1){3}q!(q

2 − 4q + 1)

By an elementary argument for the generating function we can prove
the following symmetry theorem:
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Theorem 4.1. For ν even,

FNWA,ν,q = −FJHC,ν,q. (88)

For ν odd,
FNWA,ν,q = FJHC,ν,q. (89)

Proof. Multiply the generating function (85) by Eq(t) for x = 0, to
obtain

(−1)νFJHC,ν,q =

ν∑

k=0

(
ν

k

)

q

FNWA,ν−k,q. (90)

Finally compare with the generating function (86). �

The recurrence formula for q-Euler numbers can be written in the
following matrix form for n = 4.




2 0 0 0
{2}q 2 0 0
{3}q {3}q 2 0
{4}q

(
4
2

)
q

{4}q 2







FNWA,1,q

FNWA,2,q

FNWA,3,q

FNWA,4,q


 =




−1
−1
−1
−1


 . (91)

The general determinant formula for q-Euler numbers follows from
Cramer’s rule.

FNWA,n,q =
1

2n

∣∣∣∣∣∣∣∣∣∣∣∣∣

2 0 0 . . . 0 −1
{2}q 2 0 . . . 0 −1
{3}q {3}q 2 . . . 0 −1
{4}q

(
4
2

)
q

(
4
3

)
q

2 . . . −1
...

...
... · · · · · ·

...(
n

1

)
q

(
n

2

)
q

(
n

3

)
q

. . .
(

n

n−1

)
q

−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

. (92)

We will use the following vector forms for these polynomials.

fNWA,q(x) ≡ (FNWA,0,q(x), FNWA,1,q(x), . . . , FNWA,n−1,q(x))T
. (93)

fJHC,q(x) ≡ (FJHC,0,q(x), FJHC,1,q(x), . . . , FJHC,n−1,q(x))T
. (94)

Let the operators ∇NWA,q and ∇JHC,q be defined by

∇NWA,q ≡
E(⊕q) + I

2
. (95)

Then
∇NWA,qfNWA,q(x) = ξ(x). (96)

Theorem 4.2. The matrix 2(Pn,q+In)−1 transforms the basis of powers
into the basis of q-Euler polynomials, a q-analogue of [2, p. 223, (22).].

fNWA,q(x) = 2(Pn,q + In)−1ξ(x). (97)
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Proof. By (96)

fNWA,q(x ⊕q 1) + fNWA,q(x) = 2ξ(x). (98)

The LHS can be written as

[Pn,q(x ⊕q 1) + Pn,q(x)] fNWA,q = (Pn,q + In)Pn,q(x)fNWA,q. (99)

�

Corollary 4.3. A connection between q-Bernoulli matrices and q-Euler
matrices, a q-analogue of [2, p. 223, (23).].

fNWA,q(x) = 2(Pn,q + In)−1Ln,qbNWA,q(x). (100)

The q-analogue of the Euler complementary argument theorem [11,
p. 51, (3.135)] can be written in the matrix form

fJHC,q(x) = An(−1)fNWA,q(1 ⊖q x). (101)

This implies the following q-analogue of [2, p. 223].

fNWA,q(x) − 2ξ(x) = −An(−1)fJHC,q(−x). (102)

5. More formulas for q-Pascal matrices

We now turn to certain variations of q-Pascal matrices with the aim
of expanding Pn,q as a product of lower triangular matrices in the spirit
of Brawer & Pirovino [5].

Definition 17. The matrix Pn,q is defined by

Pn,q(i, j) ≡

(
i − 1

j − 1

)

q

qi−j, i, j = 1, . . . , n − 1, (103)

Pn,q(i, j) ≡ δi,j , i and j = 0 or 1. (104)

Let Sn be given by (11), and let Dn be given by (13)–(15). The sum-
mation matrix Gn,k and the difference matrix Fn,k are defined by [5, p.
14-15]

Gn,k ≡

[
In−k 0T

0 Sk

]
, Gn,n ≡ Sn

Fn,k ≡

[
In−k 0T

0 Dk

]
, Fn,n ≡ Dn, k = 0, . . . , n − 1.

(105)
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Then we have

Fn,k = G−1
n,k. (106)

The following lemma enables a step by step proof of (114).

Lemma 5.1. A q-analogue of [5, p. 14].

SnPn,q = Pn,q, n ≥ 1. (107)

Proof. For n = 1, Pn,q = In and Sn = Pn,q. Let n > 1. The matrix
element

SnPn,q(i, j) =

i∑

l=j

(
l − 1

j − 1

)

q

ql−j =

(
i

j

)

q

= Pn,q(i, j), j ≥ 1. (108)

For j = 0, SnPn,q(i, 0) = 1 = Pn,q(i, 0). �

Definition 18. Let the three lower triangular matrices In,k,q, En,k,q

and P̃n,q be given by

In,k,q(i, i) ≡ 1, i = 0, . . . , n−1, In,k,q(i+1, i) ≡ qi − 1, i = n−k . . . , n−2.
(109)

In,k,q(i, j) ≡ 0 for other i, j.

En,k,q(i, i) ≡ 1, i = 0, . . . , n − 1, En,k,q(i, j) ≡ 〈j + 1; q〉i−j, i > j.

(110)

P̃n,q(i, j) ≡

(
i

j

)

q

qi−j. (111)

The matrices In,k,q and En,k,q are inverse to each other. We call In,k,q

the q-unit matrix.

Lemma 5.2. Let

In,q ≡ In,n,q, En,q ≡ En,n,q. (112)

Then

P̃n,q = In,qPn,q. (113)

Theorem 5.3. A q-analogue of [5, p. 15 (1)]. If n > 3 the q-Pascal
matrix Pn,q can be factorized by the summation matrices and by the
q-unit matrices as

Pn,q =

2∏

k=n

Gn,kIn,k−1,q, (114)

where the product is taken in decreasing order of k.
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Theorem 5.4. A q-analogue of [5, p. 15 (2)]. The inverse of the q-
Pascal matrix is given by

P−1
n,q = Fn,2

n∏

k=3

En,k−1,qFn,k. (115)

Definition 19. Let Pn,q∗ be defined by Pn,q ∗ (i, j) ≡ (−1)i+jPn,q(i, j)
and

Pn,q∗ ≡

[
1 0T

0 Pn−1,q∗

]
. (116)

Lemma 5.5. A q-analogue of [5, p. 15 Lemma 2]. We are going to
use a q-matrix multiplication for the following equation. This time
we will describe the function f(m, i, j) verbally as follows. Because
of the sparse structure of the matrix Dn, only two terms survive for
each fixed i, j. These terms take values of m in consequtive order. For
these nonzero terms, f(m, i, j) takes the value 0 for the lowest m, and
f(m, i, j) = m − 1 for for the next and highest value of m. Then

Pn,q ∗ Dn = Pn,q ∗ . (117)

Proof. Use the q-Pascal identity. �

6. Appendix

Some of the following q-analogues of Riordan [25] have been used in
the preceding proofs. A q-analogue of [25, p. 6]

(
n

m

)

q

=
M∑

k=0

(
n − 1 − k

m − k

)

q

qm−k, M = min(m, n − 1). (118)

A q-analogue of [25, p. 8, (4)]
(

n − p

m

)

q

=

M∑

k=0

(
−p

k

)

q

(
n

m − k

)

q

q(m−k)(−p−k) =

M∑

k=0

(
p + k − 1

k

)

q

(
n

m − k

)

q

q(m−k)(−p−k)−pk−(p

2
)(−1)k.

(119)

Theorem 6.1. The inverse of the q-Pascal matrix is given by

P−1
n,q = E 1

q

(−Hn,q), (120)

or equivalently

P−1
n,q (i, j) = (−1)i−j

(
i

j

)

q

q(
i−j

2
), i, j = 0, . . . , n − 1. (121)
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Corollary 6.2. A q-analogue of [1, p. 234].

i∑

k=j

(
i

k

)

q

(
k

j

)

q

(−1)k−jq(
k−j

2
) = δi,j. (122)

This can be compared with the following inverse relation obtained by
the operator △CG,q.

Theorem 6.3. A q-analogue of [20, p. 133].

(
x + a

m − n

)

q

qn(x+a+n−m) =
n∑

k=0

(−1)n−k

(
n

k

)

q

(
x + a + k

m

)

q

q(
n−k

2
) (123)

Proof. We will use the following operator by Carlitz and Gould.

△CG,qf(x) ≡ f(x + 1) − f(x), △n+1
CG,qf(x) ≡ △n

CG,qf(x + 1) − qn△n
CG,qf(x).

(124)
Now use △n

CG,q

(
x+a

m

)
q

=
(

x+a

m−n

)
q
qn(x+a+n−m)

�

7. Conclusion

We are only at the beginning of this subject, some possible paths
to continue are to study further q-Appell polynomials or q-deformed
matrix groups. Because of the close affinity to combinatorial identities
and combinatorics, the q-matrix multiplication introduced here will have
many applications in the theory of inverse relations from Riordan [25].
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