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Abstract

Three different approaches toq-difference operators are given, the first one
applies toC(q)[x] and the last two toC(q)[qx]. For the first one (Hahn–Cigler),
definitions and basic formulas for the twoq-Stirling numbers are given. For the
second (Carlitz–Gould), and third approach (Jackson), the respectiveq-Taylor for-
mulas are used to find aq-binomial coefficient identity. Three different formulas
for Carlitz’ q-analogue of sums of powers are found. The first one uses a dou-
ble sum forq-Stirling numbers. The last two are multiple sums withq-binomial
coefficients.

AMS Subject Classifications:Primary 05A40, 11B73; Secondary 05A10, 39A13.
Keywords: q-Stirling numbers, Hahn–Cigler approach, Carlitz–Gould approach, Jack-
son approach, Carlitz sum,q-Schwatt formula, quartet of formulas.

1 Introduction

The aim of this paper is to describe how differentq-difference operators combine with
q-Stirling numbers to form variousq-formulas. Contrary to [28] where formal power
series were considered, the aim is here concentrated to functions ofqx, or equivalently
functions of theq-binomial coefficients. We will find manyq-analogues of Stirling
number identities from Jordan [56] and the elementary textbooks by Cigler [16] and
Schwatt [75]. A historical survey of the early use of Stirling numbers in connection
with series expansions and umbral calculus in Germany will also be given. This is a
continuation of the survey of umbral calculus which was given in [28].

James Stirling (1692–1770) was born in Scotland and studied in Glasgow and Ox-
ford. In 1717 Stirling went to Venice; probably he had been promised a chair of mathe-
matics there, but for some reason the appointment was never realized. In spite of this, he
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continued his mathematical research. He also attended the University of Padua, where
he got to know Nicolaus Bernoulli (I), who occupied the chair there.

Stirling later expressed Maclaurin’s formula in a different form using what is now
called Stirling’s numbers of the second kind [35, p. 102]. Because of his long sojourn in
Italy, the Stirling numbers are well known there, as can be seen from the reference list.

A.T. Vandermonde (1735–1796) is best known for his determinant and for the Van-
dermonde theorem for hypergeometric series [84]. Vandermonde also introduced the
following notation in 1772 [84].

Let (x)n = x(x−1)(x−2) · · · (x−n+1) be the falling factorial. Stirling numbers of

the first kind are the coefficients in the expansion(x)n =
n∑

k=0

s(n, k)(x)k. The Stirling

numbers of the second kind are given byxn =
n∑

k=0

S(n, k)(x)k.

In combinatorics, unsigned Stirling numbers of the first kind|s(n, k)| count the
number of permutations ofn elements withk disjoint cycles.

Tables of these numbers were published by Grünert [44, p. 279], De Morgan [21, p.
253] and Cayley [11].

Stirling numbers have wideranging applications in computer technology [41] and in
numerical analysis [30]. One reason is that computers use difference operators rather
than derivatives and these numbers are used in the transformation process.

Stirling numbers also have applications in statistics as was shown in the monograph
by Jordan [55, p, 14].

We will now briefly describe theq-umbral method invented by the author [22]– [27].
This method is a mixture of Heine 1846 [48] and Gasper–Rahman [31]. The advantages
of this method have been summarized in [25, p. 495].

Definition 1.1. The power function is defined byqa ≡ ea log(q). We always use the
principal branch of the logarithm.

The variables
a, b, c, a1, a2, . . . , b1, b2, . . . ∈ C

denote certain parameters. The variablesi, j, k, l, m, n, p, r will denote natural numbers
except for certain cases where it will be clear from the context thati will denote the
imaginary unit. In the whole paper, the symbol≡ denotes definitions, except where it
is clear from the context that it denotes congruences. Theq-analogues of a complex
numbera and of the factorial function are defined by:

{a}q ≡
1− qa

1− q
, q ∈ C\{1}, (1.1)

{n}q! ≡
n∏

k=1

{k}q, {0}q! ≡ 1, q ∈ C, (1.2)
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Let theq-shifted factorial (compare [33, p.38]) be defined by

〈a; q〉n ≡


1, n = 0;
n−1∏
m=0

(1− qa+m) n = 1, 2, . . . ,
(1.3)

The Watson notation [31] will also be used

(a; q)n ≡


1, n = 0;
n−1∏
m=0

(1− aqm), n = 1, 2, . . ..
(1.4)

Let the Gaussq-binomial coefficient be defined by(
n

k

)
q

≡ 〈1; q〉n
〈1; q〉k〈1; q〉n−k

, (1.5)

for k = 0, 1, . . . , n.
Euler found the followingq-analogue of the exponential function

eq(z) ≡
∞∑

n=0

zn

〈1; q〉n
. (1.6)

Nowadays anotherq-exponential function is more often used: If|q| > 1, or 0 <
|q| < 1 and|z| < |1− q|−1,

Eq(z) =
∞∑

k=0

1

{k}q!
zk. (1.7)

By the Euler equation (1.6), we can replace Eq(z) by

1

(z(1− q); q)∞
, |z(1− q)| < 1, 0 < |q| < 1.

So by meromorphic continuation, the meromorphic function
1

(z(1− q); q)∞
, with sim-

ple poles at
q−k

1− q
, k ∈ N, is a good substitute for Eq(z) in the whole complex plane.

We shall however continue to call this function Eq(z), since it plays an important role in
the operator theory. For convenience, we can say that we work in(C(q))[[x]].

Let theq-Pochhammer symbol{a}n,q be defined by

{a}n,q ≡
n−1∏
m=0

{a + m}q. (1.8)
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The following notation will be convenient.

QE(x) ≡ qx. (1.9)

The Nalli–Ward–AlSalamq-addition (NWA) is given by

(a⊕q b)n ≡
n∑

k=0

(
n

k

)
q

akbn−k, n = 0, 1, 2, . . . . (1.10)

Furthermore, we put

(a	q b)n ≡
n∑

k=0

(
n

k

)
q

ak(−b)n−k, n = 0, 1, 2, . . . . (1.11)

There is aq-addition dual to the NWA, which will be presented here for reasons to be
given shortly. The following polynomial in 3 variablesx, y, q originates from Gauss.
The Jackson–Hahn–Ciglerq-addition (JHC) is the function

(x �q y)n ≡
n∑

k=0

(
n

k

)
q

q(
k
2) ykxn−k, n = 0, 1, 2, . . . . (1.12)

The following general inversion formula will prove useful in the sequel.

Theorem 1.2. Gauss inversion [3, p. 96], a corrected version of [34, p. 244]. Aq-
analogue of [70, p. 4]. The following two equations for arbitrary sequencesan, bn are
equivalent.

an = q−f(n)

n∑
l=0

(−1)lq(
l
2)
(

n

l

)
q

bn−l, (1.13)

bn =
n∑

i=0

qf(i)

(
n

i

)
q

ai. (1.14)

Proof. It will suffice to prove that

an = q−f(n)

n∑
l=0

(−1)l

(
n

l

)
q

q(
l
2)

n−l∑
i=0

qf(i)

(
n− l

i

)
q

ai. (1.15)

The first sum is zero except fori = n andl = 0.

In the history of mathematics, Stirling numbers appeared in many different dis-
guises. Before Nielsen coined this name, the most frequent appearance of the so-called
second Stirling number was as submultiple of the Euler formula fork-th differences of
powers [39]. This formula is

S(n, k) =
1

k!
4kxn|x=0 ≡

1

k!

k∑
i=0

(
k

i

)
(−1)k−iin. (1.16)
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In the eighteenth and nineteenth centuries many articles about Bernoulli numbers con-
tained Stirling numbers in disguise. There appeared a pseudo-Stirling numberS(n, k)k!
in a work by Euler 1755. Tables for these pseudo-Stirling numbers were published
in [49, p. 9] and [42, p. 71].

Formulas for Bernoulli polynomials were written as sums with Stirling numbers as
coefficients, like in [89, p. 211] and [72, p. 96]. The following table illustrates some
different notations forS(n, k).

Grünert [43] Grünert [44] Björling [4] Saalscḧutz [72] Worpitzky [89]
Ak

n Cn
k Cn

k αp
k αn

k

A formula related to (1.16), which forms the basis forq-analysis is

m∑
n=0

(−1)n

(
m

n

)
q

q(
n
2)un = (u; q)m. (1.17)

According to Ward [87, p. 255] and Kuperschmidt [62, p. 244], this identity was first
obtained by Euler. Gauss 1876 [32] also found this formula.

As will be seen, the corresponding expression for the secondq-Stirling number has
a slightly different character than the left hand side of (1.17).

We will find many new formulas forq-Stirling numbers. This paper first appeared
as preprint in October–December 2005. In February 2006 Johann Cigler reminded the
author about some corrections and that he also had written a tutorial on a similar sub-
ject [17]. Theq-Stirling numbers of Cigler and the author are equal. Whenever an
equation appears, which also appeared in [17], it will be mentioned and the page num-
ber (November 2006) will be given.

q-Stirling numbers are of the greatest benefit inq-calculus. This however has not
been fully acknowledged until now. In a book by Don Knuth [61], it is shown that
theq-Stirling number of the second kind gives the running time of the algorithm for a
computer program. A related result for Markov processes was obtained by Crippa, D.;
Simon, K.; Trunz, P. [18].

As Sharma and Chak [77, p. 326] remarked, the operatorDq, defined by

(Dqϕ) (x) ≡



ϕ(x)− ϕ(qx)

(1− q)x
, if q ∈ C\{1}, x 6= 0;

dϕ

dx
(x) if q = 1;

dϕ

dx
(0) if x = 0

(1.18)

plays the same role for polynomials inx as the difference operator in Chapter 4

41
CG,qf(x) ≡ f(x + 1)− f(x), 4n+1

CG,qf(x) ≡ 4n
CG,qf(x + 1)− qn4n

CG,qf(x) (1.19)

does for polynomials inqx. If we want to indicate the variable which theq-difference
operator is applied to, we write(Dq,xϕ) (x, y) for the operator. The same notation will
also be used for a general operator.
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All the next 5 equations were used by Euler. They have the following form, where
E is the forward shift operator and4 = E − I.

Theorem 1.3.Newton–Gregory–Taylor series

f(x) =
∞∑

k=0

(
x

k

)
(4kf)(0). (1.20)

A product expansion
4nf(x) = (E − I)nf(x). (1.21)

An equivalent formula

4nf(x) =
n∑

k=0

(−1)k

(
n

k

)
En−kf(x). (1.22)

An inverted formula.

Enf(x) =
n∑

i=0

(
n

i

)
4if(x). (1.23)

Leibniz’ formula (1710)

4n(fg) =
n∑

i=0

(
n

i

)
4if (4n−iEi))g. (1.24)

In the footsteps of Euler, a strong combinatorial school grew up in Germany. This
so-called Gr̈unert–Gudermann school will be treated briefly from a historical standpoint
in Chapter 2. The reason is that Grünert and other members of this school used the
Stirling numbers at different occasions. The corresponding English and French combi-
natorial schools have been treated in [28].

We will now briefly explain the different contents of Chapters 3–5 from a conceptual
point of view. In Chapter 3 we only consider functions inC(q)[x]. In Chapters 4 and
5, we mainly consider functionsf, g ∈ C(q)[qx]. The main purpose of Chapter 3 is to
introduce theq-Stirling numbers and to begin to study their properties.

In each of Chapters 3, 4, 5 for the respective4q operator, we will, when possible,
find q-analogues of formulas (1.20)–(1.24). For clarity, we will keep the same order of
these equations in each chapter. As minimum 4 of these formulas occur, we will refer
to them as the quartet of formulas.

In 1951 D.B. Sears wrote an important paper [76], where transformations for basic
hypergeometric functions were derived from a slightly different difference operator. In
Sears’ paper, the variablex was instead the index for aq-shifted factorial. By inversion
of the basis two different sets of equations were obtained.
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In a previous paper [28] the author used a formal power series approach to find many
formulas forq-Bernoulli polynomials etc. The shift operator was twoq-additions (Ward,
Jackson) and the quartet of formulas was given with ordinary binomial coefficients.

The4 operators in Chapter 4 (Carlitz–Gould) and in Chapter 5 (Jackson) are very
similar; in fact

4n
J,qf(qx) = q−nx−(n

2)4n
CG,qf(qx). (1.25)

The two symbols, sometimes called the difference and sum calculus, correspond
respectively to differentiation and integration in the continuous calculus. We will find
q-analogues of the inverse operators4 and

∑
in Chapter 4.

In the footsteps of Faulhaber, Fermat, Jacob Bernoulli and De Moivre, we will find
an expression for the Carlitz function

SC,m,q(n) ≡
n−1∑
i=0

{i}m
q qi (1.26)

in Chapters 3 and 4.
In Chapter 6 we will prove aq-binomial coefficient identity by using the operator

4CG,q with correspondingq-Taylor formula. After simplification, it is shown that the
operator4J,q with correspondingq-Taylor formula gives the same formula.

2 The Grünert–Gudermann Combinatorial School

The goal of the Gudermann combinatorial school was to develop functions in power
series according to the Taylor formula. The Taylor formula was originally formulated
with finite difference ratios, so-called fluxions. There were previously two designations
for finite differences after Taylor and Cousin. Then Hindenburg introduced the notation
k
y in Archiv der reinen und angewandten Mathematik[50, p. 94] 1795.

In 1800 Arbogast has suggested to write aD (derivative) instead of the
dy

dx
of Leib-

niz, in order to simplify the notation. This had a main influence on the development
in England and in Germany. This can be seen from the different designations in two
publications of Hindenburg. In 1795 the journalArchiv der reinen und angewandten
Mathematikcontained some work on the Taylor theorem, which was expressed by a
difference operator.

However in 1803 Hindenburg [51, p. 180] used the symbolD and obviously noticed
the difference between the two. The above-mentioned magazine also contained some
military reports, among other things from Lambert; Hindenburg was also a physicist.
We will see that this had a strong influence on Gudermann.

Christof Gudermann (1798–1852), promoted by his close friendship with Crelle,
was firstGymnasiallehrerin Cleve, later professor in M̈unster. He first wrote only in
German, and later alternating in Latin, which was the common scientific language at
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that time, and could therefore reach international range. Gudermann wrote an excellent
Latin in a time, when the Latin was already declining in Europe.

Crelle was very concerned about the mathematical questions of his time, and could
find publishers for Gudermann’s textbooks.

Gudermann had a decisive influence as the teacher of Karl Weierstrass. It is reported
that thirteen listeners came to the first lecture of Gudermann on elliptical functions. At
the end of the term only one had remained, i.e. Weierstrass. Gudermann was the first one
who discovered Weierstrass’ extraordinary mathematical gift. Weierstrass was inspired
by Gudermann’s theories about series expansions and often expressed his large gratitude
for his old teacher, and Weierstrass further developed and modified the combinatorial
school of Gudermann.

Affected by Lambert, who introduced the hyperbolic functions, Gudermann devel-

oped among other things the function
1

cosh(x)
in powers ofx, and thereby availed

himself of the work by Scherk on the so-called Euler numbers.
The Gudermann names for the trigonometric functions have had many successors

up to the year 1908 [7, p. 173].
Gudermann also used the sign for sums of Rothe and expressedsin x und cos x as

infinite products [46, p. 68]. In this connection it is interesting that Rothe und Schweins
formulated theq-binomial theorem, but without proof.

Christian Kramp (1760–1826) took over the designationD by Arbogast and devel-
oped it further in 1808. The combinatorial school of Vandermonde and Kramp enjoyed
a popularity in the years 1772–1856. The goal was to divide the so-calledFakultäten
in four classes: positive, negative, whole and broken exponents. Each class had its own
laws, similarly as for theq-factorial (1.3).

Influenced by Kramp, Bessel improved this idea in his detailed paper, and finally
Weierstrass brought theFakultätenonto complex level in 1856.

Gudermann very often developed his functions by using Taylors formula; he used a
forerunner of Pochhammer’s symbol — disguised in Kramp’s notation. One could say
that this circle formed its own school around Gudermann. This school consisted among
other people of Johann August Grünert (1797–1872), editor ofArchiv der Mathematik
und Physik, which had started in 1841, and Oscar Schlömilch (1823–1901), editor of
Zeitschrift f̈ur Mathematik und Physik, which had started in 1856. These two magazines
differed from Crelle’s journal, which had a more purely mathematical content. Grünert,
a pupil of Pfaff and Gauss, wrote early onFakultätenreihen, and made tables of the
Stirling numbers [42, p. 71], [44, p. 279].

The Stirling numbers were later used in series expansions for Bernoulli functions
[89, p. 210]. This Gudermann school also had advocates in Sweden, e.g. Malmsten and
Björling, who both contributed to the Grünert Archiv. This magazine also contained
publications on hyperbolic functions and spherical trigonometry. The last subject is a
modern name foranalytische Spḧarik, which was treated in [45].

In 1825 Gr̈unert started a mathematical seminar in Greifswald and later let his stu-
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dents use his private mathematical library.
The Gudermann–Grünert–Schl̈omilch school also found advocates elsewhere. Some

of them, of the first and second generation, were Sonine, Schläfli, Ettingshausen, J.
Petzval (1807–1891), Gegenbauer, F. Neumann, Beltrami und F. Rogel.

One could say that this was in former times a beginning of the AMS 33 (special
functions with applications) in Europe.

Grünert had a conflict with Grassmann 1862, therefore his name is not mentioned
in Klein’s eminent book [59]; Klein also treats Gudermann unfairly. Approximately in
1853, when Gr̈unert was 56, theArchiv der Mathematik und Physikbegan its decline.
After the death of Gr̈unert 1872, Reinhold Hoppe (1816–1900) took over the editorship.
Like Schl̈omilch, Hoppe was an advocate for, among other things, the umbral calculus.

3 The Hahn–Cigler–Carlitz–Johnson Approach

The main purpose of this chapter is to introduce and study theq-Stirling numbers. This
chapter is a partial continuation of papers by Hahn [47, p. 6 2.2], Cigler [13, p. 102–
104], Carlitz [8] and Johnson [54, p. 217]. The last three papers use the sameq-Stirling
numbers. We start with 3 definitions followed by 3 examples. First a most important
polynomial.

Definition 3.1. A q-analogue of the polynomial from [16, p. 20]. Cigler [13, p. 102],
[17, p. 38] calls this polynomialHauptfolge.

(x)k,q ≡
k−1∏
m=0

(x− {m}q). (3.1)

The following notation of Cigler [14, p. 107], [17, p. 39, 3.25] will be used.

Definition 3.2.
El

C,qf(x) ≡ f(xql + {l}q). (3.2)

Definition 3.3. [13, p. 102], [14, p. 107] This is a special case of the Hahn operator [47,
p. 6 2.2].

4H,qf(x) ≡ f(qx + 1)− f(x)

1 + (q − 1)x
. (3.3)

Example 3.4. [17, p. 39], [13, p. 102], aq-analogue of [16, p. 20, 2.5]

4H,q(x)k,q = {k}q(x)k−1,q. (3.4)

Example 3.5. [14, p. 107]
4H,qEC,q = qEC,q4H,q. (3.5)
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Example 3.6.A q-analogue of [2, p. 237, (27)].

({k}q)l,q = {l}q!

(
k

l

)
q

q(
l
2). (3.6)

The first quartet of formulas supplemented by some equivalent ones turns out to be
less useful than the last two quartets, as far asq-Taylor formulas are concerned.

Theorem 3.7.A q-Taylor formula from [13, p. 103]. Aq-analogue of [6, p. 11], [16, p.
25].

f(x) =
∞∑

k=0

(4k
H,qf)(0)

{k}q!
(x)k,q. (3.7)

Theorem 3.8.The operator4n
H,q can be expressed by the following two operator equa-

tions. Cigler [17, p. 41 (3.34)], [13, p. 103 (40)].

q(
n
2)4n

H,q =
1

(1 + (q − 1)x)n

n−1∏
k=0

(EC,q − qk). (3.8)

Theorem 3.9. [17, p. 41 (3.33)]

4n
H,q(x)k,q = q−(

n
2)(1 + (q − 1)x)−n

n∑
l=0

(−1)n−lq(
n−l
2 )
(

n

l

)
q

(xql + {l}q)k,q. (3.9)

Proof. Induction onn.

We will rewrite the above theorem in a slightly different way

Theorem 3.10.

4n
H,qf(x) = q−(

n
2)(1 + (q − 1)x)−n

n∑
l=0

(−1)n−lq(
n−l
2 )
(

n

l

)
q

El
C,qf(x). (3.10)

Proof. Operate on(x)k,q.

This formula can be inverted.

Theorem 3.11.

En
C,qf(x) =

n∑
i=0

q(
i
2)
(

n

i

)
q

(1 + (q − 1)x)i4i
H,qf(x). (3.11)

Proof. Use the above inversion theorem withf(n) =

(
n

2

)
.
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Corollary 3.12. A Leibniz theorem.

4n
H,q(fg) = q−(

n
2)

n∑
i=0

q(
i
2)+(n−i

2 )
(

n

i

)
q

4i
H,qf(4n−i

H,q Ei
C,q)g. (3.12)

Proof. Same as [56, p. 96 f].

We are now ready for the definition ofq-Stirling numbers, which will occupy us for
the next two chapters. The second Stirling numbers, as below but forq = 1 occurred in
Stirling’s book [79, p. 8]. However Stirling didn’t use any symbol for these numbers.

Definition 3.13. Theq-Stirling number of the first kinds(n, k)q and theq-Stirling num-
ber of the second kindS(n, k)q are defined by [43, p.358], [17, p. 38 (3.13–14)], [13, p.
103], [17, p. 38] and [54, p. 217, 4.11].

(x)n,q ≡
n∑

k=0

s(n, k)qx
k, (3.13)

xn ≡
n∑

k=0

S(n, k)q(x)k,q. (3.14)

Remark3.14. We use the same conventions for Stirling numbers as Cigler [16, p. 34],
Jordan [56, p. 142], Gould [39], Vein & Dale [86, p. 306] and Milne [64, p. 90]. Other
definitions usually differ in sign, as in [6, p. 114], [41], [9], [37] where all (q-)Stirling
numbers are positive.

Remark3.15. Schwatt [75, ch. 5] denotes theS(n, k) by an,k without knowing that
they are Stirling numbers. The book by Schwatt contains some very interesting series
calculations, which we will come back to shortly.

The following recursions follow at once [13, p. 103]. The second one, aq-analogue
of [44, p. 248, p. 256], [4, p. 287] and [75, p. 81 (4)], also occurred in [43, p.360], [83, p.
85 13.1], [54, p. 213, 3.6], [61, 7215, exc 29], [15, p. 146, (9)].

s(n + 1, k)q = s(n, k − 1)q − {n}q s(n, k)q. (3.15)

S(n + 1, k)q = S(n, k − 1)q + {k}q S(n, k)q. (3.16)

The orthogonality relation is the followingq-analogue of [56, p. 182], [16, p. 35]

Theorem 3.16. The twoq-Stirling numbers viewed as matrices are inverses of each
other. ∑

k

S(m, k)qs(k, n)q = δm,n. (3.17)
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The following table lists some of the firsts(n, k)q. Compare [16, p. 34], [56, p. 144]
and [86, p. 306].

k = 0 k = 1 k = 2 k = 3 k = 4
n = 0 1 0 0 0 0
n = 1 0 1 0 0 0
n = 2 0 −1 1 0 0
n = 3 0 1 + q −(2 + q) 1 0
n = 4 0 −{3}q! 3 + 4q + 3q2 + q3 −3− 2q − q2 1

The following table lists some of the firstS(n, k)q. Compare [16, p. 35].

k = 0 k = 1 k = 2 k = 3 k = 4
n = 0 1 0 0 0 0
n = 1 0 1 0 0 0
n = 2 0 1 1 0 0
n = 3 0 1 2 + q 1 0
n = 4 0 1 3 + 3q + q2 3 + 2q + q2 1

There are a number of simple rules to check the computation of theq-Stirling numbers
of the first kind, as the followingq-analogues of [56, p. 145 ff] show. Putx = 1 in
(3.13) to obtain

n∑
k=1

s(n, k)q = 0, n > 1. (3.18)

Putx = −1 in (3.13) to obtain

n∑
k=1

|s(n, k)q| = (−1)n−1

n−1∏
m=0

(1 + {m}q), q > 0. (3.19)

Theq-Stirling numbers of the first kind have a particularly simple expression.

Theorem 3.17.

s(n, k)q = (−1)k−nen−k(1, {2}q, . . . , {n− 1}q), (3.20)

whereek denotes the elementary symmetric polynomial.

Proof. Use (3.13).

Corollary 3.18. [17, p. 38].

s(n, 1)q = (−1)n−1{n− 1}q!. (3.21)

Proof. Putk = 1 in (3.20).
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There is an exact formula by Carlitz forS(n, k)q, which will be quite useful.

Theorem 3.19. [17, p. 41 (3.35)], [13, p. 104], [8, p. 990, 3.3], [83, p. 86 13.2]
(c = 1). A q-analogue of [56, p. 169, (3)], [16, p. 37, 2.31], [82, p. 495], [75, p. 83
(19)]. Compare [44, p. 257].

S(n, k)q = ({k}q!q
(k
2))−1

k∑
i=0

(
k

i

)
q

(−1)iq(
i
2){k − i}n

q . (3.22)

This formula can also be written as the followingq-analogue of [82].

S(n, k)q =
1

{k}q!
4n

H,q(x)k,q|x=0. (3.23)

There are a number of simple rules to check the computation of theq-Stirling numbers
of the second kind. We start with someq-analogues of Jordan’s book [56, p. 170. f]
about finite differences intended both for mathematicians and statisticians.

Theorem 3.20.

(−1)n =
n∑

k=0

S(n, k)q(−1)k

k−1∏
m=0

(1 + {k}q). (3.24)

Proof. Putx = −1 in (3.14).

Theorem 3.21.
S(n + 1, n)q − S(n, n− 1)q = {n}q. (3.25)

Proof. Putk = n in (3.16).

There are two kinds of generating functions forS(n, k)q. The first one is as follows.

Theorem 3.22.[17, p. 42 (3.36)], [61, 7.2.1.5, answer 29], aq-analogue of [56, p. 175
(2)], [41, p. 337, 7.47], [83, p. 64, 2.6] and [16, p. 37, 2.30].

∞∑
n=m

S(n,m)qt
n =

tm

m∏
l=1

(1− t{l}q)

, |t| < 1

m
. (3.26)

This can be expressed in two other ways. Aq-analogue of [56, p. 193. (1)], which
serves as definition ofq-reciprocal factorial.

∞∑
n=m

S(n, m)qz
−n−1 =

1

(z)m+1,q

≡ (z)−(m+1),q, z > m. (3.27)
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A q-analogue of [56, p. 193. (2)] and [16, p. 36, 2.29].

∞∑
n=m

S(n, m)q(−x)−n =
(−1)m

m∏
l=1

(x + {l}q)

, x > m. (3.28)

By the orthogonality relation we obtain aq-analogue of [56, p. 193. (3)].

x−k =
∞∑

m=k

|s(m, k)q|
m∏

l=1

(x + {l}q)

. (3.29)

The q-Stirling numbers can be used to obtain several exact formulas forq-derivatives
andq-integrals as follows.

Theorem 3.23. ∫ 1

0

(t)n,q dq(t) =
n∑

k=1

s(n, k)q

{k + 1}q

. (3.30)

Proof. q-integrate (3.13).

Theorem 3.24.A q-analogue of [56, p. 194 (5)].

Ds
q

1

(z)m+1,q

=
∞∑

n=m

S(n, m)q{−n− s}s,qz
−n−1−s. (3.31)

Proof. Use (3.27).

Theorem 3.25.A q-analogue of [56, p. 194 (6)].∫ z 1

(t)m+1,q

dq(t) =
∞∑

n=m

S(n, m)q

{−n}qzn
+ k. (3.32)

Proof. Use (3.27).

The second generating function forS(n,m)q is as follows.

Theorem 3.26.[17, p. 42 (3.38)]. Aq-analogue of [19, p. 206 (2a)], [83, p. 64, 2.7].

∞∑
n=k

S(n, k)qt
n

{n}q!
= ({k}q!q

(k
2))−1

k∑
i=0

(
k

i

)
q

(−1)iq(
i
2)Eq(t{k − i}q). (3.33)
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Proof.

LHS =
∞∑

n=k

tn

{n}q!
({k}q!q

(k
2))−1

k∑
i=0

(
k

i

)
q

(−1)iq(
i
2){k − i}n

q =

({k}q!q
(k
2))−1

k∑
i=0

(
k

i

)
q

(−1)iq(
i
2)

∞∑
n=0

(t{k − i}q)
n

{n}q!
= RHS.

(3.34)

There is a generating function forq-Stirling numbers of the first kind.

Theorem 3.27.A q-analogue of [56, p. 185 (1)].

n∑
k=m

s(n, k)q

(
k

m

)
qm = qn−1s(n− 1, m)q + qns(n− 1, m− 1)q. (3.35)

This formula can be inverted.

Theorem 3.28.A q-analogue of [56, p. 185].

s(n, k)q =
n∑

m=k

qn−m−1(−1)m+k

(
m

k

)
[s(n− 1, m)q + qs(n− 1, m− 1)q]. (3.36)

Corollary 3.29. A q-analogue of [56, p. 186 (4)].

n∑
k=1

s(n, k)qk =

{
1, n = 1;

qn−2(−1)n{n− 2}q! n > 1.
(3.37)

Proof. Putm = 1 in (3.35).

Corollary 3.30. A q-analogue of [56, p. 186 (5)].

m∑
n=2

S(m, n)q qn−2(−1)n{n− 2}q! = m− 1. (3.38)

Proof. Apply
m∑

n=1

S(m, n)q to both sides of (3.37). Then use the orthogonality relation.

The following 3 theorems are proved in exactly the same way as in Jordan [56].

Theorem 3.31.A q-analogue of [56, p. 187 (10)].

n∑
k=1

s(n, k)qS(k + 1, i)q = {n}q

(
0

n− i

)
+

(
0

n + 1− i

)
. (3.39)
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Theorem 3.32.A q-analogue of [56, p. 188 (11)].

n∑
k=0

S(n, k)q[s(k + 1, l)q + {k}qs(k, l)q] = δl,n+1. (3.40)

Theorem 3.33.A q-analogue of [56, p. 188 (15)].

n+1∑
k=1

S(n + 1, k)q =
n∑

k=1

(1 + {k}q)S(n, k)q, n > 0. (3.41)

The following operator [53] will be useful. In its earliest form withq = 1 it dates
back to Euler and Abel [1, B. 2, p. 41], who used it in differential equations.

Definition 3.34.
θq ≡ xDq. (3.42)

Theorem 3.35.Cigler [17, p. 37 (3.8)]. Aq-analogue of the Gr̈unert operator formula
[44, 247], [39, p. 455, 4.8], [78, p. 181], [83, p. 64, 2.1], [75, p. 81, (2)], [56, p. 196
(2)], [63, p. 95].

θn
q =

n∑
k=0

S(n, k)q q(
k
2)xkDk

q . (3.43)

Proof. Induction.

This leads to the following inverse formula.

Theorem 3.36.Cigler [17, p. 37 (3.9)]. Aq-analogue of [80, p 548], [78, p 183].

q(
n
2)xnDn

q =
n∑

k=1

s(n, k)qθ
k
q . (3.44)

Proof. Use the orthogonality relation forq-Stirling numbers.

The previous formula can be expressed in another way.

Theorem 3.37.Jackson [52, p. 305]. Aq-analogue of the 1844 Boole formula [5], [78,
p 183], [12, p 24, (2.1)].

q(
n
2)xnDn

q =
n−1∏
k=0

(θq − {k}q). (3.45)

Proof. Use (3.13).
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Example 3.38.A q-analogue of [56, p. 196]. Letf(x) = (x⊕q 1)n and apply (3.43) to
get

n∑
k=0

(
n

k

)
q

xk{k}m
q =

min(m,n)∑
k=0

S(m, k)q q(
k
2)xk{n− k + 1}k,q(x⊕q 1)n−k. (3.46)

Putx = 1 to get

n∑
k=0

(
n

k

)
q

{k}m
q =

min(m,n)∑
k=0

S(m, k)q q(
k
2){n− k + 1}k,q(1⊕q 1)n−k. (3.47)

If we put m = 1 or m = 2 in (3.47), we getq-analogues of the mean and variance of
the binomial distribution from Melzak [63, p. 96].

Putx = −1 in (3.46) to get

n∑
k=0

(
n

k

)
q

(−1)k{k}m
q =

min(m,n)∑
k=0

S(m, k)q q(
k
2)(−1)k{n−k+1}k,q(1	q1)n−k. (3.48)

Example 3.39.Let f(x) = (x �q 1)n and apply (3.43) to get

n∑
k=0

(
n

k

)
q

q(
k
2) xn−k{n− k}m

q =

min(m,n)∑
k=0

S(m, k)q q(
k
2)xk{n− k + 1}k,q(x �q 1)n−k.

(3.49)
Putx = 1 to get

n∑
k=0

(
n

k

)
q

q(
k
2) {n− k}m

q =

min(m,n)∑
k=0

S(m, k)q q(
k
2){n− k + 1}k,q(1 �q 1)n−k. (3.50)

Putx = −1 to get (3.22).

Theorem 3.40.A q-analogue of Cauchy [10, p. 161].

Dm
q (Eq(αx)f(x)) = Eq(αx)(Dq ⊕q αε)mf(x). (3.51)

We continue with a few equations with operator proofs in the spirit of Gould and
Schwatt.

Theorem 3.41.Almost aq-analogue of [39, p 455, 4.9].

n∑
k=0

{k}q
pxk =

p∑
k=0

S(p, k)q q(
k
2)xkDk

q

(
xn+1 − 1

x− 1

)
. (3.52)

We obtain the following limit.
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Theorem 3.42.

n∑
k=0

{k}q
p =

p∑
k=0

S(p, k)q q(
k
2) lim

x→1
Dk

q

(
xn+1 − 1

x− 1

)
. (3.53)

Theorem 3.43.A q-analogue of [39, p. 456, 4.10], [75, p. 85 (38)], [40, p. 490].

∞∑
k=0

{k}q
pxk =

p∑
k=0

S(p, k)qq
(k
2) xk{k}q!

(x; q)k+1

, |x| < 1. (3.54)

Proof. Let n →∞ in (3.52).

Theorem 3.44.A q-analogue of [39, p. 456, 4.11].

θn
q Eq(x) = Eq(x)

n∑
k=0

S(n, k)q q(
k
2)xk. (3.55)

The followingq-analogue of Bell numbers is the same as Milne [64, p. 99].

Definition 3.45. Compare [13, p. 104](x = 1). Theq-Bell number is given by

Bq(n) ≡
n∑

k=0

S(n, k)q q(
k
2). (3.56)

Theorem 3.46.Theq-Dobinsky theorem [64, p. 108, 4.5] isq-analogue of [75, p. 84].

Bq(n) = E1
q
(−1)

∞∑
k=0

{k}n
q

{k}q!
. (3.57)

This can be generalized as follows.

Theorem 3.47.A q-analogue of [75, p 84 (26)].

∞∑
k=0

{k}q
pxk

{k}q!
=

p∑
k=0

S(p, k)qq
(k
2)xkEq(x). (3.58)

We will now return to the Carlitzq-analogue of [16, p. 13], [85, p. 575], [75, p. 86]
for sums of powers. This function was also treated by Kim [58] from a different point
of view.

Definition 3.48. Carlitz [8, p. 994–995].

SC,m,q(n) ≡
n−1∑
i=0

{i}m
q qi, SC,0,q(1) ≡ 1. (3.59)
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We will now follow Cigler’s computations (q = 1) and finally arrive at a formula
which expressesSC,m,q(n) as a general double sum.

As a corollary, we obtain a result corresponding to an equation by Järvheden for
sums of squares.

Remark3.49. In [88] and [74], two completely different approaches to the problem of
finding q-analogues of sums of consecutive powers of integers were presented.

Lemma 3.50.A q-analogue of [16, p. 20, 2.6].

n−1∑
i=0

({i}q)j,qq
i =

({n}q)j+1,q

{j + 1}q

, j < n. (3.60)

Proof. Use induction onn.

The Carlitz sum can be expressed as a double sum ofq-Stirling numbers.

Corollary 3.51. A q-analogue of [16, p. 35]. Compare [8, p. 994, 6.1].

SC,m,q(n) =
∑

j

S(m, j)q

{j + 1}q

j+1∑
l=0

s(j + 1, l)q{n}l
q. (3.61)

Proof.

LHS =
n−1∑
i=1

m∑
j=0

S(m, j)q({i}q)j,qq
i

=
m∑

j=0

S(m, j)q
({n}q)j+1,q

{j + 1}q

= RHS.

(3.62)

Tables of sums of powers have occupied mathematicians for centuries. Just as one
example, De Moivre [20, 5] tabulated sums of powers up tom = 10. De Moivre’s l
corresponds to ourn− 1. As an example, we compute aq-analogue form = 2.

Corollary 3.52. A q-analogue of [57, p. 98].

SC,2,q(n) =
({n}q)3,q

{3}q

+
({n}q)2,q

{2}q

, n ≥ 2. (3.63)

Proof. By (3.60),
n−1∑
i=0

{i}q({i}q − 1)qi =
({n}q)3,q

{3}q

. (3.64)

In general,SC,m,q(n) contains the factor({n}q)2,q.
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4 The Carlitz–Gould Approach

The following operators were introduced by Carlitz [8, p. 988] 1948. Schendel [73],
Gould [36], Milne [64], Zeng [90] and Phillips [69] used the same technique. Ap-
plications from approximation theory can be found in Phillips [69]. Observe that the

q-Stirling number of the second kind used by Milne [64, p. 93] isq(
k
2)S(n, k)q.

Definition 4.1. The Carlitz–Gouldq-difference is defined by

41
CG,qf(x) ≡ f(x + 1)− f(x), 4n+1

CG,qf(x) ≡ 4n
CG,qf(x + 1)− qn4n

CG,qf(x). (4.1)

Remark4.2. We get the above definition by puttingy = −1 in Schendel [73].

Now follow the Carlitz–Gould quartet and two examples.

Theorem 4.3.The followingq-Taylor formula applies [8, 2.5 p. 988], [38, 7.2, p. 856],
[36, 2.11, p. 91].

f(x) =
∞∑

k=0

4k
CG,qf(0)

{k}q!
{x− k + 1}k,q. (4.2)

Proof. Apply 4s
CG,q to both members and finally putx = 0.

Theorem 4.4. [37, p. 283, 2.13], [90], [36, 2.10, p. 91], [69, p. 46, 1.118], [64, p. 91]
and aq-analogue of [16, p. 26]. Compare [73, p. 82].

4n
CG,qf(x) =

n∑
k=0

(−1)k

(
n

k

)
q

q(
k
2)En−kf(x), (4.3)

where the shift operatorE is given by

Enf(x) ≡ f(x + n). (4.4)

Proof. Use induction.

This formula can be inverted.

Theorem 4.5.

Enf(x) =
n∑

i=0

(
n

i

)
q

4i
CG,qf(x). (4.5)

Proof. This is the general inversion formula again, compare the corrected version of [34,
p. 244].

Corollary 4.6. [69, p. 47 1.122], aq-analogue of [56, p. 97, 10], [16, p. 27, 2.13], [65,
p. 35, 2]. Assume that the functionsf(x) andg(x) depend onqx. Then

4n
CG,q(fg) =

n∑
i=0

(
n

i

)
q

4i
CG,qf4n−i

CG,qE
ig. (4.6)
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Proof. Compare [56, p. 96 f].

LHS =
n∑

k=0

(−1)k

(
n

k

)
q

q(
k
2)En−kf En−kg =

n∑
k=0

(−1)k

(
n

k

)
q

q(
k
2)

n−k∑
i=0

(
n− k

i

)
q

4i
CG,qf En−kg =

n∑
i=0

(
n

i

)
q

4i
CG,qf

n−i∑
k=0

(−1)k

(
n− i

k

)
q

q(
k
2)En−kg = RHS.

(4.7)

Example 4.7.

4n
CG,q(q

mx) =

{
qmx(−1)nq(

n
2)〈1 + m− n; q〉n, m ≥ n.

0, m < n.
(4.8)

Proof. Use (4.3).

Example 4.8.Compare [64, p. 92, 1.11]. Form ≤ n.

4m
CG,q,x〈x + γ; q〉n = 〈n−m + 1; q〉m〈x + m + γ; q〉n−mqm(x+γ+m−1). (4.9)

This is equivalent to the following formula from [36, 2.12, p. 91], aq-analogue of [65, p.
26, 6].

4m
CG,q

(
x

n

)
q

=

(
x

n−m

)
q

qm(x+m−n), m ≤ n. (4.10)

Proof. Use induction.

Theorem 4.9. Milne [64, p. 93]. An exact formula for the secondq-Stirling number
with the CG-operator.

S(n, k)q = ({k}q!q
(k
2))−14n

CG,q{x}n
q |x = 0. (4.11)

We will now follow Schwatt [75, ch. 5] and develop a calculus for the Carlitz func-
tion SC,m,q(n) from the previous chapter. First a lemma.

Lemma 4.10.A q-analogue of [75, p. 86, (50)].

n−1∑
s=k

(
s

k

)
q

qs =

(
n

k + 1

)
q

qk. (4.12)
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Theorem 4.11.A q-analogue of [75, p. 86, (51)].

SC,m,q(n) =
m∑

k=0

(−1)kqk

(
n

k + 1

)
q

k∑
a=0

(−1)a

(
k

a

)
q

q(
k−a

2 ){a}m
q . (4.13)

Proof. Write the LHS as

θm
q

n−1∑
k=1

(xq)k|x=1, (4.14)

and use (3.43), (4.12) and (3.22).

Theorem 4.12.A q-analogue of [75, p. 87 (63)].

SC,m,q(n) =
n∑

k=0

(
n

k

)
q

k∑
a=0

(−1)a

(
k

a

)
q

q(
a
2)

k−a−1∑
i=1

{i}m
q qi. (4.15)

Proof. Use (4.2) and (4.3).

Now let bm,k,q denote the coefficient ofqk

(
n

k + 1

)
q

in SC,m,q(n). Then by (4.13)

we obtain the following recurrence, which is almost aq-analogue of [75, p. 88 (69)].

bm,k,q − {k}qbm−1,k,q = qk−1{k}qbm−1,k−1,q. (4.16)

We obtain the following expressions forSC,m,q(n) expressed as linear combinations of
q-binomial coefficients.

Theorem 4.13.Almost aq-analogue of Schwatt [75, p. 88 (69)].

SC,1,q(n) = q

(
n

2

)
q

. (4.17)

SC,2,q(n) = q

(
n

2

)
q

+ q3(1 + q)

(
n

3

)
q

. (4.18)

SC,3,q(n) = q

(
n

2

)
q

+ q3(1 + q + (1 + q)2)

(
n

3

)
q

+

q6(1 + q)(1 + q + q2)

(
n

4

)
q

.

(4.19)

SC,4,q(n) = q

(
n

2

)
q

+ q3(1 + q)(2 + q + (1 + q)2)

(
n

3

)
q

+ q6(1 + q + q2)

× (1 + q + (1 + q)2 + {3}q!)

(
n

4

)
q

+ q10{4}q!

(
n

5

)
q

.

(4.20)
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By theq-Pascal identity we obtain the followingq-analogue of Munch [66, p. 14].

Theorem 4.14.

SC,2,q(n) = q3

(
n

3

)
q

+ q

(
n + 1

3

)
q

. (4.21)

SC,3,q(n) = q6

(
n

4

)
q

+ 2q3(1 + q)

(
n + 1

4

)
q

+ q

(
n + 2

4

)
q

. (4.22)

SC,4,q(n) = q10

(
n

5

)
q

+ q6(3 + 5q + 3q2)

(
n + 1

5

)
q

+

+ q3(3 + 5q + 3q2)

(
n + 2

5

)
q

+ q

(
n + 3

5

)
q

.

(4.23)

We can now introduce the sum operator mentioned in the introduction.

Definition 4.15. The inverse CG difference is defined by

4−1
CG,qf(k)|n0 ≡

n∑
0

f(x)δq(x) ≡
n−1∑
k=0

f(k). (4.24)

Example 4.16.

4−1
CG,q(1− ql)〈n + 1; q〉l−1 qn ≡

n−1∑
k=0

(1− ql)〈k + 1; q〉l−1q
k = 〈n; q〉l. (4.25)

Corollary 4.17.

{n}q{n + 1}q = {2}q

n∑
i=1

{i}qq
i−1. (4.26)

n∑
i=1

{i}qq
2i =

{n}2,q

{2}q

− {n}3,q(1− q)

{3}q

. (4.27)

It is possible to develop a calculus similar toSC,m,q(n) for the sum (4.27), but we
have not pursued this path.

By (4.3) and (4.9) we obtain the following.

Theorem 4.18.[67, p. 110].

m∑
n=0

(−1)n

(
m

n

)
q

q(
n
2)〈x + 1; q〉m−n〈x− y + 1− n + m; q〉n =

〈y −m + 1; q〉mqm(x−y+m), x, y ∈ C.

(4.28)

We will return to this equation in the next chapter. Now we say goodbye to the
Carlitz–Gould approach and continue with a similar operator which has the advantage
of being both aq-derivative and difference operator at the same time.
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5 The Jacksonq-derivative as Difference Operator

This chapter will be about how the Jacksonq-derivative can be used as difference oper-
ator operating on the space of allq-shifted factorials. We illustrate the technique with
some examples. The similarity with the operator from the previous chapter is striking
and will apparently lead to many multipleq-equations. However it turns out that most
of these are doublets, as is shown in the example from the last chapter.

For functions ofqx, the Cigler operatorε [13] will be replaced byE in q-Leibniz
theorems as below.

Theorem 5.1.

Dn
q,qx〈γ + x; q〉k = (−1)n{k − n + 1}n,q〈γ + x + n; q〉k−nq

(n
2)+nγ, n ≤ k. (5.1)

Example 5.2.We apply the operatorDm
q,qx to (4.28). Then

LHS =
m∑

n=0

(−1)n

(
m

n

)
q

q(
n
2)

m∑
i=0

(
m

i

)
q

Di
q,qx〈x + 1; q〉m−n

EiDm−i
q,qx 〈x− y + 1− n + m; q〉n =

m∑
n=0

(−1)n

(
m

n

)
q

q(
n
2)×(

m

m− n

)
q

(−1)m{m− n}q!q
(m−n

2 )+m−n{n}q! q(
n
2)+n(−y+1−n+m)

= (−1)mq(
m
2 )+m{m}q!

m∑
n=0

(−1)n

(
m

n

)
q

q(
n
2)−ny =

qm2−my〈y + 1−m; q〉m{m}q! = RHS.

(5.2)

Now instead rewrite (4.28) in the form
m∑

n=0

(
m

n

)
q

〈x + 1; q〉m−n〈y − x−m; q〉nqn(x+m)+y(m−n) =

〈y −m + 1; q〉mqm(x+m), x, y ∈ C,

(5.3)

and operate withDm
q,qy on both sides to obtain

LHS =
m∑

n=0

(
m

n

)
q

〈x + 1; q〉m−nq
n(x+m)

m∑
i=0

(
m

i

)
q

Di
q,qyqy(m−n)

EiDm−i
q,qy 〈y − x−m; q〉n =

m∑
n=0

(
m

n

)
q

〈x + 1; q〉m−nq
n(x+m)×(

m

m− n

)
q

{m− n}q!(−1)n{n}q!q
(n

2)−n(x+m)

= {m}q!
m∑

n=0

(
m

n

)
q

〈x + 1; q〉m−n(−1)nq(
n
2).

(5.4)
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The RHS is
(−1)m{m}q!q

(m
2 )+m(x+1). (5.5)

After simplification this last equality is equivalent to a confluent form of the second
q-Vandermonde identity.

Inspired by the previous calculation we make the following definition.

Definition 5.3. The Jacksonq-difference is defined by

4J,x,qf(qx) ≡ 4J,qf(qx)

≡ (f(qx+1)− f(qx))q−x ≡ −(1− q)Dq,qxf(qx),
(5.6)

4n+1
J,q = 4J,q4n

J,q. (5.7)

The following equation is obtained.

Theorem 5.4.

4J,q

(
q(

k
2)
(

x

k

)
q

)
= q(

k−1
2 )
(

x

k − 1

)
q

. (5.8)

Proof. Use theq-Pascal identity.

Corollary 5.5.

4m
J,q

(
x

n

)
q

=

(
x

n−m

)
q

q−mn+(m+1
2 ), m ≤ n. (5.9)

Example 5.6.
∞∑

n=0

q(
n
2)
(

x

n

)
q

tn = eq(−tqx �q t). (5.10)

Proof. Use theq-binomial theorem.

We now present the Jackson quartet.

Theorem 5.7.The followingq-Taylor formula applies.

f(x) =
∞∑

k=0

(
x

k

)
q

q(
k
2)4k

J,qf(0). (5.11)

Theorem 5.8.A q-analogue of [16, p. 26]. Compare [73, p. 82].

4n
J,qf(qx) = q−nx−(n

2)
n∑

k=0

(−1)k

(
n

k

)
q

q(
k
2)En−kf(qx). (5.12)

Proof. Use the corresponding equation for theq-derivative.
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This formula can be inverted.

Theorem 5.9.

Enf(qx) =
n∑

k=0

qxk+(k
2)
(

n

k

)
q

4k
J,qf(qx). (5.13)

Corollary 5.10. A q-analogue of [56, p. 97, 10], [16, p. 27, 2.13], [65, p. 35, 2].

4n
J,q(f(qx)g(qx)) =

n∑
k=0

(
n

k

)
q

4k
J,qf(qx)(4n−k

J,q Ek)g(qx). (5.14)

Proof. Use the Leibniz theorem for theq-derivative.

Example 5.11.

4n
J,q(q

mx) =

{
qx(m−n)(−1)n〈1 + m− n; q〉n, m ≥ n.

0, m < n.
(5.15)

6 Applications

The developed technique leads to easy proofs ofq-binomial coefficient identities. The
following example can also be proved from theq-Vandermonde identity.

Example 6.1.A q-analogue of the important formula [16, p. 27], [70, p. 15, (9)], [71, p.
65]. (

x

m

)
q

(
x

n

)
q

=
m+n∑
k=0

QE((k − n)(k −m))×(
k

n

)
q

(
n

m + n− k

)
q

(
x

k

)
q

.

(6.1)

Proof. We have

4k
CG,q

(
x

m

)
q

(
x

n

)
q

=
k∑

l=0

(
k

l

)
q

QE(l(x + l − n) + (k − l)(x + k −m))×(
x + l

m− k + l

)
q

(
x

n− l

)
q

.

(6.2)

Now use theq-Taylor formula (4.2) withy = 0, f(x) =

(
x

m

)
q

(
x

n

)
q

.
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Remark6.2. If we use4J,q instead, we get(
x

m

)
q

(
x

n

)
q

=
m+n∑
k=0

QE

(
−
(

m

2

)
−
(

n

2

)
+

(
m + n− k

2

)
+

(
k

2

))
×(

k

n

)
q

(
n

m + n− k

)
q

(
x

k

)
q

.

(6.3)

This equation is however equivalent to (6.1).
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[18] D. Crippa, and K. Simon, and P. Trunz, Markov processes involvingq-Stirling
numbers.Comb. Probab. Comput.6, No.2, 165–178 (1997)

[19] L. Comtet,Advanced combinatorics. Reidel 1974.

[20] A. De Moivre,Miscellanea Analytica. London 1730.

[21] A. De Morgan,The differential and integral CalculusBaldwin and Cradock, Lon-
don 1842. Elibron Classics, 2002.

[22] T. Ernst,The history ofq-calculus and a new method,Uppsala 2000.

[23] T. Ernst,q-Generating functions for one and two variables.Simon Stevin, 12 no.
4, 2005, 589–605.

[24] T. Ernst,A new method forq-calculus,Uppsala dissertations 2002.

[25] T. Ernst, A method forq-calculus.J. nonlinear Math. Physics10 No.4 (2003),
487–525.

[26] T. Ernst, Some results forq-functions of many variables.Rendiconti di Pado-
va,112(2004), 199–235.

[27] T. Ernst,q-Analogues of some operational formulas. Preprint 2003.

[28] T. Ernst,q-Bernoulli andq-Euler Polynomials, An Umbral Approach.Interna-
tional journal of difference equations1 no. 1 2006, 13–62.

[29] L. Euler,Institutiones calculi differentialis1755, new printing Birkhuser 1913.
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