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Abstract
We present a notation for q-calculus, which leads to a new method for computa-
tions and classifications of q-special functions. With this notation many formulas of
q-calculus become very natural, and the q-analogues of many orthogonal polynomi-
als and functions assume a very pleasant form reminding directly of their classical
counterparts.

The first main topic of the method is the tilde operator, which is an involution
operating on the parameters in a q-hypergeometric series. The second topic is the
q-addition, which consists of the Ward–AlSalam q-addition invented by Ward 1936
[102, p. 256] and Al-Salam 1959 [5, p. 240], and the Hahn q-addition.

In contrast to the the Ward–AlSalam q-addition, the Hahn q-addition, compare
[57, p. 362] is neither commutative nor associative, but on the other hand, it can be
written as a finite product.

We will use the generating function technique by Rainville [76] to prove recurrences
for q-Laguerre polynomials, which are q-analogues of results in [76]. We will also find q-
analogues of Carlitz’ [26] operator expression for Laguerre polynomials. The notation
for Cigler’s [37] operational calculus will be used when needed. As an application, q-
analogues of bilinear generating formulas for Laguerre polynomials of Chatterjea [33,
p. 57], [32, p. 88] will be found.

1 Some classical hypergeometric equations

First we collect some well-known hypergeometric formulas in order to prove their q-
analogues later. In the whole paper, the symbol ≡ will denote definitions, except when
we work with congruences.

Definition 1.1. Let the Pochhammer symbol (or Appell–Pochhammer) (a)n be defined
by

(a)n ≡
n−1∏
m=0

(a+m), (a)0 ≡ 1. (1.1)

Since products of Pochhammer symbols occur so often, to simplify them we shall fre-
quently use the following more compact notation. Let (a) = (a1, . . . , aA) be a vector with
A elements. Then

((a))n ≡ (a1, . . . , aA)n ≡
A∏

j=1

(aj)n. (1.2)

Copyright c© 2003 by T Ernst
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488 T Ernst

The generalized hypergeometric series, pFr, is given by

pFr(a1, . . . , ap; b1, . . . , br; z) ≡ pFr

[
a1, . . . , ap

b1, . . . , br
; z
]
≡

∞∑
n=0

(a1, . . . , ap)n
n!(b1, . . . , br)n

zn. (1.3)

An r+1Fr series is called k-balanced if

b1 + · · ·+ br = k + a1 + · · ·+ ar+1, (1.4)

and a 1-balanced series is called balanced or Saalschützian after L Saalschütz (1835–1913).

Remark 1.1. In some books, e.g., [51], a balanced hypergeometric series is defined with
the extra condition z = 1. The above definition is in accordance with [9, p. 475].

The hypergeometric series

r+1Fr(a1, . . . , ar+1; b1, . . . , br; z) (1.5)

is called well-poised if its parameters satisfy the relations

1 + a1 = a2 + b1 = a3 + b2 = · · · = ar+1 + br. (1.6)

The hypergeometric series (1.5) is called nearly-poised [105] if its parameters satisfy the
relation

1 + a1 = aj+1 + bj (1.7)

for all but one value of j in 1 ≤ j ≤ r. If the series (1.5) is well-poised and a2 = 1 + 1
2a1,

then it is called a very-well-poised series.
The binomial series is defined by

(1− z)−α ≡
∞∑

n=0

(α)n
n!

zn, |z| < 1, α ∈ C. (1.8)

The following three equations are all due to Euler (see book by Gasper and Rahman [51,
pp. 10, 19]). The beta integral∫ 1

0
xs−1(1− x)t−1 dx =

Γ(s)Γ(t)
Γ(s+ t)

≡ B(s, t), Re (s) > 0, Re (t) > 0; (1.9)

the integral representation of the hypergeometric series 2F1(a, b; c; z):

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
xb−1(1− x)c−b−1(1− zx)−a dx, (1.10)

|arg (1− z)| < π, Re (c) > Re (b) > 0;

and Euler’s transformation formula:

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z). (1.11)
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A Method for q-Calculus 489

In 1772 Vandermonde [34, 71, 99] proved the Chu–Vandermonde summation formula

2F1(−n, b; c; 1) ≡
n∑

k=0

(−1)k(b)k
(c)k

(
n

k

)
=

(c− b)n
(c)n

, n = 0, 1, . . . . (1.12)

The famous Gauss summation formula from 1812 [54] goes as follows:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, Re (c− a− b) > 0, (1.13)

which is a generalization of (1.12).
Gauss [53, p. 127, (2)], [15, p. 23], [45, p. 11, (24)] also found the following formula

(1 + x)n + (1− x)n = 2 2F1

(−n
2
,
1− n

2
;
1
2
;x2

)
. (1.14)

In 1890 Saalschütz rediscovered the Pfaff–Saalschütz summation formula for a terminating
balanced hypergeometric series [73, 81], [51, p. 13]

3F2(a, b,−n; c, 1 + a+ b− c− n; 1) =
(c− a, c− b)n
(c, c− a− b)n

, n = 0, 1, . . . . (1.15)

In 1903 Dixon [38] proved the following summation formula for a so-called well-poised
series

3F2(a, b, c; 1 + a− b, 1 + a− c; 1)

= Γ
[
1 + 1

2a, 1 + a− b, 1 + a− c, 1 + 1
2a− b− c

1 + a, 1 + 1
2a− b, 1 + 1

2a− c, 1 + a− b− c

]
. (1.16)

Remark 1.2. This equation was also proved independently by Schafheitlin [82, p. 24,
(22)] 1912.

In 1923 Whipple [103] showed that by iterating Thomae’s 3F2 transformation formula
[96, eq. (11)], one obtains a set of 120 such series, and he tabulated the parameters of
these 120 series.

The very important Whipple formula from 1926 [104, 7.7], [13, p. 145]

7F6

[
a, b, c, d, 1 + 1

2a, e,−n
1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1

2a, 1 + a+ n
; 1
]

(1 + a, 1 + a− d− e)n
(1 + a− d, 1 + a− e)n

4F3

[
d, e, 1 + a− b− c,−n

1 + a− b, 1 + a− c, d+ e− n− a
; 1
]

(1.17)

transforms a terminating very-well-poised 7F6 series to a Saalschützian 4F3 series.
The following important example by Bailey is one of the most general hypergeometric

transformations.

Theorem 1.1. Bailey’s 1929 transformation formula for a terminating, 2–balanced, very-
well-poised 9F8 hypergeometric series.
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490 T Ernst

Denoting

(α) ≡ (a, b, c, d, e, f, 1 + 1
2a, λ+ a+ n+ 1− e− f,−n) , (1.18)

(β) ≡ (1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1
2a, a+ 1− f,

e+ f − n− λ, a+ n+ 1
)
, (1.19)

(γ) ≡ (λ, λ+ b− a, λ+ c− a, λ+ d− a, e, f, 1 + 1
2λ,

λ+ a+ n+ 1− e− f,−n) (1.20)

and

(δ) ≡ (1 + a− b, 1 + a− c, 1 + a− d, 1 + λ− e, 1
2λ,

λ+ 1− f, e+ f − n− a, λ+ n+ 1
)
, (1.21)

we find that this formula takes the following form [17]:

9F8

[
(α)
(β)

; 1
]
=

(1 + a, 1 + a− e− f, 1 + λ− e, 1 + λ− f)n
(1 + a− e, 1 + a− f, 1 + λ− e− f, 1 + λ)n

9F8

[
(γ)
(δ)

; 1
]

(1.22)

when n = 0, 1, 2, . . ., and where

2a+ 1 = λ+ b+ c+ d. (1.23)

Remark 1.3. In Bailey’s paper a slightly different version of this equation was given, but
this is equivalent to the above equation.

The theory of multiple hypergeometric series has been developed by the Italian Lauri-
cella and by the Frenchmen Appell and Kampé de Fériet, who 1926 [15] published a stan-
dard work on this subject in French. In 1985 Per Karlsson (Copenhagen) and H M Srivas-
tava (Victoria, British Columbia) [91] published another excellent book on this subject,
where some new results were presented together with results previously widely scattered
in the literature.

2 The tilde operator

q-Calculus has in the last twenty years served as a bridge between mathematics and
physics. The majority of scientists in the world who use q-calculus today are physicists.

The field has expanded explosively, due to the fact that applications of ba-
sic hypergeometric series to the diverse subjects of combinatorics, quantum
theory, number theory, statistical mechanics, are constantly being uncovered.
The subject of q-hypergeometric series is the frog-prince of mathematics, regal
inside, warty outside (Jet Wimp) [107].

Furthermore it is said that

progress in q-calculus is heavily dependent on the use of a proper notation (Per
Karlsson, Private communication).
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A Method for q-Calculus 491

In the last decades q-calculus has developed into an interdisciplinary subject, which
is nowadays called q-disease. q-Calculus has found many applications in quantum group
theory.

In this context it would be natural to say something about the history of the connection
between group representation theory and quantum mechanics, which was initiated by
Eugene Wigner (1902–1995) between November 12 and November 26, 1926, when Wigner’s
first papers on quantum mechanics reached die Zeitschrift der Physik, and both appeared
in volume 40.

It was John von Neumann who first proposed that group representation theory
(should) be used in quantum mechanics. Wigner was invited to Göttingen in
1927 as assistant to David Hilbert. Though the new quantum mechanics had
been initiated only in 1925, already in 1926–27 the mathematician Hilbert in
Göttingen gave lectures on quantum mechanics [106].

Die Gruppenpest [93] (the pest of group theory) would last for three decades [106].
We will give an example of the application of group theory in q-calculus in a moment.
This is a modest attempt to present a new notation for q-calculus and in particular for

q-hypergeometric series, which is compatible with the old notation. Also a new method,
which follows from this notation is presented. The papers [40, 41, 42, 43, 44, 45] illustrate
these ideas. This notation leads to a new method for computations and classifications of
q-special functions. With this notation many formulas of q-calculus become very natural,
and the q-analogues of many orthogonal polynomials and functions assume a very pleasant
form reminding directly of their classical counterparts. This notation will be similar to
Gauss’ notation for hypergeometric series and in the spirit of Heine [58], Pringsheim [74],
Smith [84], Agarwal [1, 2] and Agarwal & Verma [3, 4]. Jackson also used a similar notation
in some of his last papers [63, 64]. A similar notation was proposed by Rajeswari V. &
Srinivasa Rao K. in 1991 [77] and in 1993 [86, p. 72] in connection with the q-analogues
of the 3-j and 6-j coefficients. Compare [87] and [88].

By coincidence, some of these authors were involved in the development of Whipple’s
work as the following references show. In 1987 Beyer, Louck & Stein [19] and in 1992
Srinivasa Rao, Van der Jeugt, Raynal, Jagannathan & Rajeswari [85] showed that certain
two-term transformation formulas between hypergeometric series easily can be described
by means of invariance groups. In other words, they explained Whipple’s [103] discovery
in group language. In 1999 Van der Jeugt & Srinivasa Rao [97] found q-analogues of these
results.

These results were extended to double q-hypergeometric series in [69] and [98].
We are now ready for the first definitions in q-calculus.

Definition 2.1. The power function is defined by qa ≡ ea log(q). We always use the prin-
cipal branch of the logarithm.

The q-analogues of a complex number a and of the factorial function are defined by:

{a}q ≡ 1− qa

1− q
, q ∈ C\{1}, (2.1)

{n}q! ≡
n∏

k=1

{k}q, {0}q! = 1, q ∈ C, (2.2)
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492 T Ernst

Let the q-shifted factorial be given by

〈a; q〉n ≡


1, n = 0;
n−1∏
m=0

(1− qa+m), n = 1, 2, . . . .
(2.3)

Since products of q-shifted factorials occur so often, to simplify them we shall frequently use
the following more compact notation. Let (a) = (a1, . . . , aA) be a vector with A elements.
Then

〈(a); q〉n ≡ 〈a1, . . . , aA; q〉n ≡
A∏

j=1

〈aj ; q〉n. (2.4)

The following operator is one of the main features of the method presented in this
paper.

Definition 2.2. In the following, C

Z
will denote the space of complex numbers mod 2πi

log q .
This is isomorphic to the cylinder R × e2πiθ, θ ∈ R. The operator

˜: C

Z
�→ C

Z

is defined by

a �→ a+
πi

log q
. (2.5)

Furthermore we define

〈̃a; q〉n ≡ 〈ã; q〉n. (2.6)

By (2.5) it follows that

〈̃a; q〉n =
n−1∏
m=0

(1 + qa+m), (2.7)

where this time the tilde denotes an involution which changes a minus sign to a plus sign
in all the n factors of 〈a; q〉n.

The following simple rules follow from (2.5)

ã± b = ã± b, (2.8)

ã± b̃ = a± b, (2.9)

qã = −qa, (2.10)

where the second equation is a consequence of the fact that we work mod 2πi
log q .

In a few cases the parameter a in (2.3) will be the real plus infinity (0 < |q| < 1), they
correspond to multiplication by 1.

Eduard Heine (1821–1881) who studied for Gauss, Dirichlet and Jacobi, in 1846 pro-
pounded a theory for a so-called q-hypergeometric series, which he formally proved through
continued fractions.
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A Method for q-Calculus 493

Definition 2.3. Generalizing Heine’s series, we shall define a q-hypergeometric series by
(compare [51, p. 4], [57, p. 345]):

pφr(â1, . . . , âp; b̂1, . . . , b̂r|q, z) ≡ pφr

[
â1, . . . , âp

b̂1, . . . , b̂r
|q, z

]
≡

∞∑
n=0

〈â1, . . . , âp; q〉n
〈1, b̂1, . . . , b̂r; q〉n

[
(−1)nq(

n
2)
]1+r−p

zn, (2.11)

where q �= 0 when p > r + 1, and

â =
{

a,
ã.

(2.12)

Furthermore a1, . . . , ap, b1, . . . , br ∈ C,

bj �= 0, j = 1, . . . , r, bj �= −m, j = 1, . . . , r, m ∈ N,

bj �= 2mπi
log q , j = 1, . . . , r, m ∈ N [84].

The motivation is that we need a q-analogue of

lim
x→∞ pFr(a1, . . . , ap; b1, . . . , br−1, x;xz)

= pFr−1(a1, . . . , ap; b1, . . . , br−1; z). (2.13)

This q-analogue is given by

lim
x→−∞ pφr(a1, . . . , ap; b1, . . . , br−1, x|q, zqx)

= pφr−1(a1, . . . , ap; b1, . . . , br−1|q, z), (0 < |q| < 1). (2.14)

However, the q-analogue of

lim
ε→0

pFr

(
a1, . . . , ap−1,

1
ε
; b1, . . . , br; εz

)
= p−1Fr(a1, . . . , ap−1; b1, . . . , br; z). (2.15)

is given by

lim
x→∞ pφr(a1, . . . , ap−1, x; b1, . . . , br|q, z)

= pφr(a1, . . . , ap−1,∞; b1, . . . , br|q, z), (0 < |q| < 1). (2.16)

We have changed the notation for the q-hypergeometric series (2.11) slightly according to
the new notation which is introduced in this paper. The terms to the left of | in (2.11)
are thought to be exponents, and the terms to the right of | in (2.11) are thought to be
ordinary numbers.

The Watson notation will also sometimes be used.

(a; q)n ≡


1, n = 0;
n−1∏
m=0

(1− aqm), n = 1, 2, . . . ,
(2.17)
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494 T Ernst

Remark 2.1. The relation between the new and the old notation is

〈a; q〉n ≡ (qa; q)n. (2.18)

Remark 2.2. Also Gelfand [55, p. 38] has used a similar notation in one of his few
papers on q-calculus. His comment is the following: Let us assume that at first we use
Watson’s notation (2.17) for the q-hypergeometric series. If all αi and βi are non-zero, it
is convenient to pass to the new parameters ai, bi, where αi = qai , βi = qbi .

It seems that the snag αi = 0 or βi = 0 can be evaded by putting ai = ∞ or bi = ∞ as
in the present thesis. This was already suggested by Heine in his letter to Dirichlet 1846,
which was published in the Crelle journal the same year [58]. Compare [51, p. 3].

Definition 2.4. Generalizing (2.11), we shall define a q-hypergeometric series by

p+p′φr+r′(a1, . . . , ap; b1, . . . , br|q, z||s1, . . . , sp′ ; t1, . . . , tr′)

≡ p+p′φr+r′

[
a1, . . . , ap

b1, . . . , br
|q, z|| s1, . . . , sp′

t1, . . . , tr′

]
≡

∞∑
n=0

〈a1; q〉n · · · 〈ap; q〉n
〈1; q〉n〈b1; q〉n · · · 〈br; q〉n

[
(−1)nq(

n
2)
]1+r+r′−p−p′

× zn
p′∏

k=1

(sk; q)n
r′∏

k=1

(tk; q)−1
n , (2.19)

where q �= 0 when p+ p′ > r + r′ + 1.

Remark 2.3. Equation (2.19) is used in certain special cases when we need factors (t; q)n
in the q-series. One example is the q-analogue of a bilinear generating formula for Laguerre
polynomials.

Some of the following definitions were given in another form for bibasic series in [3,
pp. 732–733].

Definition 2.5. The series

r+1φr(a1, . . . , ar+1; b1, . . . , br | q, z) (2.20)

is called k-balanced if

b1 + · · ·+ br = k + a1 + · · ·+ ar+1, (2.21)

and a 1-balanced series is called balanced (or Saalschützian).
Analogous to the hypergeometric case, we shall call the q-hypergeometric series (2.20)

well-poised if its parameters satisfy the relations

1 + a1 = a2 + b1 = a3 + b2 = · · · = ar+1 + br. (2.22)

The q-hypergeometric series (2.20) is called nearly-poised [18] if its parameters satisfy the
relation

1 + a1 = aj+1 + bj (2.23)

for all but one value of j in 1 ≤ j ≤ r.
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A Method for q-Calculus 495

The q-hypergeometric series (2.20) is called almost poised [21] if its parameters satisfy
the relation

δj + a1 = aj+1 + bj , 1 ≤ j ≤ r, (2.24)

where δj is 0, 1 or 2.
If the series (2.20) is well-poised and if, in addition

a2 = 1 + 1
2a1, a3 = ˜1 + 1

2a1, (2.25)

then it is called a very-well-poised series.
The series (2.20) is of type I [51] if

z = q. (2.26)

The series (2.20) is of type II [51] if

z = qb1+···+br−a1−···−ar+1 . (2.27)

Remark 2.4. In [20, p. 534] the extra condition z = q in (2.21) is given, compare with
the definition of balanced hypergeometric series.

There are several advantages with this new notation:

1. The theory of hypergeometric series and the theory of q-hyper-
geometric series will be united.

2. We work on a logarithmic scale; i.e., we only have to add and subtract exponents in
the calculations. Compare with the ’index calculus’ from [14].

3. The conditions for k-balanced hypergeometric series and for k-balanced q-hypergeo-
metric series are the same.

4. The conditions for well-poised and nearly-poised hypergeometric series and for well-
poised and nearly-poised q-hypergeometric series are the same. Furthermore the
conditions for almost poised q-hypergeometric series are expressed similarly.

5. The conditions for very-well-poised hypergeometric series and for very-well-poised q-
hypergeometric series are similar. In fact, the extra condition for a very-well-poised
hypergeometric series is a2 = 1+ 1

2a1, and the extra conditions for a very-well-poised

q-hypergeometric series are a2 = 1 + 1
2a1 and a3 = ˜1 + 1

2a1.

6. We don’t have to distinguish between the notation for integers and non-integers in
the q-case anymore.

7. It is easy to translate to the work of Cigler [37] for q-Laguerre-polynomials.

Furthermore, the method is applicable to the mock theta functions.

Definition 2.6. Let the q-Pochhammer symbol {a}n,q be defined by

{a}n,q ≡
n−1∏
m=0

{a+m}q. (2.28)
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496 T Ernst

An equivalent symbol is defined in [47, p. 18] and is used throughout that book. This
quantity can be very useful in some cases where we are looking for q-analogues and it is
included in the new notation.

Since products of q-Pochhammer symbols occur so often, to simplify them we shall
frequently use the following more compact notation. Let (a) = (a1, . . . , aA) be a vector
with A elements. Then

{(a)}n,q ≡ {a1, . . . , aA}n,q ≡
A∏

j=1

{aj}n,q. (2.29)

We define a new function, which will be convenient for notational purposes.

QE (x) ≡ qx. (2.30)

When there are several q:s, we generalize this to

QE (x, qi) ≡ qx
i . (2.31)

To justify the following three definitions of infinite products we remind the reader of
the following well-known theorem from complex analysis, see Rudin [80, p. 300]:

Theorem 2.1. Let Ω be a region in the complex plane and let H(Ω) denote the holomor-
phic functions in Ω. Suppose fn ∈ H(Ω) for n = 1, 2, 3, . . . , no fn is identically 0 in any
component of Ω, and

∞∑
n=1

|1− fn(z)| (2.32)

converges uniformly on compact subsets of Ω. Then the product

f(z) =
∞∏

n=1

fn(z) (2.33)

converges uniformly on compact subsets of Ω. Hence f ∈ H(Ω).

Definition 2.7. The following functions are all holomorphic

〈a; q〉∞ ≡
∞∏

m=0

(
1− qa+m

)
, 0 < |q| < 1, (2.34)

˜〈a; q〉∞ ≡
∞∏

m=0

(
1 + qa+m

)
, 0 < |q| < 1, (2.35)

(a; q)∞ ≡
∞∏

m=0

(1− aqm) , 0 < |q| < 1, (2.36)

〈(a); q〉∞ ≡ 〈a1, . . . , aA; q〉∞ ≡
A∏

j=1

〈aj ; q〉∞. (2.37)
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A Method for q-Calculus 497

Remark 2.5. If a in (2.34) is a negative integer the result is zero, and in the following we
have to be careful when these infinite products occur in denominators. Sometimes a limit
process has to be used when two such factors occur in numerator and denominator.

We shall henceforth assume that 0 < |q| < 1 whenever 〈a; q〉∞ or (a; q)∞ appears in
a formula, since the infinite product in (2.34) diverges when

qa �= 0, |q| ≥ 1.

Definition 2.8. The following two formulae serve as definitions for 〈a; q〉α and (a; q)α,
α ∈ C. Compare [57, p. 342]

〈a; q〉α ≡ 〈a; q〉∞
〈a+ α; q〉∞ , a �= −m− α, m = 0, 1, . . . , (2.38)

(a; q)α ≡ (a; q)∞
(aqα; q)∞

, a �= q−m−α, m = 0, 1, . . . . (2.39)

For negative subscripts, the shifted factorial and the q-shifted factorials are defined by

(a)−n ≡ 1
(a− 1)(a− 2) · · · (a− n)

≡ 1
(a− n)n

=
(−1)n

(1− a)n
, (2.40)

〈a; q〉−n ≡ 1
〈a− n; q〉n =

(−1)nqn(1−a)+(n
2)

〈1− a; q〉n . (2.41)

Theorem 2.2. The following formulae hold whenever q �= 0 and q �= e2πit, t ∈ Q,

〈−a+ 1− n; q〉n = 〈a; q〉n(−1)nq−(
n
2)−na, (2.42)

〈a; q〉n−k =
〈a; q〉n

〈−a+ 1− n; q〉k (−1)kq(
k
2)+k(1−a−n), (2.43)

〈a+ k; q〉n−k =
〈a; q〉n
〈a; q〉k , (2.44)

〈a+ n1; q〉k1 =
〈a; q〉k2〈a+ k2; q〉n2

〈a; q〉n1

, n1 + k1 = n2 + k2, (2.45)

〈a+ 2k; q〉n−k =
〈a; q〉n〈a+ n; q〉k

〈a; q〉2k
, (2.46)

〈a; q〉m〈a− n; q〉2n = 〈a; q〉n〈a− n; q〉m〈a+m− n; q〉n, (2.47)

〈−n; q〉k =
〈1; q〉n

〈1; q〉n−k
(−1)kq(

k
2)−nk, (2.48)

〈a− n; q〉k =
〈a; q〉k〈1− a; q〉n

〈−a+ 1− k; q〉nqnk
. (2.49)

Proof. These identities follow from the definition (2.3). �

Theorem 2.3. The following formulae, which are well-known, take the following form in
the new notation. They hold whenever q �= 0 and q �= e2πit, t ∈ Q,

〈a; q2〉n = 〈a; q〉n〈̃a; q〉n, (2.50)

D
ow

nl
oa

de
d 

by
 [

15
1.

51
.1

63
.8

1]
 a

t 0
4:

27
 2

5 
O

ct
ob

er
 2

01
4 



498 T Ernst

〈a; q〉2n = 〈a
2
; q2〉n〈a+ 1

2
; q2〉n, (2.51)

〈a+ 1; q〉2n =
〈a; q〉2n〈1 + a

2 ; q〉n ˜〈1 + a
2 ; q〉n

〈a
2 ; q〉n〈̃a

2 ; q〉n
, (2.52)

〈a, 2+a
2 , 2̃+a

2 ; q〉n
〈a
2 ,

ã
2 ; q〉n

=
〈a+ 1; q〉2n

〈a+ n; q〉n . (2.53)

Proof. These identities follow from the definition (2.3) and the definition of the tilde
operator. �

Remark 2.6. The first two formulae together form a q-analogue of the very important
formula [76, p. 22].

Theorem 2.4. In 1907 Dougall [39] proved the following summation formula for the
very-well-poised 2-balanced, i.e.,

1 + 2a+ n = b+ c+ d+ e

series

7F6

[
a, 1 + 1

2a, b, c, d, e,−n
1
2a, 1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1 + a+ n

; 1
]

=
(1 + a, 1 + a− b− c, 1 + a− b− d, 1 + a− c− d)n
(1 + a− b, 1 + a− c, 1 + a− d, 1 + a− b− c− d)n

. (2.54)

The following q-analogue of (2.54) was published by Jackson in 1921 [62] (see Gasper
and Rahman [51, p. 35], formula (2.6.2)). In the new notation this theorem takes the
following form:

Theorem 2.5. Let the six parameters a, b, c, d, e and n satisfy the relation

1 + 2a+ n = b+ c+ d+ e, (2.55)

and let

(α) ≡
(
1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1

2a,
1̃
2a, 1 + a+ n

)
. (2.56)

Then

8φ7

[
a, b, c, d, 1 + 1

2a, 1̃ +
1
2a, e,−n

(α)
|q, q

]

=
〈1 + a, 1 + a− b− c, 1 + a− b− d, 1 + a− c− d; q〉n
〈1 + a− b, 1 + a− c, 1 + a− d, 1 + a− b− c− d; q〉n , (2.57)

when n = 0, 1, 2, . . . .
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A Method for q-Calculus 499

According to Andrews [10] and Slater [83], equation (2.57) was proved by Jackson
already in 1905.

We illustrate the use of the new method with the following important example of Bailey.
For brevity, we shall sometimes replace

r+1φr

[
a1, 1 + 1

2a1,
˜1 + 1

2a1, a4, a5, . . . , ar+1

1
2a1,

1̃
2a1, 1 + a1 − a4, 1 + a1 − a5, . . . , 1 + a1 − ar+1

|q, z
]

by the more compact notation

r+1Wr(a1; a4, a5, . . . , ar+1|q, z). (2.58)

Theorem 2.6. Bailey’s 1929 [16] transformation formula for a terminating balanced,
very-well-poised 10φ9 q-hypergeometric series. Denoting

(α′) ≡ (a, b, c, d, e, f, 1 + 1
2a, 1̃ +

1
2a, λ+ a+ n+ 1− e− f,−n), (2.59)

(β′) ≡ (1 + a− b, 1 + a− c, 1 + a− d, 1 + a− e, 1
2a,

1̃
2a, a+ 1− f, e+ f − n− λ, a+ n+ 1

)
, (2.60)

(γ′) ≡ (λ, λ+ b− a, λ+ c− a, λ+ d− a, e, f, 1 + 1
2λ,

1̃ + 1
2λ, λ+ a+ n+ 1− e− f,−n), (2.61)

and

(δ′) ≡ (1 + a− b, 1 + a− c, 1 + a− d, 1 + λ− e, 1
2λ,

1̃
2λ, λ+ 1− f, e+ f − n− a, λ+ n+ 1

)
, (2.62)

we find that this formula takes the following form in the new notation:

10φ9

[
(α′)
(β′) |q, q

]
=

〈1 + a, 1 + a− e− f, 1 + λ− e, 1 + λ− f ; q〉n
〈1 + a− e, 1 + a− f, 1 + λ− e− f, 1 + λ; q〉n

× 10φ9

[
(γ′)
(δ′) |q, q

]
, (2.63)

where n = 0, 1, 2, . . ., and where

2a+ 1 = λ+ b+ c+ d. (2.64)

The concept of separation of a power series into its even and odd parts is at least as old
as the series themselves. It has wideranging applications in the theory of generating func-
tions and the MacRobert E-function. The following decomposition of the q-hypergeometric
series into even and odd parts is a q-analogue of [90, p. 200–201].

rφs((a); (b)|q, z) = 4rφ4s+3

 (a)
2 , (̃a)

2 , (a+1)
2 , (̃a+1)

2

(b)
2 ,

(̃b)
2 ,

(b+1)
2 , (̃b+1)

2 , 1
2 ,

1̃
2 , 1̃

|q, z2q1+s−r
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500 T Ernst

+ (−1)1+s−r z

1− q

r∏
j=1

(1− qaj )

s∏
j=1

(1− qbj )

× 4rφ4s+3

 (a+1)
2 , (̃a+1)

2 , (a+2)
2 , (̃a+2)

2

(b+1)
2 , (̃b+1)

2 , (b+2)
2 , (̃b+2)

2 , 3
2 ,

3̃
2 , 1̃

|q, z2q3(1+s−r)

 . (2.65)

3 The Hahn q-addition and q-analogues
of the trigonometric functions

The following theorem forms the basis of q-analysis.
According to Ward [102, p. 255] and Kupershmidt [67, p. 244], this theorem was ob-

tained by Euler. It was also obtained by Gauss 1876 [52]. It is proved by induction [41].

Theorem 3.1.

m∑
n=0

(−1)n
(
m

n

)
q

q(
n
2)un = (u; q)m. (3.1)

Remark 3.1. A number of similar formulas are collected in [92, p. 10].

One of Heine’s pupils was Thomae, who together with reverend Jackson would develop
the so-called q-integral, the inverse to the q-derivative or q-difference operator. The deriva-
tive was invented by Newton and Leibniz. Variants of the q-derivative had been used by
Euler and Heine, but a real q-derivative was invented first by Jackson 1908 [60].

Definition 3.1.

(Dqϕ) (x) ≡



ϕ(x)− ϕ(qx)
(1− q)x

, if q ∈ C\{1}, x �= 0;

dϕ

dx
(x), if q = 1;

dϕ

dx
(0), if x = 0.

(3.2)

If we want to indicate the variable which the q-difference operator is applied to, we write
(Dq,xϕ) (x, y) for the operator.

Remark 3.2. The limit as q approaches 1 is the derivative

lim
q→1

(Dqϕ) (x) =
dϕ

dx
, (3.3)

if ϕ is differentiable at x.

The definition (3.2) is more lucid than the one previously given, which was without the
condition for x = 0. It leads to new so-called q-constants, or solutions to (Dqϕ)(x) = 0.

We will use a notation introduced by Burchnall and Chaundy.
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A Method for q-Calculus 501

Definition 3.2.

θ1 ≡ xDq,x, θ2 ≡ yDq,y. (3.4)

There are some interesting q-analogues of the exponential function and of trigonometric
functions yet to be defined.

Definition 3.3. If |q| > 1, or 0 < |q| < 1 and |z| < |1− q|−1, the q-exponential function
Eq(z) was defined by Jackson [59] 1904, and by Exton [47]

Eq(z) ≡
∞∑

k=0

1
{k}q!

zk. (3.5)

It has q-difference

Dq Eq(az) = aEq(az). (3.6)

For 0 < |q| < 1 we can define Eq(z) for all other values of z by analytic continuation.

Euler [46] found the following two q-analogues of the exponential function:

Definition 3.4.

eq(z) ≡ 1φ0(∞;−|q, z) ≡
∞∑

n=0

zn

〈1; q〉n =
1

(z; q)∞
, |z| < 1, 0 < |q| < 1, (3.7)

e 1
q
(z) ≡ 0φ0(−;−|q,−z) ≡

∞∑
n=0

q(
n
2)

〈1; q〉n z
n = (−z; q)∞, 0 < |q| < 1, (3.8)

where 0φ0 is defined by (2.11).

The second function is an entire function just as the usual exponential function. The
above equations can be generalized to the q-binomial theorem, which was first proved by
Cauchy [28] in 1843

1φ0(a;−|q, z) ≡
∞∑

n=0

〈a; q〉n
〈1; q〉n z

n =
(zqa; q)∞
(z; q)∞

≡ 1
(z; q)a

, |z| < 1, 0 < |q| < 1. (3.9)

Two q-trigonometric functions are defined by

Sinq(x) ≡ 1
2i
(Eq(ix)− Eq(−ix)), (3.10)

and

Cosq(x) ≡ 1
2
(Eq(ix) + Eq(−ix)). (3.11)

They have q-difference

Dq Cosq(ax) = −aSinq(ax), (3.12)
Dq Sinq(bx) = bCosq(bx). (3.13)
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502 T Ernst

The classical q-oscillator

D2
qf(x) + ω2f(x) = 0

has solution f(x) = C1Sinq(ωx)+C2Cosq(ωx). This function has an increasing amplitude
for |q| > 1.

The following equation is easily proved.

Cosq(x)Cos 1
q
(x) + Sinq(x)Sin 1

q
(x) = 1. (3.14)

Definition 3.5. The Hahn q-addition, compare [57, p. 362], is the function C3 �→ C2

given by

(x, y, q) �→ (x, y) ≡ [x+ y]q, (3.15)

where

[x+ y]nq ≡
n∑

k=0

(
n

k

)
q

q(
k
2) ykxn−k, n = 0, 1, 2, . . . . (3.16)

Furthermore,

[x− y]q ≡ [x+ (−y)]q (3.17)

By (3.1) we obtain the original definition, which here is

Theorem 3.2 ([57, p. 362]). Let f(x) =
+∞∑

n=−∞
Anx

n be a power series in x. Then

f [x± y]q =
+∞∑

n=−∞
Anx

n
(
∓y

x
; q
)

n
. (3.18)

Remark 3.3. Unlike the Ward–AlSalam q-addition, the Hahn q-addition is neither com-
mutative nor associative, but on the other hand, it can be written as the following finite
product by (3.1)

[x± y]nq = xn
(
∓y

x
; q
)

n
, n = 0, 1, 2, . . . . (3.19)

This equation was generalized to complex n in [7, p. 3 (1.7)].

Remark 3.4. The physicists would probably be more happy with the notation [x; y]q,
but as mathematicians we will stick to the given notation.

The following equations obtain:

Eq(x)E 1
q
(y) = Eq[x+ y]q, (3.20)

eq(x)e 1
q
(y) = eq[x+ y]q. (3.21)

Proof. Expand the RHS and use (3.1). �
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A Method for q-Calculus 503

The following two addition theorems are proved in the same way [59, p. 32]:

Cosq(x)Cos 1
q
(y)± Sinq(x)Sin 1

q
(y) = Cosq[x∓ y]q, (3.22)

Sinq(x)Cos 1
q
(y)± Cosq(x)Sin 1

q
(y) = Sinq[x± y]q. (3.23)

¿From the q-binomial theorem we obtain

eq(y)
eq(x)

= eq[y − x]q. (3.24)

The following equations obtain:

Dqeq(x) =
eq(x)
1− q

, (3.25)

Dqe 1
q
(x) =

e 1
q
(qx)

1− q
. (3.26)

Definition 3.6. We can now define four other q-analogues of the trigonometric func-
tions [57]

sinq(x) ≡ 1
2i
(eq(ix)− eq(−ix)) ≡

∞∑
n=0

(−1)n
x2n+1

〈1; q〉2n+1
, |x| < 1, (3.27)

cosq(x) ≡ 1
2
(eq(ix) + eq(−ix)) ≡

∞∑
n=0

(−1)n
x2n

〈1; q〉2n
, |x| < 1, (3.28)

sin 1
q
(x) ≡ 1

2i
(e 1

q
(ix)− e 1

q
(−ix)) ≡

∞∑
n=0

(−1)nqn(2n+1) x2n+1

〈1; q〉2n+1
, (3.29)

cos 1
q
(x) ≡ 1

2
(e 1

q
(ix) + e 1

q
(−ix)) ≡

∞∑
n=0

(−1)nqn(2n−1) x2n

〈1; q〉2n
, (3.30)

where x ∈ C in the last two equations.

The following two addition theorems obtain [59, p. 32], [47, p. 34]:

cosq(x) cos 1
q
(y)± sinq(x) sin 1

q
(y) = cosq[x∓ y]q, (3.31)

sinq(x) cos 1
q
(y)± cosq(x) sin 1

q
(y) = sinq[x± y]q. (3.32)

Remark 3.5. Observe the misprint in [57, p. 363].

The functions sin 1
q
(x) and cos 1

q
(x) solve the q-difference equation

(q − 1)2D2
qf(x) + qf

(
q2x
)
= 0, (3.33)

and the functions sinq(x) and cosq(x) solve the q-difference equation

(q − 1)2D2
qf(x) + f(x) = 0. (3.34)
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504 T Ernst

Definition 3.7. The q-tangent numbers T2n+1(q) are defined by [11, p. 380]:

sinq(x)
cosq(x)

≡ tanq(x) ≡
∞∑

n=0

T2n+1(q)x2n+1

〈1; q〉2n+1
. (3.35)

It was proved by Andrews and Gessel [11, p. 380] that the polynomial T2n+1(q) is

divisible by 〈̃1; q〉n.
Definition 3.8. The q-Euler numbers or q-secant numbers S2n(q) are defined by [12,
p. 283]:

1
cosq(x)

≡
∞∑

n=0

S2n(q)x2n

〈1; q〉2n
. (3.36)

The congruence

S2n ≡ 1 mod 4 (3.37)

was proved by Sylvester (1814–1897) [72, p. 260], [12, p. 283].
It was proved by Andrews and Foata [12, p. 283] that

S2n(q) ≡ q2n(n−1) mod (q + 1)2. (3.38)

4 The Ward–AlSalam q-addition and some variants
of the q-difference operator

In such an interdisciplinary subject as q-calculus, many different definitions have been
used, and in this section we try to collect some of them. In general, physicists tend to use
symmetric operators.

Definition 4.1. A symmetric q-difference operator is defined by

Dq1,q2f(x) ≡
f(q1x)− f(q2x)

(q1 − q2)x
, (4.1)

where q1 = q−1
2 .

Although the difference operators Dq and Dq1,q2 convey the same idea, it turns out that
Dq1,q2 is the proper choice in constructing the Fourier transform between configuration and
momentum space [50, p. 1797].

The relation between Dq1,q−1
1

and Dq is

Dq1,q−1
1

=
q1 − 1
q1 − q−1

1

Dq1 +
1− q−1

1

q1 − q−1
1

Dq−1
1
. (4.2)

Definition 4.2. Euler used the operator

�+ϕ(x) ≡ ϕ(x)− ϕ(qx)
x

. (4.3)
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A Method for q-Calculus 505

Remark 4.1. The q-Leibniz formula also obtains for �+.

Heine and Thomae used the operator

�ϕ(x) ≡ ϕ(qx)− ϕ(x). (4.4)

In 1994 [35] Chung K S, Chung W S, Nam S T and Kang H J rediscovered 2 q-operations
(q-addition and q-subtraction) which lead to new q-binomial formulas and consequently
to a new form of the q-derivative.

We will now invent an operation which will turn out to be the natural way to work
with addition for the quantity to the far right of | in the q-hypergeometric series (2.11).
More examples will be given in future papers on expansions of q-Appell functions.

Definition 4.3. The Ward–AlSalam q-addition, is the function (compare [102, p. 256],
[5, p. 240]) C3 �→ C2 given by

(x, y, q) �→ (x, y) ≡ x⊕q y, (4.5)

where

(x⊕q y)n ≡
n∑

k=0

(
n

k

)
q

xkyn−k, n = 0, 1, 2, . . . . (4.6)

The q-subtraction is defined by

x�q y ≡ x⊕q (−y). (4.7)

Remark 4.2. The Rogers-Szegö polynomials [78, 95] are defined in a way equivalent
to (4.6).

Theorem 4.1. This q-addition (4.6) has the following properties, x, y, z ∈ C:

(x⊕q y)⊕q z = x⊕q (y ⊕q z),
x⊕q y = y ⊕q x,

x⊕q 0 = 0⊕q x = x,

zx⊕qzy = z(x⊕q y). (4.8)

Proof. The first property (associativity) is proved as follows: We must prove that

[(x⊕q y)⊕q z]n = [x⊕q (y ⊕q z)]n. (4.9)

But this is equivalent to

n∑
k=0

(
n

k

)
q

k∑
l=0

(
k

l

)
q

xlyk−lzn−k =
n∑

k′=0

(
n

k′

)
q

xk′
n−k′∑
l′=0

(
n− k′

l′

)
q

yl′zn−k′−l′ . (4.10)

Now put l = k′ and l′ = k − l to conclude the proof.
The proof of the distributive law is obvious. �
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506 T Ernst

Definition 4.4. For α ∈ C, q-addition is extended to

(x⊕q y)α ≡ xα
∞∑

k=0

(
α

k

)
q

(y
x

)k
,

∣∣∣y
x

∣∣∣ < 1. (4.11)

Remark 4.3. The associative law doesn’t hold here.

Remark 4.4. q-Addition is a special case of the so-called Gaussian convolution [56, p. 245]
of {xn} and {yn}

cn =
n∑

k=0

(
n

k

)
q

xkyn−k, n = 0, 1, 2, . . . . (4.12)

In 1936 Ward [102, p. 256] proved the following equations for q-subtraction (the original
paper seems to contain a misprint of (4.13)):

(x�q y)2n+1 =
n∑

k=0

(−1)k
(
2n+ 1
k

)
q

xkyk(x2n+1−2k − y2n+1−2k), (4.13)

(x�q y)2n = (−1)n
(
2n
n

)
q

xnyn +
n−1∑
k=0

(−1)k
(
2n
k

)
q

xkyk(x2n−2k + y2n−2k). (4.14)

Furthermore [102, p. 262] (the original paper seems to contain a misprint):

Eq(x)Eq(−x) =
∞∑

n=0

(1�q 1)2n

{2n}q!
x2n, (4.15)

eq(x)eq(−x) =
∞∑

n=0

(1�q 1)2n

〈1; q〉2n
x2n. (4.16)

Definition 4.5. Ward [102, p. 258] also showed that q-addition can be a function value,
as follows.

If F (x) denotes the formal power series

F (x) =
∞∑

n=0

cnx
n, (4.17)

we define F (x⊕q y) to mean the series

∞∑
n=0

cn(x⊕q y)n ≡
∞∑

n=0

n∑
k=0

cn

(
n

k

)
q

xn−kyk. (4.18)

In like manner

F (x1 ⊕q x2 ⊕q · · · ⊕q xk) =
∞∑

n=0

cn(x1 ⊕q x2 ⊕q · · · ⊕q xk)n =
∞∑

n=0

cnPkn(x). (4.19)
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A Method for q-Calculus 507

We immediately obtain the following rules for the product of two q-exponential func-
tions

Eq(x)Eq(y) = Eq(x⊕q y), eq(x)eq(y) = eq(x⊕q y). (4.20)

Compare with the following two expression for the quotient of two q-exponential functions
[101], [36, p. 91]

Eq(y)
Eq(x)

=
∞∑

k=0

Pk(y, x)
{k}q!

, (4.21)

[89, p. 71]

eq(y)
eq(x)

=
∞∑

k=0

Pk(y, x)
〈1; q〉k ; (4.22)

compare (3.24).
We have used the following definition from [41]:

Pn(x, a) =
n−1∏
m=0

(x− aqm), n = 1, 2, . . . . (4.23)

In order to present Ward’s q-analogue of De Moivre’s formula [102] (4.25) and (4.26)
we need a new notation.

Definition 4.6. Let

(n̄q)k ≡ (1⊕q 1⊕q · · · ⊕q 1)
k, n ∈ N, (4.24)

where the number of 1 in the RHS is n.

Then

Cosq(n̄qx) + iSinq(n̄qx) = (Cosq(x) + iSinq(x))n, (4.25)
cosq(n̄qx) + isinq(n̄qx) = (cosq(x) + i sinq(x))n. (4.26)

Definition 4.7. Furthermore Chung K S, Chung W S, Nam S T and Kang H J [35,
p. 2023] defined a new q-derivative as follows:

D⊕f(x) ≡ lim
δx→0

f(x⊕q δx)− f(x)
δx

. (4.27)

Theorem 4.2. This q-derivative D⊕ satisfies the following rules:

D⊕(x⊕q a)n = {n}q(x⊕q a)n−1, (4.28)

D⊕Eq(x) = Eq(x). (4.29)
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508 T Ernst

Proof. The first equation is proved as follows:

lim
δx→0

(x⊕q δx⊕q a)n − (x⊕q a)n

δx
(4.30)

= lim
δx→0

n∑
k=0

(
n
k

)
q

k∑
l=0

(
k
l

)
q
xlδxk−lan−k −

n∑
k′=0

(
n
k′
)
q
xk′

an−k′

δx
= {n}q(x⊕q a)n−1. �

Theorem 4.3.

D⊕xα = {α}qx
α−1, (4.31)

just as for the q-difference operator.

Proof.

lim
δx→0

(x⊕q δx)α − xα

δx
= lim

δx→0

xα
∞∑

k=0

(
α
k

)
q

(
δx
x

)k − xα

δx
(4.32)

= lim
δx→0

xα
∞∑

k=1

(
δx

x

)k 〈−α; q〉k(−1)kq−(
k
2)+kα

〈1; q〉kδx = {α}qx
α−1. �

Corollary 4.4. The two operators Dq and D⊕ are identical when operating on functions

which can be expressed as xα
∞∑

k=0
akx

k.

Definition 4.8. The function Logq(x) is [35, p. 2025] the inverse function to Eq(x).

Theorem 4.5. Logq(x) satisfies the following logarithm laws with addition, replaced by
q-addition:

Logq(ab) = Logq(a)⊕q Logq(b),

Logq

(a
b

)
= Logq(a)�q Logq(b),

Logq(a
n) = nLogq(a). (4.33)

Definition 4.9. The function logq(x) is the inverse function to eq(x).

Theorem 4.6. logq(x) satisfies the same laws as for Logq(x) above.

Definition 4.10. A power function based on q-addition is defined by ar
q = Eq(r Logq(a)).

This power function satisfies the following laws:

Theorem 4.7.

ax
qa

y
q = a

x⊕qy
q ,

ax
q

ay
q
= a

x�qy
q , (ab)xq = ax

q b
x
q ,

(a
b

)x

q
=
ax

q

bxq
. (4.34)

By (4.20) we obtain the following addition theorems for the q-analogues of the trigono-
metric functions.
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A Method for q-Calculus 509

Theorem 4.8.

Cosq(x)Cosq(y) + Sinq(x)Sinq(y) = Cosq(x�q y), (4.35)
Cosq(x)Cosq(y)− Sinq(x)Sinq(y) = Cosq(x⊕q y), (4.36)
Sinq(x)Cosq(y) + Sinq(y)Cosq(x) = Sinq(x⊕q y), (4.37)
Sinq(x)Cosq(y)− Sinq(y)Cosq(x) = Sinq(x�q y), (4.38)
cosq(x) cosq(y) + sinq(x) sinq(y) = cosq(x�q y), (4.39)
cosq(x) cosq(y)− sinq(x) sinq(y) = cosq(x⊕q y), (4.40)
sinq(x)cosq(y) + sinq(y) cosq(x) = sinq(x⊕q y), (4.41)
sinq(x) cosq(y)− sinq(y) cosq(x) = sinq(x�q y). (4.42)

We also obtain 8 addition theorems for the q-analogues of the hyperbolic functions [108].
A q-analogue of (1.14) is given by

Theorem 4.9.

(1⊕q x)n + (1�q x)n = 2 4φ1

(
−n

2
,
1− n

2
,∞,∞;

1
2
|q2, x2q2n−1

)
. (4.43)

Proof. There are two cases to consider:
1. n is even.

LHS = 2

n
2∑

k=0

x2k〈1; q〉n
〈1; q〉2k〈1; q〉n−2k

= 2

n
2∑

k=0

x2k〈1
2 , 1; q

2〉n
2

〈1
2 , 1; q

2〉k〈1
2 , 1; q

2〉n
2−k

= 2

n
2∑

k=0

x2k〈−n
2 , −n+1

2 ; q2〉kq
2

(
−2(k

2)+
nk
2 +

(n−1)k
2

)
〈1
2 , 1; q

2〉k
= RHS. (4.44)

2. n is odd.

LHS = 2

n−1
2∑

k=0

x2k〈1; q〉1〈2; q〉n−1

〈1; q〉2k〈1; q〉1〈2; q〉n−1−2k
= 2

n−1
2∑

k=0

x2k〈3
2 , 1; q

2〉n−1
2

〈1
2 , 1; q

2〉k〈3
2 , 1; q

2〉n−1
2 −k

(4.45)

= 2

n
2∑

k=0

x2k〈−n
2 , −n+1

2 ; q2〉kq
2

(
−2(k

2)+
nk
2 +

(n−1)k
2

)
〈1
2 , 1; q

2〉k
= RHS. �

5 Generating functions and recurrences
for q-Laguerre polynomials

We will use the generating function technique by Rainville [76] to prove recurrences for
q-Laguerre polynomials, which are q-analogues of results in [76]. Some of these recurrences
were stated already by Moak [70]. In this paper we will be working with two different
q-Laguerre polynomials. The polynomial L(α)

n,q,c(x) was used by Cigler [37]

L(α)
n,q,c(x) ≡

n∑
k=0

(
n+ α

n− k

)
q

{n}q!
{k}q!

qk2+αk(−1)kxk
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510 T Ernst

≡
n∑

k=0

〈1 + α; q〉n
〈1 + α; q〉k

〈−n; q〉k
〈1; q〉k

q
k2+k

2
+kn+αk(1− q)kxk

(1− q)n

≡ 〈α+ 1; q〉n
(1− q)n 1φ1

(−n;α+ 1|q,−x(1− q)qn+α+1
)
. (5.1)

The most common q-Laguerre polynomial L(α)
n,q(x) is defined as follows. Except for the

notation, this definition is equivalent to [70, 51] and [94]

L(α)
n,q(x) ≡

L
(α)
n,q,c(x)
{n}q!

. (5.2)

In [66] the q-Laguerre polynomial is defined as

〈α+ 1; q〉n
〈1; q〉n 1φ1

(−n;α+ 1|q,−xqn+α+1
)
. (5.3)

In the literature there are many definitions of q-Laguerre polynomials, but most of them
are related to each other by some transformation.

Consider sets σn(x) defined by

Eq(t)Ψ(xt) =
∞∑

n=0

σn(x)tn. (5.4)

Let

F = Eq(t)Ψ(xt). (5.5)

Then

Dq,xF = tEq(t)DqΨ, (5.6)
Dq,tF = Eq(t)Ψ + x(1− (1− q)t)Eq(t)DqΨ. (5.7)

An elimination of Ψ and DqΨ from the above equations gives

x(1− (1− q)t)Dq,xF − tDq,tF = −tF, (5.8)

and
∞∑

n=0

xDqσn(x)tn −
∞∑

n=1

x(1− q)Dqσn−1(x)tn −
∞∑

n=0

{n}qσn(x)tn = −
∞∑

n=1

σn−1(x)tn.

By equating the coefficients of tn we obtain the following recurrence (σ0(x) = const):

xDqσn(x)− x(1− q)Dqσn−1(x)− {n}qσn(x) = −σn−1(x), n ≥ 1. (5.9)

In particular, by (5.24) we obtain the following recurrence for the q-Laguerre polynomials,
which is a q-analogue of [76, p. 134]:

xDqL
(α)
n,q(x)− x(1− q){α+ n}qDqL

(α)
n−1,q(x)
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A Method for q-Calculus 511

= {n}qL
(α)
n,q(x)− {α+ n}qL

(α)
n−1,q(x). (5.10)

Now let’s assume that Ψ has the formal power series expansion

Ψ(u) =
∞∑

n=0

γnu
n. (5.11)

Then
∞∑

n=0

σn(x)tn =
∞∑

n=0

n∑
k=0

γkx
ktn

{n− k}q!
, (5.12)

so that

σn(x) =
n∑

k=0

γkx
k

{n− k}q!
. (5.13)

Now by the q-binomial theorem
∞∑

n=0

{c}n,qσn(x)tn =
∞∑

n=0

n∑
k=0

{c}n,qγkx
ktn

{n− k}q!

=
∞∑

n=0

∞∑
k=0

{c}n+k,qγkx
ktn+k

{n}q!
=

∞∑
n=0

∞∑
k=0

{c+ k}n,qt
n

{n}q!
{c}k,qγk(xt)k

1

=
∞∑

k=0

{c}k,qγk(xt)k
(tqc+k; q)∞
(t; q)∞

=
∞∑

k=0

{c}k,qγk(xt)k

(t; q)c+k
. (5.14)

As a special case we get the following generating function which is a q-analogue of [48,
p. 43, (73)], [76, p. 135, (13)]

∞∑
n=0

{c}n,qL
(α)
n,q(x)tn

{1 + α}n,q
=

∞∑
n=0

{c}n,qq
n2+αn(−xt)n

{n}q!{1 + α}n,q(t; q)c+n

≡ 1
(t; q)c

1φ2(c; 1 + α|q;−xtq1+α(1− q)||−; tqc). (5.15)

Consider the important case c = 1 + α in (5.15). This is equivalent to [70, p. 29 4.17],
[6, p. 132 4.2], [49, p. 120 11′]. Call the RHS F (x, t, q, α). By computing the q-difference
of F (x, t, q, α) with respect to x we obtain

Dq,xF = −tq1+αF (qx, t, q, α+ 1). (5.16)

Equating coefficients of tn, we obtain the following recurrence relation which is a q-analogue
of [76, p. 203]. Also compare with [66, p. 109, 3.21.8] and [68, p. 79]

DqL
(α)
n,q(x) = −q1+αL

(1+α)
n−1,q(xq). (5.17)

By computing the q-difference of F (x, t, q, α) with respect to t and equating coefficients
of tn, we obtain

{n+ 1}qL
(α)
n+1,q(x) = {α+ 1}qL

(α+1)
n,q (x) +

L
(α+1)
n+1,q

(
x
q

)
− L

(α+1)
n+1,q(x)

1− q
. (5.18)
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512 T Ernst

Proof.

Dq,tF =
∞∑

n=0

qn2+nα(−x)n((t; q)α+1+n{n}qt
n−1 − tnDq(t; q)α+1+n)

(tq; q)α+1+n(t; q)α+1+n{n}q!

=
∞∑

n=0

qn2+nα(−x)ntn((t; q)α+1+n{n}qt
−1 + {α+ 1 + n}q(tq; q)α+n)

(tq; q)α+1+n(t; q)α+1+n{n}q!

=
∞∑

n=0

qn2+nα(−x)ntn({n}q
1−t

t + {α+ 1 + n}q)
(t; q)α+2+n{n}q!

=
∞∑

n=0

qn2+nα+n{α+ 1}q(−xt)n
(t; q)α+2+n{n}q!

+
∞∑

n=0

qn2+nα{n}q(−x)ntn−1

(t; q)α+2+n{n}q!

=
∞∑

n=0

qn2+nα+n{α+ 1}q(−xt)n
(t; q)α+2+n{n}q!

+
1

t(1− q)

∞∑
n=0

qn2+nα+n(−xt)n( 1
qn − 1)

(t; q)α+2+n{n}q!

=
∞∑

n=0

tn{α+ 1}qL
(α+1)
n,q (x) +

1
1− q

∞∑
n=0

tn−1(L(α+1)
n,q

(
x

q

)
− L(α+1)

n,q (x))

=
∞∑

n=0

tn{α+ 1}qL
(α+1)
n,q (x) +

1
(1− q)

∞∑
n=0

tn(L(α+1)
n+1,q

(
x

q

)
− L

(α+1)
n+1,q(x)). (5.19)

Equating coefficients of tn we are done. �

The last equation can be expressed as

{n+ 1}qL
(α)
n+1,q(x) = {α+ 1}qL

(α+1)
n,q (x)− xq2+αL(α+2)

n,q (x). (5.20)

Furthermore, the relation (1− t)F (x, t, q, α+1) = F (x, tq, q, α) yields the following mixed
recurrence relation, which was already stated in [70, p. 29 4.12]:

L(α+1)
n,q (x)− L

(α+1)
n−1,q(x) = qnL(α)

n,q(x). (5.21)

By the q-binomial theorem we obtain the following equation, which is a generalization of
[70, p. 29 4.10] and which is a q-analogue of [76, p. 209], [6, p. 131 3.16], [49, p. 130 38]

L(α)
n,q(x) =

n∑
k=0

〈α− β; q〉k
〈1; q〉k L

(β)
n−k,q(x)q

(α−β)(n−k), α, β ∈ C. (5.22)

Proof.

∞∑
n=0

L(α)
n,q(x)t

n =
∞∑

n=0

qn2+αn(−xt)n
{n}q!(t; q)1+α+n

=
1

(t; q)α−β

∞∑
n=0

qn2+βn(−xt)nq(α−β)n

{n}q!(tqα−β ; q)1+β+n

=
∞∑

k=0

〈α− β; q〉k
〈1; q〉k tk

∞∑
l=0

L
(β)
l,q (x)t

lq(α−β)l.

Equating coefficients of tn we are done. �
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By (5.21) and (5.17) the following important recurrence obtains:

Dq(L(α)
n,q(x)− L

(α)
n−1,q(x)) = −qn+αL

(α)
n−1,q(xq). (5.23)

The following generating function can also be found in [66, p. 109, 3.21.13]. It is
a q-analogue of [48, p. 43, (73′′)], [76, p. 130], [49, p. 121 12′]

∞∑
n=0

L
(α)
n,q(x)tn

{1 + α}n,q
= Eq(t)0φ1

(−; 1 + α|q, q1+α(1− q)2(−xt))
= Γq(1 + α)(xt)−

α
2 Eq(t)J (2)

α

(
2(1− q)

√
xt; q

)
. (5.24)

Proof. Let c → ∞ in (5.15). �

Remark 5.1. Another similar generating function is obtained by letting t → tq−c, c →
−∞ in (5.15). These limits are q-analogues of an idea used by Feldheim [48, p. 43], which
is not mentioned by Rainville.

Making use of the decomposition of a series into even and odd parts from [90, p. 200,
208], we can rewrite (5.24) in the form

∞∑
n=0

L
(α)
2n,q(x)t

2n

{1 + α}2n,q
+

t

{1 + α}q

∞∑
n=0

L
(α)
2n+1,q(x)t

2n

{2 + α}2n,q
= Eq(t)

[
0φ7

(
−;

1 + α

2
,

˜1 + α

2
,
2 + α

2
,
˜2 + α

2
,
1
2
,
1̃
2
, 1̃|q, q4+2α(1− q)4x2t2

)
− q1+α(1− q)xt

1− q1+α

× 0φ7

(
−;

2 + α

2
,
˜2 + α

2
,
3 + α

2
,
˜3 + α

2
,
3
2
,
3̃
2
, 1̃|q, q8+2α(1− q)4x2t2

)]
, (5.25)

and replacing t in (5.25) by it, we obtain

∞∑
n=0

L
(α)
2n,q(x)(−t2)n
{1 + α}2n,q

+
it

{1 + α}q

∞∑
n=0

L
(α)
2n+1,q(x)(−t2)n
{2 + α}2n,q

= (Cosq(t) + iSinq(t))0φ7

(
−;

1 + α

2
,
˜1 + α

2
,
2 + α

2
,
˜2 + α

2
,
1
2
,
1̃
2
, |q, 1̃

− q4+2α(1− q)4x2t2

)
+
q1+α(1− q)xt

1− q1+α
(Sinq(t)− iCosq(t))

× 0φ7

(
−;

2 + α

2
,
˜2 + α

2
,
3 + α

2
,
˜3 + α

2
,
3
2
,
3̃
2
, 1̃|q,−q8+2α(1− q)4x2t2

)
. (5.26)

Next equate real and imaginary parts from both sides to arrive at the generating functions

∞∑
n=0

L
(α)
2n,q(x)(−t2)n
{1 + α}2n,q

= Cosq(t)0φ7

(
−;

1 + α

2
,
˜1 + α

2
,
2 + α

2
,
˜2 + α

2
,
1
2
,
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514 T Ernst

1̃
2
, 1̃|q,−q4+2α(1− q)4x2t2

)
+
q1+α(1− q)xt

1− q1+α
Sinq(t)

× 0φ7

(
−;

2 + α

2
,
˜2 + α

2
,
3 + α

2
,
˜3 + α

2
,
3
2
,
3̃
2
, 1̃|q,−q8+2α(1− q)4x2t2

)
(5.27)

and
∞∑

n=0

L
(α)
2n+1,q(x)(−t2)n
{2 + α}2n,q

=
{1 + α}qSinq(t)

t
0φ7

(
−;

1 + α

2
,
˜1 + α

2
,
2 + α

2
,

˜2 + α

2
,
1
2
,
1̃
2
, 1̃|q,−q4+2α(1− q)4x2t2

)
− xq1+αCosq(t)

× 0φ7

(
−;

2 + α

2
,
˜2 + α

2
,
3 + α

2
,
˜3 + α

2
,
3
2
,
3̃
2
, 1̃|q,−q8+2α(1− q)4x2t2

)
. (5.28)

The following generating function is a q-analogue of [48, p. 43, (74′)], [27, p. 399], [49,
p. 120 11′′]

∞∑
n=0

L(α−n)
n,q (x)tnq(

n
2)−nα =

E 1
q
(−xt)

(−t; q)−α
, |t| < 1, |x| < 1. (5.29)

Proof.
∞∑

n=0

L(α−n)
n,q (x)tnq(

n
2)−nα

=
∞∑

n=0

tnq(
n
2)−nα

n∑
k=0

〈1 + α− n; q〉n〈−n; q〉k
〈1 + α− n; q〉k〈1; q〉k

q−(
k
2)+k2+kα(1− q)kxk

〈1; q〉n

=
∞∑

n=0

∞∑
k=0

tn+kq
n2+2nk+k2−n−k

2
−(n+k)α

× 〈1 + α− n− k; q〉n+k〈−n− k; q〉k
〈1 + α− n− k; q〉k〈1; q〉k

q−(
k
2)+k2+kα(1− q)kxk

〈1; q〉n+k

=
∞∑

n=0

∞∑
k=0

tn+kq
n2+k2−n−k

2
−nα 〈1 + α− n; q〉n

〈1; q〉k〈1; q〉n (−1)k(1− q)kxk (5.30)

=
∞∑

n=0

tn(−1)n
〈−α; q〉n
〈1; q〉n

∞∑
k=0

(1− q)kxk(−1)k
tkq(

k
2)

〈1; q〉k =
E 1

q
(−xt)

(−t; q)−α
. �

6 Product expansions

The theory of commutative ordinary differential operators was first explored in depth
by Burchnall and Chaundy [22, 23, 24]. This technique was then used to find differential
equations for hypergeometric functions in many papers, e.g. [25]. Some similar q-analogues
of these results already exist in the literature, and we will prove five q-product expansions
starting with a q-analogue of Carlitz’ result [26, p. 220].
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A Method for q-Calculus 515

Theorem 6.1. Let ε denote the operator which maps f(x) to f(qx). Then

L(α)
n,q,c(x) =

n∏
k=3

(
qkxDqε

−1 − xq2k+α−1 + {α+ k}q

)
× (qxDq − xq3+α + {α+ 2}q

) (
xDq − xq1+α + {α+ 1}q

)
1, (6.1)

where the number of factors to the right is n.

Proof. The theorem is true for n = 0. Also we find that it’s true for n = 1, 2. Assume
that it is true for n− 1, n ≥ 3. Then we must prove that

n∑
k=0

〈1 + α; q〉n
〈1 + α; q〉k

〈−n; q〉k
〈1; q〉k

q−(
k
2)+k2+kn+αk(1− q)kxk

(1− q)n

=
(
qnxDqε

−1 − xq2n+α−1 + {α+ n}q

)
×

n−1∑
k=0

〈1 + α; q〉n−1

〈1 + α; q〉k
〈1− n; q〉k
〈1; q〉k

q
k2−k

2
+kn+αk(1− q)kxk

(1− q)n−1
. (6.2)

A calculation shows that

RHS =
n−1∑
k=0

〈1 + α; q〉n
〈1 + α; q〉k

〈1− n; q〉k
〈1; q〉k

q
k2−k

2
+kn+αk(1− q)kxk

(1− q)n

−
n−1∑
k=0

〈1 + α; q〉n−1

〈1 + α; q〉k
〈1− n; q〉k
〈1; q〉k

q
k2−k

2
+kn+αkq2n+α−1(1− q)kxk+1

(1− q)n−1

+ qn
n−1∑
k=1

〈1 + α; q〉n−1

〈1 + α; q〉k
〈1− n; q〉k
〈1; q〉k−1

q
k2−k

2
+kn+αkq−k(1− q)kxk

(1− q)n
. (6.3)

Finally, we must prove that

1− qn+α

1− qk+α

1− q−n

1− qk
=
q−k(1− qn+α)

1− qα+k

1− qk−n

1− qk
+
qn−2k(1− qk−n)

1− qα+k
− q−2k+n, (6.4)

which is easily checked. �

The following theorem, which is a q-analogue of [75, p. 374 (2)], [100, p. 5 (31)] is proved
in a similar way.

Theorem 6.2.

L(α)
n,q,c(x) = E 1

q
(x)

n∏
k=1

(qk+αxDq + {α+ k}q)Eq(−x). (6.5)

Proof. The theorem is true for n = 0. Assume that it is true for n − 1. Then we must
prove that

n∑
k=0

〈1 + α; q〉n
〈1 + α; q〉k

〈−n; q〉k
〈1; q〉k

q−(
k
2)+k2+kn+αk(1− q)kxk

(1− q)n
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516 T Ernst

= E 1
q
(x)(qn+αxDq + {α+ n}q)

=
n−1∑
k=0

〈1 + α; q〉n−1

〈1 + α; q〉k
〈−n+ 1; q〉k

〈1; q〉k
q−(

k
2)+k2+k(n−1)+αk(1− q)kxk

(1− q)n−1
Eq(−x). (6.6)

A calculation shows that

RHS = E 1
q
(x)

[
{α+ n}q

n−1∑
k=0

〈1 + α; q〉n−1

〈1 + α; q〉k
〈−n+ 1; q〉k

〈1; q〉k
q−(

k
2)+k2+k(n−1)+αk(1− q)kxk

(1− q)n−1

+ qn+αx

[
n−1∑
k=1

〈1 + α; q〉n−1

〈1 + α; q〉k
〈−n+ 1; q〉k

〈1; q〉k
q−(

k
2)+k2+k(n−1)+αk(1− q)k(1− qk)xk−1

(1− q)n

−
n−1∑
k=0

〈1 + α; q〉n−1

〈1 + α; q〉k
〈−n+ 1; q〉k

〈1; q〉k
q−(

k
2)+k2+kn+αk(1− q)kxk

(1− q)n−1

]]
Eq(−x). (6.7)

We must prove that

1− qn+α

〈1 + α; q〉k
〈−n; q〉k
〈1; q〉k

q
k2

2
+ k

2
+kn+αk(1− q)k

(1− q)n

=
1− qn+α

〈1 + α; q〉k
〈1− n; q〉k
〈1; q〉k

q
k2

2
− k

2
+kn+αk(1− q)k

(1− q)n

+
qn+α

〈1 + α; q〉k
〈1− n; q〉k
〈1; q〉k

q
k2

2
− k

2
+kn+αk(1− qk)(1− q)k

(1− q)n

− qn+α

〈1 + α; q〉k−1

〈1− n; q〉k−1

〈1; q〉k−1

q
k2

2
− k

2
+kn−n+αk−α(1− q)k

(1− q)n
, (6.8)

which implies that

1− qn+α

1− qk+α

1− q−n

1− qk
=
q−k(1− qn+α)

1− qα+k

1− qk−n

1− qk
+
qn+α−k(1− qk−n)

1− qα+k
− q−k, (6.9)

which is easily checked. �

The following theorem is a q-analogue of Chatterjea [30, p. 286 (k = 1)].

Theorem 6.3.

L(α)
n,q,c(x) = x−αE 1

q
(x)(Dq)n(xα+nEq(−x)). (6.10)

Proof. Just use Leibniz’ rule for the n:th q-difference of a product of functions. �

The following theorem is a q-analogue of Chak [29], see also Chatterjea [33].

Theorem 6.4.

L(α)
n,q,c(x) = x−α−n−1E 1

q
(x)(x2Dq)n(xα+1Eq(−x)). (6.11)
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A Method for q-Calculus 517

Proof. The theorem is true for n = 0. Assume that it is true for n − 1. Then we must
prove that

n∑
k=0

〈1 + α; q〉n
〈1 + α; q〉k

〈−n; q〉k
〈1; q〉k

q
k2+k

2
+kn+αk(1− q)kxk

(1− q)n
= x−α−n−1E 1

q
(x)x2

×Dq

n−1∑
k=0

〈1 + α; q〉n−1

〈1 + α; q〉k
〈−n+ 1; q〉k

〈1; q〉k
q

k2+k
2

+k(n−1)+αk(1− q)kxk+α+n

(1− q)n−1
Eq(−x). (6.12)

A calculation shows that

RHS =
n−1∑
k=0

〈1 + α; q〉n−1

〈1 + α; q〉k
〈−n+ 1; q〉k

〈1; q〉k

× q
k2+k

2
+k(n−1)+αk(1− q)kxk

(1− q)n−1
({k + α+ n}q(1 + (1− q)x)− x)

=
〈1 + α; q〉n
(1− q)n

− 〈−n+ 1; q〉n−1

〈1; q〉n−1
q

n2−n
2

+n2+αnxn

+
n−1∑
k=1

〈1 + α; q〉n−1

〈1 + α; q〉k
〈−n+ 1; q〉k

〈1; q〉k
q

k2+k
2

+kn−k+αkxk

(1− q)n−k
(1− qk+α+n) (6.13)

−
n−1∑
k=1

〈1 + α; q〉n−1

〈1 + α; q〉k−1

〈−n+ 1; q〉k−1

〈1; q〉k−1

q
k2−k

2
+kn+αkxk

(1− q)n−k
= LHS. �

The following theorem is a q-analogue of Chatterjea [31] and a generalization of (6.11).

Theorem 6.5.

L(α)
n,q,c(x) = x−α−n−kE 1

q
(x)
(
{1− k}qx+ q1−kx2Dq

)n
(xα+kEq(−x)). (6.14)

We will now prove a couple of bilinear generating formulae for q-Laguerre polynomials.
There is much more to be proved as can be seen from the corresponding hypergeometric
identities in [90, p. 133–135, 245 (18)] and from the paper [65, p. 427, 430–431]. With the
help of (6.11) we can prove a q-analogue of Chatterjea [33, p. 57].

Theorem 6.6.

∞∑
n=0

{n}q!L(α−n)
n,q (x)L(β−n)

n,q (y)tn

= E 1
q
(x)E 1

q
(y)

∞∑
r,s=0

(−1)r+sxrys

{r}q!{s}q!
3φ0

(
∞,−r − α,−s− β;−|q, tq

r+α+s+β

1− q

)
. (6.15)

Proof.

LHS =
∞∑

n=0

x−α−1

{n}q!
E 1

q
(x)(x2Dq,x)nxα−n+1Eq(−x)y−β−1
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518 T Ernst

× E 1
q
(y)(y2Dq,y)nyβ−n+1Eq(−y)tn = E 1

q
(x)E 1

q
(y)x−α−1y−β−1

×
∞∑

n=0

tn

{n}q!
(xθ1)n(yθ2)nxα−n+1yβ−n+1Eq(−x)Eq(−y)

= E 1
q
(x)E 1

q
(y)x−α−1y−β−1

∞∑
n=0

tn

{n}q!
(xθ1)n(yθ2)n

∞∑
r=0

(−1)r

{r}q!
xα+r−n+1

×
∞∑

s=0

(−1)s

{s}q!
yβ+s−n+1 = E 1

q
(x)E 1

q
(y)x−α−1y−β−1

×
∞∑

n=0

tn

{n}q!

∞∑
r=0

(−1)r

{r}q!
{r + α− n+ 1}n,qx

α+r+1 (6.16)

×
∞∑

s=0

(−1)s

{s}q!
{s+ β − n+ 1}n,qy

β+s+1 = E 1
q
(x)E 1

q
(y)

∞∑
r,s=0

(−1)r+sxrys

{r}q!{s}q!

×
∞∑

n=0

〈−r − α,−s− β; q〉n
〈1; q〉n(1− q)n

q−2(n
2)+n(α+r+β+s)tn = RHS. �

By the same method, we can find a q-analogue of a bilinear generating formula for Laguerre
polynomials of Chatterjea [32, p. 88].

Theorem 6.7.
∞∑

n=0

〈1, γ; q〉n(xyt)n
〈α+ 1, β + 1; q〉nL

(α)
n,q(x)L

(β)
n,q(y) = E 1

q
(x)E 1

q
(y)

×
∞∑

r,s=0

(−1)r+sxrys

{r}q!{s}q!
3φ2(γ, α+ r + 1, β + s+ 1;α+ 1, β + 1|q, xyt). (6.17)

Proof.

LHS =
∞∑

n=0

〈1, γ; q〉n
〈α+ 1, β + 1; q〉n

x−α−1

({n}q!)2
E 1

q
(x)(x2Dq,x)nxα+1Eq(−x)

× y−β−1E 1
q
(y)(y2Dq,y)nyβ+1Eq(−y)tn = E 1

q
(x)E 1

q
(y)x−α−1y−β−1

×
∞∑

n=0

〈1, γ; q〉ntn
〈α+ 1, β + 1; q〉n({n}q!)2

(xθ1)n
∞∑

r=0

(−1)r

{r}q!
xα+r+1(yθ2)n

∞∑
s=0

(−1)s

{s}q!
yβ+s+1

= E 1
q
(x)E 1

q
(y)

∞∑
n=0

〈1, γ; q〉ntn
〈α+ 1, β + 1; q〉n({n}q!)2

∞∑
r,s=0

(−1)r+sxn+ryn+s

{r}q!{s}q!

× {r + α+ 1}n,q{s+ β + 1}n,q = E 1
q
(x)E 1

q
(y)

∞∑
r,s=0

(−1)r+sxrys

{r}q!{s}q!
(6.18)

×
∞∑

n=0

〈γ, α+ r + 1, β + s+ 1; q〉n
〈1, α+ 1, β + 1; q〉n (xyt)n = RHS. �

Put γ = β + 1 in (6.17) to obtain
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A Method for q-Calculus 519

Theorem 6.8.

∞∑
n=0

〈1; q〉ntn
〈α+ 1; q〉nL

(α)
n,q(x)L

(β)
n,q(y) = E 1

q
(y)

1
(t; q)β+1

∞∑
s=0

(−y)s
{s}q!(tqβ+1; q)s

× 1φ2

(
β + s+ 1;α+ 1|q,−xt(1− q)q1+α||−; tqβ+s+1

)
. (6.19)

Proof.

∞∑
n=0

〈1; q〉ntn
〈α+ 1; q〉nL

(α)
n,q(x)L

(β)
n,q(y) = E 1

q
(x)E 1

q
(y)

∞∑
r,s=0

(−1)r+sxrys

{r}q!{s}q!

× 2φ1(α+ r + 1, β + s+ 1;α+ 1|q, t) = E 1
q
(x)E 1

q
(y)

∞∑
r,s=0

(−1)r+sxrys

{r}q!{s}q!

× 1
(t; q)β+s+1

2φ2(β + s+ 1,−r;α+ 1|q, tqα+r+1||−; tqβ+s+1)

= E 1
q
(x)E 1

q
(y)

1
(t; q)β+1

∞∑
s=0

(−y)s
{s}q!(tqβ+1; q)s

∞∑
r=0

(−x)r
{r}q!

× 2φ2(β + s+ 1,−r;α+ 1|q, tqα+r+1||−; tqβ+s+1) = E 1
q
(x)E 1

q
(y)

× 1
(t; q)β+1

∞∑
s=0

(−y)s
{s}q!(tqβ+1; q)s

∞∑
r=0

(−x)r
{r}q!

r∑
k=0

〈β + s+ 1,−r; q〉k
〈1, α+ 1; q〉k

× (−t)kq(k
2)+k(α+r+1)

(tqβ+s+1; q)k
= E 1

q
(y)

1
(t; q)β+1

∞∑
s=0

(−y)s
{s}q!(tqβ+1; q)s

(6.20)

×
∞∑

k=0

〈β + s+ 1; q〉k(−1)k

〈1, α+ 1; q〉k
(xt)k(1− q)kqk2+kα

(tqβ+s+1; q)k
= RHS. �

Put β = α and γ = α+1 in (6.17) to obtain the following q-analogue of the Hardy–Hille
formula

Theorem 6.9.

∞∑
n=0

〈1; q〉ntn
〈α+ 1; q〉nL

(α)
n,q(x)L

(α)
n,q(y)

=
E 1

q
(x)E 1

q
(y)

(t; q)α+1

∞∑
s,r,k=0

(−y)s
{s}q!

(−x)r
{r}q!

(1− q)2k(xyt)kqαk+k2

〈1, α+ 1; q〉k(tqα+1; q)r+2k+s
. (6.21)

Proof.

∞∑
n=0

〈1; q〉ntn
〈α+ 1; q〉nL

(α)
n,q(x)L

(α)
n,q(y)

= E 1
q
(x)E 1

q
(y)

∞∑
r,s=0

(−1)r+sxrys

{r}q!{s}q!
2φ1(α+ r + 1, α+ s+ 1;α+ 1, |q, t)
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= E 1
q
(x)E 1

q
(y)

∞∑
r,s=0

(−1)r+sxrys

{r}q!{s}q! (t; q)α+r+s+1

× 2φ1(−r,−s;α+ 1, |q, tqα+r+s+1) =
E 1

q
(x)E 1

q
(y)

(t; q)α+1

∞∑
r=0

(−x)r
{r}q!(tqα+1; q)r

×
∞∑

s=0

(−y)s
{s}q!(tqα+1+r; q)s

2φ1(−r,−s;α+ 1, |q, tqα+r+s+1)

=
E 1

q
(x)E 1

q
(y)

(t; q)α+1

∞∑
r=0

(−x)r
{r}q!(tqα+1; q)r

∞∑
s,k=0

(−y)s+k

{s+ k}q!(tqα+1+r; q)s+k

× 〈−s− k,−r; q〉k
〈1, α+ 1; q〉k tkq(α+r+s+1)k+k2

=
E 1

q
(x)E 1

q
(y)

(t; q)α+1

∞∑
r=0

(−x)r
{r}q!(tqα+1; q)r

×
∞∑

s,k=0

(−y)s(yt)k(1− q)s+k〈−r; q〉kq(α+r)k+ k2

2
+ k

2

〈1; q〉s〈1, α+ 1; q〉k(tqα+1+r; q)s+k
(6.22)

=
E 1

q
(x)E 1

q
(y)

(t; q)α+1

∞∑
s,r,k=0

(−y)s
{s}q!

(−x)r
{r}q!

(1− q)2k(xyt)kqαk+k2

〈1, α+ 1; q〉k(tqα+1; q)r+2k+s
. �

Acknowledgments

I would like to express my gratitude to my three tutors Sergei Silvestrov, Christer Kisel-
man and Sten Kaijser for discussions. I also want to thank Per Karlsson who gave some
valueable comments on the new method for q-hypergeometric series. Finally I want to
thank Johann Cigler for discussions. Part of this paper was supported by Kungliga veten-
skapsakademien.

References

[1] Agarwal R P, Some Basic Hypergeometric Identities, Ann. Soc. Sci. Bruxelles. Ser. I 67
(1953), 186–202.

[2] Agarwal R P, Some Relations between Basic Hypergeometric Functions of Two Variables,
Rend. Circ. Mat. Palermo (2) 3 (1954), 76–82.

[3] Agarwal R P and Verma A, Generalized Basic Hypergeometric Series with Unconnected
Bases, Proc. Cambridge Philos. Soc. 63 (1967), 727–734.

[4] Agarwal R P and Verma A, Generalized Basic Hypergeometric Series with Unconnected
Bases II, Quart. J. Math. Oxford Ser. (2) 18 (1967), 181–192.

[5] Al-Salam W A, q-Bernoulli Numbers and Polynomials, Math. Nachr. 17 (1959), 239–260.

[6] Al-Salam W A, Operational Representations for the Laguerre and Other Polynomials, Duke
Math. J. 31 (1964), 127–142.

[7] Al-Salam W A and Verma A, A Fractional Leibniz q-Formula. Pacific J. Math. 60, Nr. 2,
(1975), 1–9.

D
ow

nl
oa

de
d 

by
 [

15
1.

51
.1

63
.8

1]
 a

t 0
4:

27
 2

5 
O

ct
ob

er
 2

01
4 



A Method for q-Calculus 521
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[72] Nielsen N, Traité élémentaire des nombres de Bernoulli, Gauthier Villars, Paris, 1923.

[73] Pfaff J F, Observationes analyticae ad L. Euleri, Institutiones Calculi Integralis, Vol. IV,
Supplem. II et IV, Nova Acta Academiae Scientiarum Petropolitanae, Tome XI (1797),
Histoire, 38–57.
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