The Weierstrass Theory For Elliptic Functions Including The Generalisation To Higher Genus

Matthew England

Department of Mathematics, MACS
Heriot Watt University
Edinburgh

The Burn 2007

Outline

(9) Elliptic Function Theory

- Elliptic Functions
- The Weierstrass Elliptic Function
- The Weierstrass Sigma Function
(2) Generalising To The Hyperelliptic Case
- (n, s)-Curves And The Genus
- The Hyperelliptic Case
(3) Higher Genus Work
- Trigonal Curves
- Higher Genus Curves And Future Work

What are elliptic functions?

They are complex functions with two independent periods.

Definition

An elliptic function is a meromorphic function f defined on \mathbb{C} for which there exist two non-zero complex numbers ω_{1}, ω_{2} such that

$$
f\left(u+\omega_{1}\right)=f\left(u+\omega_{2}\right)=f(u) \quad \text { for all } u \in \mathbb{C}
$$

where $\omega_{1} / \omega_{2} \notin \mathbb{R}$.

- The field of elliptic functions with respect to given periods is generated by a Weierstrass \wp-function and its derivative \wp^{\prime}.

The Weierstrass \wp-function

Definition

We define the Weierstrass \wp-function with a complex variable u and a pair of complex periods ω_{1}, ω_{2}.

$$
\wp\left(u ; \omega_{1}, \omega_{2}\right)=\frac{1}{u^{2}}+\sum_{m, n}^{\prime}\left\{\frac{1}{\left(u-m \omega_{1}-n \omega_{2}\right)^{2}}-\frac{1}{\left(m \omega_{1}+n \omega_{2}\right)^{2}}\right\}
$$

where ' implies that terms with zero denominators are omitted.

Define the period lattice, Λ with points $\Lambda_{m, n}=m \omega_{1}+n \omega_{2}$. Then

$$
\wp\left(u ; \omega_{1}, \omega_{2}\right)=\wp(u ; \Lambda)=u^{-2}+\sum_{m, n}^{\prime}\left[\left(u-\Lambda_{m, n}\right)^{-2}-\Lambda_{m, n}^{-2}\right]
$$

How the \wp-function parameterises an elliptic curve

An elliptic curve is a non-singular algebraic curve with equation

$$
y^{2}=x^{3}+a x+b
$$

- Let g_{2} and g_{3} be the elliptic invariants defined as below.

$$
\begin{equation*}
g_{2}=60 \sum_{m, n}^{\prime} \Lambda_{m, n}^{-4} \quad g_{3}=140 \sum_{m, n}^{\prime} \Lambda_{m, n}^{-6} \tag{*}
\end{equation*}
$$

The Differential Equation

Then

$$
\left[\wp^{\prime}(u)\right]^{2}=4 \wp(u)^{3}-g_{2 \wp}(u)-g_{3}
$$

- So the solution to $\left[y^{\prime}\right]^{2}=4 y^{3}-g_{2} y-g_{3}$ is $y=\wp(u+\alpha)$, providing that there are numbers ω_{1}, ω_{2} which satisfy $(*)$.
$\Longrightarrow \quad$ The \wp-function is said to parameterise an elliptic curve

Properties of the \wp-function

The Second Derivative

Differentiating gives

$$
\wp^{\prime \prime}(u)=6 \wp(u)^{2}-\frac{1}{2} g_{2}
$$

- We see that $\wp(u)$ can be defined by

$$
u=\int_{-\infty}^{\wp(u)} \frac{d x}{\sqrt{4 x^{3}-g_{2} x-g_{3}}}=\int_{-\infty}^{\wp} \frac{d x}{y}
$$

Addition Formula

$$
\wp(u+v)=\frac{1}{4}\left[\frac{\wp^{\prime}(u)-\wp^{\prime}(v)}{\wp(u)-\wp(v)}\right]^{2}-\wp(u)-\wp(v)
$$

Elliptic curve addition

This relates to the addition law for points on an elliptic curve.

```
- The \wp-function addition formula
```

Given two points $P 1$ and $P 2$:

1. Find the straight line connecting them.
2. Calculate the third point of intersection $P 3^{\prime}$.
3. Reflect to find P3.

Define the addition law as

$$
P 1+P 2=P 3
$$

Points on an elliptic curve (along with an extra point, ∞) form an abelian group.

The Weierstrass σ-function

We can also associate a σ-function to the lattice Λ. It satisfies

$$
\wp(u)=-\frac{d^{2}}{d u^{2}} \ln [\sigma(u)], \quad \sigma(u)=\sigma(u, \Lambda)
$$

- The σ-function has a power series expansion

$$
\sigma(u)=u-\frac{1}{240} g_{2} u^{5}-\frac{1}{840} g_{3} u^{7}-\frac{1}{161280} g_{2}^{2} u^{9}-\ldots
$$

The addition formula for $\sigma(u)$

$$
-\frac{\sigma(u+v) \sigma(u-v)}{\sigma(u)^{2} \sigma(v)^{2}}=\wp(u)-\wp(v)
$$

(n, s)-curves and the genus

- Define an (n, s)-curve as an algebraic curve with equation

$$
y^{n}=x^{s}+\lambda_{s-1} x^{s-1}+\ldots+\lambda_{1} x+\lambda_{0}
$$

where $n<s$ and n, s coprime.

- general algebraic curve
- This will define a surface with genus $g=\frac{1}{2}(n-1)(s-1)$

The genus is roughly thought of as the number of 'holes' in a surface.

Hyperelliptic curves

Definition

A hyperelliptic curve is of the form $y^{2}=f(x)$ where $f(x)$ is a polynomial of degree $s>4$, with s distinct roots.

The simplest example is the $(2,5)$-curve, with $g=2$

$$
C: y^{2}=x^{5}+\lambda_{4} x^{4}+\lambda_{3} x^{3}+\lambda_{2} x^{2}+\lambda_{1} x+\lambda_{0}
$$

Now, $\sigma \& \wp$ are functions of two variables \& a period matrix M :

$$
\sigma=\sigma(\mathbf{u} ; M), \quad \mathbf{u}=\left(u_{1}, u_{2}\right)
$$

where

$$
u_{1}=\int^{\left(x_{1}, y_{1}\right)} \frac{d x}{y}, \quad u_{2}=\int^{\left(x_{2}, y_{2}\right)} \frac{x d x}{y}
$$

for two variable points $\left(x_{i}, y_{i}\right)$ on C.

Hyperelliptic \wp-functions

There are now three possibilities for the $\wp-$-function

$$
\wp_{i j}=-\frac{\partial^{2}}{\partial u_{i} \partial u_{j}} \ln \sigma(\mathbf{u}), \quad i \leq j \in\{1,2\} \quad \wp \equiv \wp_{11}
$$

Baker found a hyperelliptic addition formula:

$$
\frac{\sigma(\mathbf{u}+\mathbf{v}) \sigma(\mathbf{u}-\mathbf{v})}{\sigma(\mathbf{u})^{2} \sigma(\mathbf{v})^{2}}=\wp_{22}(\mathbf{u})_{\wp_{21}(\mathbf{v})-\wp_{21}(\mathbf{u}) \wp_{22}(\mathbf{v})-\wp_{11}(\mathbf{u})+\wp_{11}(\mathbf{v}), 0}
$$

We now extend the new notation to consider higher derivatives

$$
\begin{array}{cc}
\wp_{i j k}=-\frac{\partial^{3}}{\partial u_{i} \partial u_{j} \partial u_{k}} \ln \sigma(\mathbf{u}), \quad \wp_{i j k l}=-\frac{\partial^{4}}{\partial u_{i} \partial u_{j} \partial u_{k} \partial u_{l}} \ln \sigma(\mathbf{u}) \\
i \leq j \leq k \leq l \in\{1,2\} & \wp^{\prime} \equiv \wp_{111} \quad \wp^{\prime \prime} \equiv \wp_{11111}
\end{array}
$$

PDEs for the hyperelliptic case

Baker found other generalisations of the elliptic results:

- Equations for the 10 possible $\wp_{i j k} \cdot \wp_{l m n}$ in terms of $\wp_{q r}$ starting with

$$
\begin{aligned}
\wp_{222}^{2}= & 4 \wp_{22}^{3}+4 \wp_{12} \wp_{22}+4 \wp_{11}+\lambda_{4} \wp_{22}^{2}+\lambda_{2} \\
\wp_{122} \wp_{222}= & 4 \wp_{22}^{2} \wp_{12}+\lambda_{4} \wp_{22} \wp_{12}+2 \wp_{12}^{2} \\
& -2 \wp_{11} \wp_{22}+\frac{1}{2} \lambda_{3} \wp_{22}+\frac{1}{2} \lambda_{1}
\end{aligned}
$$

- Equations for the five possible $\wp_{i j k l}$ in terms of the $\wp_{l m}$ starting with

$$
\wp_{2222}=6 \wp_{22}^{2}+\frac{1}{2} \lambda_{3}+\lambda_{4 \wp 22}+4 \wp_{12}
$$

Trigonal curves

- Next consider the trigonal curves. The simplest example is the $(3,4)$-curve which has genus 3 .

$$
C: y^{3}=x^{4}+\lambda_{3} x^{3}+\lambda_{2} x^{2}+\lambda_{1} x+\lambda_{0}
$$

- We define the \wp-functions as in the hyperelliptic case, but now $\mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right)$, so there are six possible \wp-functions.
- In the 1990s the first 4-index PDE was found

$$
\wp_{3333}=6 \wp_{33}^{2}-3 \wp_{22}
$$

- Later, an expansion of the σ-function was calculated, which helped find the other PDEs and addition formula.

Sato Weights

For every (n, s)-curve we can define a set of weights that render all equations homogeneous. These are defined using the Weierstrass Sequence for (n, s) and are labelled the Sato Weights. For the $(3,4)$ curve they are given by

Variable	x	y	u_{1}	u_{2}	u_{3}	λ_{3}	λ_{2}	λ_{1}	λ_{0}
Weight	-3	-4	5	2	1	-3	-6	-9	-12

e.g. The equation defining the curve has weight -12

$$
\underset{-12}{y^{3}}=\underset{-12}{x^{4}}+\underset{-3,-9}{\lambda_{3} x^{3}}+\underset{-6,-6}{\lambda_{2} x^{2}}+\underset{-9,-3}{\lambda_{1} x}+\underset{-12}{\lambda_{0}}
$$

Sigma expansion

Consider the value of $\sigma\left(\mathbf{u} ; \lambda_{i}\right)$ when all $\lambda_{i}=0$. This is shown to be the Schur-Weierstrass polynomial generated by (n, s).

$$
\mathrm{SW}_{3,4}=u_{1}-u_{3} u_{2}^{2}+\frac{1}{20} u_{3}^{5}
$$

So the sigma expansion will have weight 5 . Write it in the form

$$
\sigma\left(u_{1}, u_{2}, u_{3}\right)=C_{5}+C_{8}+C_{11}+C_{14}+C_{17}
$$

where $C_{5+3 n}$ has weight $(5+3 n)$ in the u_{i} and $-3 n$ in the λ_{i}.
To find the C_{i} we
(1) Identify the possible terms - those with correct weight.
(2) Form the sigma function with unidentified coefficients.
(3) Determine coefficients by satisfying known properties.

We are able to find the sigma expansions starting with

- elliptic case

$$
C_{8}=\left(\frac{1}{40} u_{3}^{6} u_{2}-\frac{1}{2} u_{3}^{2} u_{2}^{3}\right) \lambda_{3}
$$

Addition formula

Using the method of undetermined coefficients and the σ-expansion we find the addition formula for the $(3,4)$-curve

$$
\begin{aligned}
& \frac{\sigma(\mathbf{u}+\mathbf{v}) \sigma(\mathbf{u}-\mathbf{v})}{\sigma(\mathbf{u})^{2} \sigma(\mathbf{v})^{2}}=\wp_{11}(\mathbf{v})-\wp_{11}(\mathbf{u})+\wp_{12}(\mathbf{v}) \wp_{23}(\mathbf{u}) \\
& \quad-\wp_{12}(\mathbf{u}) \wp_{23}(\mathbf{v})+\wp_{13}(\mathbf{v}) \wp_{22}(\mathbf{u})-\wp_{13}(\mathbf{u}) \wp_{22}(\mathbf{v}) \\
& \quad+\frac{1}{3}\left[Q_{1333}(\mathbf{u}) \wp_{33}(\mathbf{v})-Q_{1333}(\mathbf{v}) \wp_{33}(\mathbf{u})\right]
\end{aligned}
$$

A second addition formula was discovered, which has no ananlogue in the elliptic case.

$$
\frac{\sigma(\mathbf{u}+\mathbf{v}) \sigma(\mathbf{u}+[\xi] \mathbf{v}) \sigma\left(\mathbf{u}+\left[\xi^{2}\right] \mathbf{v}\right)}{\sigma(\mathbf{u})^{3} \sigma(\mathbf{v})^{3}}=R(\mathbf{u}, \mathbf{v})+R(\mathbf{v}, \mathbf{u})
$$

where $\xi^{3}=1$

Higher Genus Curves and Future Work

- A similar approach worked on the $(3,5)$-curve $(g=4)$.
- A new result has been found in the Equianharmonic Elliptic Case (when $g_{2}=0$)

$$
\frac{\sigma(u+v) \sigma(u+\xi v) \sigma\left(u+\xi^{2} v\right)}{\sigma(u)^{3} \sigma(v)^{3}}=\frac{1}{2}\left(\wp^{\prime}(u)+\wp^{\prime}(v)\right) \quad \xi^{3}=1
$$

- Methods are being developed for the General Trigonal $(3,4)$-curve:

$$
\begin{aligned}
y^{3}+\left(\mu_{1} x\right. & \left.+\mu_{4}\right) y^{2}+\left(\mu_{2} x^{2}+\mu_{5} x+\mu_{8}\right) y \\
& =x^{4}+\mu_{3} x^{3}+\mu_{6} x^{2}+\mu_{9} x+\mu_{12}
\end{aligned}
$$

- Work has commenced on the genus 6 cases
- $(4,5)$ and $(3,7)$-curves

Further Reading

D. Lawden.

Elliptic Functions and Applications.
Springer Verlag, 1980.
E E.T. Whittaker and G.N. Watson
A Course Of Modern Analysis.
Cambridge, 1947.
國 J.C. Eilbeck, V.Z. Enolski, S. Matsutani, Y. Onishi and E. Previato

Abelian Functions For Purely Trigonal Curves Of Genus Three.
preprint, 2006, arXiv:math/0610019v1

