ALGEBRAIC RELATIONS FOR RECIPROCAL SUMS OF FIBONACCI NUMBERS

Carsten Elsner
Institut für Mathematik, Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
Shun Shimomura
Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohuku-ku, Yokohama 223-8522, Japan

Iekata Shiokawa
Department of Mathematics, Keio University, 3-14-1 Hiyoshi, Kohuku-ku, Yokohama 223-8522, Japan

Acta Arithmetica, 130.1 (2007), 37-60

Let $\left\{F_{n}\right\}_{n \geq 0}$ and $\left\{L_{n}\right\}_{n \geq 0}$ be Fibonacci numbers and Lucas numbers. In this paper, we prove the algebraic independence of the numbers

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{n}^{4}}, \quad \sum_{n=1}^{\infty} \frac{1}{F_{n}^{6}} \quad\left(\text { respectively }, \quad \sum_{n=1}^{\infty} \frac{1}{L_{n}^{2}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{n}^{4}}, \quad \sum_{n=1}^{\infty} \frac{1}{L_{n}^{6}}\right),
$$

and write each

$$
\sum_{n=1}^{\infty} \frac{1}{F_{n}^{2 s}} \quad\left(\text { respectively, } \quad \sum_{n=1}^{\infty} \frac{1}{L_{n}^{2 s}}\right) \quad(s=4,5,6, \ldots)
$$

as a rational (respectively, algebraic) function of these three numbers over \mathbb{Q}. Similar results are obtained for the alternating sums

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{F_{n}^{2 s}} \quad\left(\text { respectively }, \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{L_{n}^{2 s}}\right) \quad(s=1,2, \ldots)
$$

Our theorems cover more general binary recurrences including such as Pell numbers.

