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Abstract 

In this paper, we derive some generalizations of q-Stirling and q-harmonic 
numbers. Recurrence relations, generating functions, explicit formulae, and a 
connection between these numbers are given. Moreover, some important special 
cases and new combinatorial identities are obtained. Finally, matrix 
representation using Maple is given. 

1. Introduction 

The generalized Stirling numbers of first and second kind, 
respectively, were introduced by Comtet [6] with 

( ) ( ) ,,;
0

k
n

k
n tknst α

=
∑=α   (1.1) 

where ( ) 10,0 =αs  and ( ) 0, =α kns  for ,nk >  and 
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( ) ( ) ,;,
0

k

n

k

n tknSt α= α
=
∑   (1.2) 

where ( ) ( ) 0,,10,0 == αα knSS  for ( ) ,,,,, 110 −ααα=α> nnk  and 
( ) ( ) ( ) ( ).; 110 −α−α−α−=α nn tttt  

Through this article, we use the following notations, see [4], [5], and 
[9]. 

Let tq ,10 <<  be a real number and n be a positive integer. The            

q-number is defined by [ ] q
qt

t
q −

−= 1
1  and q-factorial of t is given by 

[ ] [ ] [ ] [ ] .,2,1,1,,1! =−= tttt qqqq   (1.3) 

The falling and rising factorial of the q-number [ ] qt  of order n are 

defined, respectively, by 

[ ] [ ] [ ] [ ] ,11, qqqqn ntttt +−−=   (1.4) 

and 

[ ] [ ] [ ] [ ] .11, qqqqn ntttt −++=   (1.5) 

Generally, we have the following definition: 

Definition 1.1. Let the generalized falling and rising factorial of      
q-number [ ]qt  of order n, associated with the sequence ( ,,, 10 αα=α  

)1−αn  be defined, respectively, by 

[ ] [ ] [ ] [ ] ,; 110, qnqqqn tttt −α−α−α−=α  

and 

[ ] [ ] [ ] [ ] .; 110, qnqqqn tttt −α+α+α+=α  

The q-Vandermond’s formula may be expressed as 

[ ] ( )[ ] [ ] .,,
0

, qkqkn
uknk

n

k
qn tuqtu −

−−−

=
∑=+   (1.6) 
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In Section 2, we derive generalization of some results given in [3], 
[10], and [5], and study the generalized q-Stirling numbers, may be called        
q-Comtet numbers, of first and second kind and its relationships with 
other types of Stirling numbers. Also, in Section 3, we define generalized 
non-central q-Stirling numbers of first and second kind. Moreover, we 
give a generalization of the q-harmonic numbers and obtain some of their 
connections with the generalized q-Stirling numbers. Furthermore, some 
special cases, explicit formula of these numbers and some combinatorial 
identities are derived. In Section 4, algorithms matrix representation of 
these numbers are given by using Maple program. 

2. The Generalized q-Stirling Numbers  
of First and Second Kind 

Since 

    [ ] [ ] [ ] [ ]qnqqqn tttt 110,; −α−α−α−=α  

([ ] [ ] ) ([ ] [ ] ) ([ ] [ ] )qnqqqqq tqtqtq n 110 110
−

α−α−α− α−α−α−= −  

([ ] [ ] ).
1

0

1

0 qiq

n

i
tq

i
n

i α−= ∏
−

=

α− ∑
−

=  

This is a polynomial of degree n of the q-number [ ]qt  and its coefficients 

is given by [ ] .1,,1,0, −=α niqi  Thus, we have the following 

definition: 

Definition 2.1. Let ( )knsq ,, α  and ( )knSq ,, α  be the generalized      

q-Stirling numbers of first and second kind, associated with sequence 
=α  ( ),,,, 110 −ααα n  which we call q-Comtet numbers, are defined, 

respectively, by 

[ ] ( ) [ ] ,,; ,
0

,

1

0 k
qq

n

k
qn tknsqt

i
n

i
α

=

α−

∑
∑
−

==α   (2.1) 

where ( ) ( ) 0,,10,0 ,, == αα knss qq  for ,nk >  and 
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[ ] ( ) [ ] ,;, ,,
0

1

0 qkq

n

k

n
q tknSqt

i
k

i α= α

α

=

∑
−

=∑   (2.2) 

where ( ) 10,0, =αqS  and ( ) 0,, =α knSq  for .nk >  

Theorem 2.1. The numbers ( )knsq ,,α  and ( )knSq ,, α  satisfy the 

recurrence relations 

 ( ) ( ) [ ] ( ),,1,,1 ,,, knsknskns qqnqq ααα α−−=+   (2.3) 

and 

( ) ( ) [ ] ( ).,1,,1 ,,, knSknSknS qqkqq ααα α+−=+   (2.4) 

Proof. Since [ ] [ ] [ ] ([ ] [ ] )[ ] ,;;; ,,,1 qnqnqqnqnqn ttqttt n αα−=α−α=α α−
+   

then using (2.1) 

( ) [ ] ([ ] [ ] ) ( ) [ ]kqq

n

k
qnq

k
qq

n

k
tknsqtqtknsq

i
n

in
i

n

i ,,1 ,
0

,

1

0

1

00
α

=

α−
α−

α

+

=

α−

∑∑
∑∑
−

== α−=+  

( ( ) [ ] ( ))[ ] .,1, ,,

1

0

0 k
qqqnq

n

k
tknsknsq

i
n

i
αα

+

=

α
α−−= ∑

∑
=  

Equating the coefficients of [ ]kqt  on both sides yields (2.3). 

Similarly, the proof of (2.4) easily can be given.  

We discuss the following interesting special cases: 

(i) If ( ),1,,1,0, −==α niii  then (2.1) and (2.2), respectively, 
give 

( ) ( ),,,, knskns qiq =   (2.5) 

where ( )knsq ,  are q-Stirling numbers of first kind, see [4], and 

( ) ( ),,,, knSknS qiq =   (2.6) 
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where ( )knSq ,  are q-Stirling numbers of second kind, see [4]. 

(ii) If ( ),1,,1,0, −=+=α niiri  then (2.1) and (2.2), respecti- 
vely, give 

( ) ( ),;,~,, rknskns qirq =+   (2.7) 

and 

( ) ( ),;,~,, rknSknS qirq =+   (2.8) 

where ( )rknsq ;,~  and ( )rknSq ;,~  are non-central q-Stirling numbers of 

first and second kind, see [5], are defined, respectively, by 

[ ] ( ) ( ) [ ] ,;,~
0

, 2 k
qq

n

k

rn
qn trknsqrt

n

∑
=

−−=−  

and 

[ ] ( ) ( ) [ ] .;,~
,

0

2 qkq
rk

n

k

n
q rtrknSqt

k
−= +

=
∑  

(iii) If ( )( ),1,,,0, −λλ=λλ=α niii  then (2.1) and (2.2), 

respectively, give 

( ) ( ) ( ),,;,,, ksknRns qq

n

k
iq λ= ∑

=
λ   (2.9) 

and 

( ) ( ) ( ),,;,, , knskRnS iqq

n

k
q λ

=

λ= ∑   (2.10) 

where ( )λ;, knRq  are the generalized q-factorial coefficients, see [4], 

defined by 

[ ]
( ) ( ) ( ) [ ] .;, ,

0
, 22

qkq

n

k
qn tknRqqt

kn

λ=λ ∑
=

λ−  
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In (2.1), replacing q by 1−q  and t by t−  and notice that 

[ ] [ ] =α−− −1,;1 qn
n
q t  [ ] ,; , qnt α  we obtain 

[ ] [ ] ( ) [ ]k
qq

n

k

n
qqn tknsqt
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n

i
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0 ,1; ,
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= −−=α
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∑
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k
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i
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∑
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= ∑
∑

=  

where ( ) [ ] ( ),,1, ,, 11 knskns q
kn

qq α
−

α −− −=  which are called the signless 

generalized q-Stirling numbers of first kind. 

Let 

( ) ,,,, 110 −ααα=α nssss  

and since [ ] [ ] [ ] ,;; ,, qnqn
n
q sstts s α=α  using (2.1), we have 

[ ] ( ) [ ] ( ) [ ]kqsq

n
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s
k
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n
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i
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0
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= =  

( ) [ ] [ ] .,,
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1
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k
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i
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=
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∑
∑
−

==  

Equating the coefficients of [ ]k
qst  on both sides yields 

( ) [ ] ( ).,, ,, knsskns sq
kn

qsq α
−

α =   (2.11) 
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Theorem 2.2. The numbers ( )knsq ,,α  and ( ),,, knSq α  respectively, 

have the explicit formulas 

( ) ( ) ,1,
1

1

1

1

0

0
,

qn

n

qq

kn

kn
q iii

kns
n






α




α






α−=
−

−−

−=σ
α ∑   (2.12) 

and 

( ) ,
111

,
110

, 110100

qn

iii

q

ii

q

i

k
q iii

knS n

n






−

α






−
α







−
α

=
−

++++

=σ
α

−∑  (2.13) 

where { } ,1,0,110 ∈+++=σ − iiii nn  and .1,,1,0 −= n  

Proof. Setting 0=k  in (2.12), 

( ) ( ) [ ] [ ] [ ] ,10, 110, qnqq
n

q ns −α ααα−=  

that is easily verified by using (2.3). 

If { },1,01 ∈−ni  then 

( )
( ) ( )

( )( ) ( )
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n
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α





α−α−
−

−−−

−−=σ
− ∑

−

 

hence 

( ) ( ) [ ] ( ),,11,1, ,1,, knsknskns qqnqq −α−−−= α−αα  

this by virtue of (2.3) completes the proof of (2.12). 

Also, the proof of (2.13) is given as follows: 

Setting 0=k  in (2.13), 

( ) [ ] ,
111

0, 0
000

,
n
q

qqq
q nS α=



α





α





α=α  

that is easily verified by using (2.4). 
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If { },1,01 ∈−ni  then 
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++++

−=σ
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−

∑  

hence 

( ) ( ) [ ] ( ),,11,1, ,,, knSknSknS qqkqq −α+−−= ααα  

this by virtue of (2.4) completes the proof of (2.13).   

3. The Generalized Non-Central q-Stirling  
Numbers of First and Second Kind 

Definition 3.1. Let ( )α;,, rknsq  and ( )α;,, rknSq  be the 

generalized non-central q-Stirling numbers of first and second kind, 
associated with the sequence ( ),,,, 110 −ααα=α n  are defined, 

respectively, by 

 [ ] ( ) [ ] ,;,,;
0

,

1

0 k
qq

n

k

rn

qn trknsqrt
i

n

i α=α− ∑
=

−α− ∑
−

=   (3.1) 

where ( ) 1;,0,0 =αrsq  and ( ) 0;,, =αrknsq  for ,kn <  and 

[ ] ( ) [ ] ,;;,, ,
0

1

0 qkq

rkn

k

n
q rtrknSqt

i
k

i α−α=
α+

=

∑
−

=∑   (3.2) 

where ( ) 1;,0,0 =αrSq  and ( ) 0;,, =αrknSq  for .kn <  

Remark 3.1. If ,0≠r  the generalized non-central q-Stirling 
numbers of first kind can be represented in terms of the generalized       
q-Stirling numbers of the first kind as the follows: Using (2.1) and (3.1), 
we have 
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[ ] ( ) [ ]kqq
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k
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k
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thus, 

( ) [ ] ( ( ) [ ] ) [ ] ,1;,,

1

0

1

0
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j
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q
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rkn

jk
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j
qq

n
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j
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qtrjnsq
i

n

i
i

n

i −−
−α−

===

−α−







−=α

∑∑
−

=

−
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hence, we get 

( ) ( ) ( ) ( ) [ ] .1,;,, ,
jk

q
knrjk

q

n

jk
q r

j
k

qknsrjns −−−
α

=






−=α ∑   (3.3) 

Lemma 3.1. The numbers ( )α;,, rknsq  and ( )α;,, rknSq  satisfy 

the recurrence relations 

( ) ( ) [ ] ( ),;,,;,1,;,,1 αα+−α−=α+ rknsrrknsrkns qqnqq   (3.4) 

where ( ) ( ) [ ] [ ] [ ] andrrrrns qnqq
n

q ,1;,0, 110 −α+α+α+−=α  

( ) ( ) [ ] ( ).;,,;,1,;,,1 αα++α−=α+ rknSrrknSrknS qqkqq   (3.5) 

 The proof is left. 

Theorem 3.1. The numbers ( )α;,, rknsq  have the explicit formula 

( ) ( ) [ ] [ ] [ ] ,1;,, 110 21

21

n

n
qnqq

kn

kn
q rrrrkns −

−

−=+++

α+α+α+−=α ∑  

(3.6) 

where { } .1,,1,0,1,0 −=∈ nii  
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Proof. Setting 0=k  in (3.6), then 

( ) ( ) [ ] [ ] [ ]qnqq
n

n
q rrrrns

n
1101;,0,

21
−

=+++

α+α+α+−=α ∑  

( ) [ ] [ ] [ ] ,1 110 qnqq
n rrr −α+α+α+−=  

that is verified by successive application of (3.4). 

For { },1,0∈n  we get 

( )
( ) ( )

∑
−−−=+++ −

=α
11121

;,,
kn

q
n

rkns  

( )( ) ( )[ ] [ ] [ ] 121 210
111 −

−
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qnqq
kn rrr  

( ) [ ]
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∑
−−=+++

−
−

α+−+
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qn
n

r
1

1
121

1  

( )( ) [ ] [ ] [ ] ,1 121 210
1 −

−
−− α+α+α+−× n

qnqq
kn rrr  

this leads to 

( ) ( ) [ ] ( ).;,,1;,1,1;,, 1 α−α+−α−−=α − rknsrrknsrkns qqnqq  

By virtue of (3.5), this completes the proof.   

Definition 3.2. Let the generalized q-harmonic numbers of order k, 
associated with sequence ( ),,,, 110 −ααα=α n  or briefly are called 
multiparameter q-harmonic numbers be defined by 
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.1;
1

0
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  (3.7) 

Theorem 3.2. The numbers ( )α;,, rknsq  can be expressed as 
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 (3.8) 
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Proof. Since 
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from (2.11), this leads to 
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Equating the coefficients of [ ]kqt  on both sides, yields (3.8).   
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Special cases: 

(i) If putting ( )1,,1,0, −==α njjj  in (3.8) gives 

( ) ( )rknsirkns qq ;,~,;, =  

( ) [ ] ( ) ( ) ( )
,

;
!!!

11 ,

1212
,

21

21

i
k

k
i

jrH
r

i
qn

k

ikkk
qn

n












−
−= ∏∑

=

+++

=+++

 

 (3.9) 

where ( ) ( )
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0
,  and ( )rknsq ;,~  are the non-central        

q-Stirling numbers of first kind. 

(ii) If putting ( ),1,,1,0, −==α njjj  and 1=r  in (3.8) gives 
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0
,  are q-harmonic numbers 

of order i, see [8] and ( )1, +knsq  are q-Stirling numbers of first kind. 

For the particular case, 3=n  and 1=k  in (3.9), 
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Also, when 3=n  and 2=k  in (3.10), we have 
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Remark 3.2. Notice that if 1→q  in (3.8), we have 
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(3.11) 

When 1=r  and jj =α  in (3.11) gives 

( ) ( )1,1;1,, ++= knsjkns  
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 (3.12) 
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which agrees with [7, Equation (7b)]. 

Setting 0=r  in (3.11), gives Cakić’s result [2]. 

Corollary 3.1. The numbers ( )α;,, rknsq  have the explicit formula 

( ) ( ) [ ] ( )
!!!

1;1;,,
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,
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n

q
k

k
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i
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k
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−× ∑∑∏  (3.13) 

Proof. Since 
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0
,

−−α
∞

=

−

=

−
−

=

α





 −+

−=α+=α ∑∑∑ i
qjq

n

j

i
qj

n

j

i
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i
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Substituting in (3.8) yields (3.13).   

Also, if 1→q  in (3.13), it worth noting that 

( ) =arkns ;,,  
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Theorem 3.3. The signless generalized q-Stirling numbers of first 
kind can be expressed as 
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 (3.14) 

where ( ) ( )
( )

,
11

, k

kn

j

k
qn j

j

q
q

α

α

= −
=α ∑H  which gives new extension of the            

q-harmonic numbers, see [13] and [11], and ( ).,,, 21 nααα=α  
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Proof. Since 

[ ] ( ) [ ] .,; ,
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k
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i
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Then 
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using Cauchy rule of product of series, this leads to 
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Equating the coefficients of [ ]kqt  on both sides of (3.15) and last equation, 

yields (3.14).    

When 1=k  and jj =α  in ( ) ( )
( )

,
11

, k

kn

j

k
qn j

j

q
q

α

α

= −
=α ∑H  we obtain 
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( )
( )

,
11

1
, nj

jn

j
qn

q
q HH =
−

= ∑
=

 the q-harmonic numbers, see [13] and [11]. 

If putting jj =α  and ( )nj ,,2,1=  in (3.14), gives 

( ) ( )1,1, 11, ++= −− knskns qjq  
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(3.16) 

where ( )knsq ,1−  are the signless q-Stirling numbers of first kind. 

For particular case, when 3=n  and 2=k  in (3.16), gives 

( )2,3,1 jqs −  
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[ ] [ ] ( ) .3,423 1
126
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qqq sqqq  

Theorem 3.4. The generating function of the generalized non-central 
q-Stirling numbers of second kind, ( )α;,, rknSq  is given by 

( ) [ ] ( [ ] [ ] ) .1;, 1

0
,

−

=

α+−=αφ ∏ qqj

k

j

k
qqk trtrt  (3.17) 

The proof is left. 

Corollary 3.2. The numbers ( )α;,, rknSq  have the explicit formula 

( ) [ ] [ ] [ ] ,;,, 10 10 kqkqqq rrrrknS α+α+α+=α ∑   (3.18) 
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where the summation is extended over all integer ,,,1,0,0 kjj =≥  

such that .10 knk −=+++  

Proof. Using (3.17), we can prove (3.18).   

Theorem 3.5. The numbers ( )α,;, rknsq  and ( ),,;, αrknSq  

respectively, have the explicit formulas 
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and 
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(3.20) 

where 110 −+++=σ nn iii  and { }.1,0∈i  

Proof. Replacing iα  by ri +α  in (2.12) and (2.13), respectively, 
yields (3.19) and (3.20).   

From (3.18) and (3.19), we have the combinatorial identity 

[ ] [ ] [ ] kqkqq rrr α+α+α+∑ 10 10  

,
111 110

110100
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k i
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i
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−
α+

=
−

++++

=σ

−∑  (3.21) 

where the summation in the left hand side as given in (3.18). 

4. Matrix Representation 

Let ( ) ( ) ( );~;,;,;, ,,,, rsrSrsSsSs qqqqqqq αααα
 and ( )αqR  be nn ×  

lower triangular matrices. Where qs  and qS  are matrices, whose entries 

are the q-Stirling numbers of first and second kind (i.e., [( ) ]ijqq ss =  and 

qS  [( ) ]ijqS= ); αα ,, and qq Ss  are matrices, whose entries are 

generalized q-Stirling numbers of first and second kind (i.e., 
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[( ) ]ijqq ss αα = ,,  and [( ) ]ijqq SS αα = ,, ); ( )rsq α,  and ( )rSq α,           

are matrices, whose entries are generalized non-central q-Stirling 
numbers  of first and second kind (i.e., ( ) [( ( )) ]ijqq rsrs αα = ,,  and 

( ) [( ( )) ]) ( )rsrSrS qijqq
~;,, αα =  is matrix, whose entries are non-central  

q-Stirling numbers of first kind  ( ( ) [( ( )) ]),~~i.e., ijqq rsrs =  and ( )αqR  is 

matrix, whose entries are coefficient of the generalized q-factorials 
( ( ) [( ( )) ].i.e., ijqq RR α=α  

An algorithm to determine the matrices of generalized q-Stirling 
numbers of first and second kind, are denoted, respectively, by α,qs  and 

α,qS  are given as follows:  

For a non negative integer ,0>n  the elements of the n by n lower 
triangular matrix of α,qs  may be calculated as follows: 

Algorithm 

Set 1,
, =α
11

qs  

For i = 2 to n do 

Set 1,
, =α
ii

qs  

Calculate 

( ) [ ] [ ] 11i
q

1i
q ss ,

,1
2

0
1,

, 1 −
α−

−

=
−

α α−α−= ∏ qiqr
i

r
i  

Next i 

For i = 3 to n do 

for j = 2 to 1i −  do calculate 

[ ] j1i
q

1j1i
q

ji
q sss ,

,1
,

,
,
,

−
α−

−−
αα α−= qi  

Next j 

Next i. 
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For a non negative integer ,0>n  the elements of the n by n lower 

triangular matrix of α,qS  may be calculated as follows: 

A computer program is written by using Maple program and executed 
for calculating. Let α,qs  and α,qS  are matrices, whose entries are 

generalized q-Stirling numbers of first and second kind ( =α,e., i. qs  

[( ) ]ijqs α,  and [( ) ] ).,, ijqq SS αα =  For example, if ,3=n  then 

[ ] [ ]
[ ][ ] [ ][ ] [ ][ ] [ ] [ ] [ ]
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Equation (2.9) can be written in matrix form 

( ) ., qqiq sRs α=α   (4.1) 

For example, if ,3=n  then 
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Equation (2.10) can be written in matrix form 

( ) ., iqqq SRS αα=   (4.2) 

For example, if ,3=n  then 
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[ ]
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