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1. INTRODUCTION 

Let (h,(z)} denote a sequence of complex-valued functions defined on 
if = {z : j z 1 < l}. Define a matrix (u&z)) for each z E d by the relations 

%0(z) = 1, UOk(Z) = 0, k > 0, (1.1) 

jfi w%(z) + 1 - WN = f  4&k(Z)Wk. 
k=O 

The matrix (a,,) is a generalization of the Lototsky matrix [l, 21. The 
substitution hj = (1 + &)-I gives the usual form when (hi} is a bounded 
sequence of complex constants. 

The linear operator L, associated with the transform (1.1) is defined, for 
each function f whose domain includes [0, 11, by 

‘%(f; z) = k$of(;) unk(Z). U-2) 

A recent paper of King [4] discussed conditions on a sequence of realvalued 
functions {/Q(X)} which ensure the uniform convergence of {&(f; x)) to 
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f(x), for each fo C[O, I]. King also pointed out that, when hj(x) = x 
(j = 1,2,...), L, becomes the classical n-th order Bernstein polynomial [6]. 
Henceforth, we shall refer to (1.2) as the Lototsky-Bernstein operator. 

The present paper concerns uniform approximation of analytic functions 
by means of Lototsky-Bernstein operators. In Section 2 we obtain very 
general conditions on {h,(z)} which ensure that (LnCf; z)} converges uniformly 
to f(z) on the closed unit disk when f(z) = Cz=‘=;, uxzk and Cz=‘=, 1 ak 1 < co. 
Also, uniform convergence of the operators tof, forfanalytic in an elliptical 
region, is discussed. 

In Section 3, similar results are given for a class of polynomial operators 
recently introduced by Stancu [7]. 

In the sequel, let e&) = xk, k = 0, l,... . 

2. THE LOTOTSKY-BERNSTEIN OPERATOR 

The central result of this section is the following; 

THEOREM 2.1. Let {hi(z)} be a sequence of complex-valuedfictions having 
the following properties: 

hi is analytic in / z I < r, r > 1, i = 1, 2,...; Gw 

h,(l) = 1, i = 1, 2,...; (2.2) 

hj” (0) > 0, v = 0, 1) 2 )...) i = 1, 2,...; (2.3) 

i hi’(l) = O(n) 
i=l 

and 

the (C,l) transform of {hi(z)} converges to z on a set 
of points having a limit point in the open unit disk. (2.5) 

If L, denotes the n-th Lototsky-Bernstein operator generated by {hi(z)} 
and if f(z) = C,t, akzk, with Cz=‘=, I ak I < 03, then II L,(A) -f II -+ 0 m 
n --+ co, where jl f II = max{ 1 f(z) I : z E a}. 

Proof. A function f satisfying the hypotheses is of the form 
f =fi -fi + if3 - if4 p where each fj has positive Taylor coefficients. 
Therefore it suffices to prove the theorem in the case ak > 0 for all k. 

Write 

P,(x; Z) = fi (1 - hi(X) + zhi(X)). 
i=l 
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Easy computations show that 

In fact, for k 3 1, 

nkL,(ek ; x) = i mkanm(x) 
??L=O 

-Sk uktm(m-l)...(rn-t++)a,,(x) 

where ukt denotes a Stirling number of the second kind [3]. But g.Kt is a 
positive integer for 1 < t < k and (Tk’ = (Tkk = 1. Also (2.3) implies that 

““+;f*$;; 1) >, 0, u = 1, 2,..., s = 0, l,..., n = 1, 2,... . 

Therefore, Lt’(e, ; 0) 3 0, 71 = 1, 2 ,... , k = 1, 2 ,..., s = 0, l,... . This fact 
with (2.1) and (2.6) yield the inequalities 

1 LG(ek ; z> 1 < ‘%dek ; 1 z 1 > < L&k ; I>, for jz/,(l, 

it = 1, 2 ,..., k = 0, I,..., Using the definition of L,(ek ; x) and (2.2) it is 
easy to see that L,(e, ; 1) = 1 for all n and k. Clearly, for 1 z j < 1 and 
n = 1, 2,..., 

Ln(f; z, = f akLn(ek ; z> 
k=O 

and therefore the sequence {L,(f, z)} is uniformly bounded on I z I < 1. 
Now hypotheses (2.1)-(2.3) and (2.5) together with Vitali’s theorem imply 
that the (C, 1) transform of the sequence {h*(z)} is uniformly convergent to z 
on closed subsets of the open unit disk. In addition, since 0 < hi(x) < 1 
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for 0 < x < 1 and i = 1,2,..., the operators are positive on [0, 11 (see [4]). 
It now follows that L,(f; X) -f(x) for 0 < x < 1 [4]. Therefore the functions 
,!,%(A z) converge uniformly tof(z) on each disk 1 z / < p < 1. Since the series 

converges uniformly on 1 z 1 < 1, I L,‘(f, z) I < L,‘(f, p) for I z I < p d 1. 
Next, for any I z 1 d 1, p < I z I < 1, z = teior, 

I Ldf; z) - Ldf; pe9 I < 1” I &‘(.A xe9 I dx 

G Gf; t> - Ldf; P> 

6 0 -P) Ln’(f; 1). 

Thus the functions L,(f; z) will be equicontinuous in 1 z I < 1 if the sequence 
{Ln’(f; 1)) is bounded. But (2.2) and easy computations show that 

L’(f; 1) = iof &U) 
= (f(l) -f(q)) fl h,‘(l), 

and the boundedness of {L,‘(f; l)> follows from (2.4). Finally, since the 
L,(f, z) converge uniformly to f(z) on each disk I z I < p < 1 and are 
continuous on j z I < 1, they converge uniformly on I z 1 < 1. This completes 
the proof. 

LEMMA 2.2. Let h,(z) = ajz + bj (j = 1, 2,...), where aj and bj are 
complex constants. If g is a polynomial of degree k, then L,(g; z) is a polynomial 
of degree < k. 

Proof. Let 

ri(w, z) = hi(w)(zhi(w) + 1 - hi(w))-l 

and it follows that 

apngi ‘) = P,(w; z) f ri(w, z). 
i=l 

(2.7) 

Hence 

where s,(w) denotes the (C, 1) transform of the sequence {hi(w)}. 

640/6/3-2 
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After differentiating (2.7) j times with respect to z, we obtain 

with 

R,(w) = n-j-l i (i) a~-%&b& 1) i w6$i 1). 

lJ=l i=l 

Using (2.7) and (2.8) it is easy to see that SP,(w; 1)/M is a polynomial in 
w  of degree j. The conclusion follows from the linearity of L, and (2.6) 
by induction. 

We remark that if the sequence {hj(w)) does not consist only of linear 
factors, the operator L,cf; z) will not necessarily take polynomials of degree 
k into polynomials of degree < k. 

With the aid of the above lemma, we can obtain, in a manner similar to 
that used for the Bernstein polynomials [6, p. 901, an analog of Kantorovitch’s 
theorem. 

THEOREM 2.3. Let {L,} be the sequence of Lototsky-Bernstein operators 
generated by {h,(w)}, where 

0 < hj(x) < 1 for O<x<l, j = 1, 2,...; (2.9) 

5 iI h,(x) + x at two points of [0, 11; and 

h,(x) = alx + bj , j = 1, 2,... . (2.11) 

Let f be analytic on the interior of an ellipse with foci 0 and 1. Then 

uniformly on any closed subset interior to the ellipse. 

3. THE POLYNOMIAL OPERATOR Pg) 

In a recent paper, Stancu [7] introduced a general class of positive, 
polynomial linear operators Pg), where 

Pk)(f; x) = : 
k=O 

w,,le(x; 4f (&)p (3.1) 
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and 

wn*k(X; 4 = ( ; ) 
lx,’ (x + u4 rgGJk-’ (1 - x + /3cL) 
(1 + a)(1 + 201) **. (1 + [m - l]ol) ’ 

(3.2) 

01 being a parameter which may depend only on the natural number m. 
Clearly Pg)(f; x) is a polynomial of degree m. 

For (Y = -l/m, (3.1) becomes the Lagrange interpolation polynomial 
corresponding to the function f and the equally spaced points k/m 
(k = 0, I,..., m), while 01 = 0 yields the classical Bernstein polynomial. It is 
also shown in [7] that the well-known Szasz-Mirakyan operator may be 
obtained as a limiting case of (3.1). 

THEOREM 3.1. Let 0 < CL = a(m) -+ 0 (m --f co). Let f(z) = CF=‘=, a,zk 
with Cz=‘=, 1 a, 1 < 00. Then 11 Pg)(f; ) -f (I--+ 0 and, for I z 1 < 1, 

( ~‘:“,~‘) (P$‘(f; z) - f(z)) = O(1) (m -+ co). (3.3) 

Proof: As in the proof of Theorem 2.1, we may let f(z) = Cz=‘=, akzk 
with uk > 0 for all k. Theorem 3.1 of [7] implies 

D P(“)(e, ; 0) > 0 2, m 1, k = 0 3 l,..., a = 0 2 I,..., m = 1 9 2 )...) (3.4) 

where D, denotes the operation of taking the V-th derivative. Next (3.4) 
and [7, p. 11821 yield 

I p??‘(ek ; z) I < Pk)(e, ; I z I) < Pj$(ek ; 1) = 1, (3.5) 

for k = 0, I,..., m = 1, 2 ,..., 1 z 1 < 1. According to Theorem 4.1 of [7], 

$2 Pz?(f; 4 = f(x), O<x<l. (3.6) 

Using Theorem 3.1 of [7] and the assumption ak 3 0, k = 0, I,..., we obtain 

I DIP$?(fi 1) / = 2 ( 7 ) 5 (1 + I+’ &J(O) 
j=l tl=O 

= Wm(A 0 --f’(l), 

where B,,, is the m-th order Bernstein polynomial. Thus 

(D,Pk’(f; l)} is bounded. (3.7) 
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The first part of Theorem 3.1 now follows from (3.4)-(3.7) just as in the 
proof of Theorem 2.1. 

LetO<lzI=x<l.Then 

where we have used Theorem 3.1 of [7] to assert that Pz’(ek ; z) is a poly- 
nomial of degree < k. The above and Theorem 7.1 of [7] yield (3.3). 

We note that Theorem 3.1 of [7] implies Pg’ maps polynomials of degree 
k into polynomials of degree < k and this fact may be used to obtain the 
analog of Theorem 2.3 for Pg’. 
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