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Abstract. A new solution to Riordan’s problem of combinatorial identities classification is pre-
sented. An algebgraic characterization of pairs of inverse relations of the Riordan type is given. The
use of the integral representation approach for generating new types of combinatorial identities is
demonstrated.
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1. Introduction

In 1968 Riordan [23] posed the problem of the characterization of known pairs of
inverse relations of the form

am =
∞∑

k=0

cmkbk, bm =
∞∑

k=0

dmkak, m = 0, 1, 2, . . . , (1)

where C = (cmk) is an invertible infinite lower triangular matrix whose general
term is a linear combination of known combinatorial numbers, and D = (dmk) is
its inverse. An interpretation of such relations with the help of generating func-
tion technique is given in [22–24]. Each pair of relations of this form generates a
combinatorial identity

∑

k

cnkdkm = δmn, n, m = 0, 1, 2, . . . ,

where δmn is the Kronecker symbol.

� Supported in part by the National Sciences and Engineering Research Council of Canada on
Grant NSERC-108343.
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A large part of Riordan’s monograph [23] on combinatorial identities is con-
cerned with pairs of inverse relations with binomial coefficients in the one-dimen-
sional case.

The first complete solution to the Riordan problem was given in [5–7] by study-
ing properties of a special type of matrices, defined by certain integral construction
and a certain 5-tuple F = ({αm}, {βk}, ϕ(x), f (x), ψ(x)), where {αm}m=0,1,2,...,
{βk}k=0,1,2,... are sequences of the nonzero numbers and ϕ(x), f (x), ψ(x) – the
Laurent formal power series over the field C. In this paper, we extend the algebraic
results of [5–7] and demonstrate how the integral representation can be used in a
unified approach for generating new types of combinatorial identities. In Section 2,
we give necessary technical preliminaries. In Section 3, we present a new solution
to Riordan’s problem. In Section 4, we compare this results with other known
classification approaches.

2. Preliminaries

In this section we briefly recall the properties of the res operator. A detailed de-
scription can be found in [5]. Here we shall explore univariate series only, although
the res concept can be also used for multivariate series. Let L be the set of a
Laurent formal power series over the field C containing only finitely many terms
with negative powers. The order of a monomial ckw

k is k. The order of a series
C(w) = ∑

k ckw
k from L is the minimal order of monomials with nonzero co-

efficient. Let Lk denote a set of series of order k, L = ⋃∞
k=−∞ Lk. Two series

A(w) = ∑
k akw

k and B(w) = ∑
k bkw

k from L are equal if and only if ak = bk

for all k. We can introduce in L operations of addition, multiplication, substitution,
inversion and differentiation (see [12, 3]).�

For C(w) ∈ L define the formal residue as resw C(w) = c−1.
Let f (w), ψ(w) ∈ L0. Further we will use the following notations:

– h(w) = wf (w) ∈ L1;
– l(w) = w/ψ(w) ∈ L1;
– z′(w) = d/dwz(w);
– h = h(z) ∈ L1 – inverse of series z = h(w) ∈ L1.

Let A(w) = ∑
k akw

k be a generating function for sequence {ak}. Then

ak = resw A(w)w−k−1, k = 0, 1, 2, . . . . (2)

For example, one of the possible representations of the binomial coefficient is
(

n

k

)
= resw(1 + w)nw−k−1, k = 0, 1, . . . , n. (3)

� In combinatorial literature ‘Cauchy algebra of formal power series’ is often used for the same
purpose [23].
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There are several properties (rewriting rules) for the res operator which imme-
diately follow from its definition and properties of operations on Laurent formal
power series over field C. We list only a few of them which will be used in this
paper. Let A(w) = ∑

k akw
k and B(w) = ∑

k bkw
k be a generating functions

from L.

Rule 1 (res removal).

resw A(w)w−k−1 = resw B(w)w−k−1

for all k if and only if A(w) = B(w). (4)

Rule 2 (linearity). For any α, β from C

αresw A(w)w−k−1 + βresw B(w)w−k−1

= resw((αA(w) + βB(w))w−k−1). (5)

Rule 3 (substitution). (a) For f (w) ∈ Lk (k � 1) and A(w) – arbitrary element
of L, or (b) for A(w) polynomial and f (w) – arbitrary element of L including a
constant∑

k

f k(w)resz

(
A(z)z−k−1

) = A(f (w)).

Rule 4 (inversion). For f (w) from L0∑

k

zkresw

(
A(w)f k(w)w−k−1

) = [A(w)/f (w)h′(w)]w=h(z). (6)

Rule 5 (change of variable). If f (w) ∈ L0, then

resw

(
A(w)f k(w)w−k−1

) = resz([A(w)/f (w)h′(w)]w=h(z)z
−k−1).

3. Decomposition and Algebraic Characterization of Invertible Pairs of
Relations of Riordan Type

Let A(w) = ∑
k akw

k be a generating function for sequence {ak}.
DEFINITION. We say that matrix C = (cmk)m,k=0,1,2,... in (1) is of type R or
Rq(αm, βk;ϕ, f, ψ), if its general term is defined by the formula

cmk = βk

αm

resz(ϕ(z)f k(z)ψm(z)z−m+qk−1), (7)

where q is a positive integer, αm, βk �= 0, and ϕ(z), f (z), ψ(z) ∈ L0. In particular,
for q = 1, the matrix (cmk) is infinite lower triangular with the general term

cmk = βk

αm

resz(ϕ(z)f k(z)ψm(z)z−m+k−1). (8)
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Relations (1) are completely defined by the matrix C = (cmk)m,k=0,1,2,.... That is
why we attach the type of this matrix to the relation, and use terms as ‘a relation
of type R’ when necessary. Some time we will omit superscript in the type (for
example, when q = 1 or when it is not important in context).

LEMMA 1. Matrix (cmk) of the type R(αm, βk;ϕ(z), f (z), ψ(z)) can be uniquely
represented as a matrix of type

R = R(αm, βk; zh
′
(z)ϕ(h(z))/h(z), 1, ψ(h(z))h(z)/z),

or as a matrix of the type

R = R(αm, βk; zl
′
(z)ϕ(l(z))/l(z), f (l(z))l(z)/z, 1).

Proof. It suffies to make a change of variable w = h(z) = zf (z) or respecitvely
w = l(z) = z/ψ(z) in (7) under the res sign using Rule 5. �

The result of this lemma means that each matrix A = (amk)m,k=0,1,2,... of the
type R(αm, βk;ϕ, f, ψ) possesses two canonical representations – of the type R

and of the type R.

EXAMPLE 1. The binomial coefficients
(
n

k

)
, n, k = 0, 1, 2, . . . , admit integral

representations of following types:

(a) of the type R = R(1, 1; 1, 1, (1 + w)):
(

n

k

)
= resw(1 + w)nw−n+k−1; (9)

(b) of the type R = R(1, 1; (1 − w)−1, (1 − w)−1, 1):
(

n

k

)
= resw(1 − w)−k−1w−n+k−1;

(c) ordinary:
(

n

k

)
= resw(1 + w)nw−k−1,

(
n

k

)
= resw(1 − w)−n+k−1w−k−1.

THEOREM 2 (on inverse [5]). (a) Relations of the type R1 are equivalent to the
functional relations between generating functions Ã(w) = ∑

m�0 αmamwm,

B̃(w) = ∑
k�0 βkbkw

k:

Ã(l(w))l′(w)ψ(w) = ϕ(w)B̃(h(w)), (10)

where h(w) = wf (w), l(w) = w/ψ(w).
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(b) Matrix (dmk), the inverse of the matrix (cmk) of the type R1 exists, unique, is
of the type R1, and has the following general term:

dmk = αk

βm

resw

{
ϕ−1(w)l′(w)h′(w)ψ−k+1(w)f −m−1(w)w−m+k−1

}
.

Proof (Proof is given here for completeness). (a) We have

am =
m∑

k=0

cmkbk =
m∑

k=0

bk

βk

αm

resz(ϕ(z)f k(z)ψm(z)z−m+k−1) =
∞∑

k=0

. . . �

= 1

αm

resz(ϕ(z)ψm(z)z−m−1

( ∞∑

k=0

βkbk(zf )k

)

= 1

αm

reszϕ(z)ψm(z)B̃(zf )z−m−1, m = 0, 1, 2, . . . , ⇔

αmam = resw Ã(w)w−m−1 = resz ϕ(z)ψm(z)B̃(zf )z−m−1,

m = 0, 1, 2, . . . .

By the change of variable w = l(z) = z/ψ(z) ∈ L1 under the resz sign and the
Rule 1, we get formula (10).

(b) From (10) we have B̃(h(w)) = Ã(l(w))l′(w)ψ(w)/ϕ(w), and by change of
variable z = h(w) ∈ L1 we get

B̃(z) = Ã(l(h))l′(h)ψ(h)/ϕ(h) ⇒

bm = 1

βm

reszB̃(z)z−m−1

= 1

βm

resz{Ã(l(h))l′(h)ψ(h)ϕ−1(h)z−m−1}

= 1

βm

resz

{
l′(h)ψ(h)ϕ−1(h)z−m−1

( ∞∑

k=0

αkak(l(h))k

)}

=
m∑

k=0

ak

αk

βm

resz{l′(h)ψ(h)ϕ−1(h)(l(h))kz−m−1}

(using the change of variable z = h(w))

=
m∑

k=0

ak

αk

βm

resw{ϕ−1(w)l′(w)h′(w)ψ−k+1(w)f −m−1(w)w−m+k−1}

=
m∑

k=0

akdmk. �
� For k > m each added term of sum is equal to 0 according to the definition of res operator.
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THEOREM 3 (on classification [5–7]). The pairs of inverse relations of the sim-
plest type, of Gould type, of Tchebycheff type, of Legendre type, of Legendre–
Tchebycheff type, of Abel type, of ordinary and exponential types ([23], Table 2.1–
2.5, 3.1–3.3) and of Lagrange type ([23], Ch. 4, §5) are all of the type Rq =
Rq(αm, βk;ϕ, f, ψ).

THEOREM 4 (on combinatorial characterization). Matrices of binomial coeffi-
cients, Stirling numbers (usual and generalized) of the first and second kind and
many others numbers belong to the type Rq = Rq(αm, βk;ϕ, f, ψ).

The proofs of those theorems are by comparison of integral representation for
combinatorial numbers (see [27], [4], pp. 68–92, [5], pp. 269–274 and others) with
general term of the matrix of type R. For example, the formula (9) for binomial
coefficients implies that

(
n

k

) = (
n

n−k

)
is of type R(1, 1; 1, 1, 1 + w); the known

formula for the Stirling numbers of second kind

s2(m, k) = m!
k! resz(−1 + exp z)kz−m−1

implies that s2(m, k) is of type R(1/m!, 1/k!; 1, (ez − 1)/z, 1); the formula

αm−k/(m − k)! = resz(e
αzz−m+k−1), α = const,

implies that exponential coefficients αm−k/(m−k)! is of the type R(1, 1; eαz, 1, 1).

THEOREM 5 (on product). Let the sequence {αm}, αm �= 0, be fixed. Then the
product of two matrices A = (amk) and B = (bmk) of the type R(αm, αk;ϕ, f, ψ)

is a matrix the same type.
Proof. In correspondence with Lemma 1, represent matrix A by the formula of

type R and matrix B by the formula of type R, i.e.

amk = αk

αm

resw ϕ1(w)ψm(w)w−m+k−1

and

bmk = αk

αm

resz ϕ2(z)f
k(z)z−m+k−1,

where series ϕ1, ϕ2, ψ, f ∈ L0. Then

dmk =
m∑

s=k

amsbsk

=
m∑

s=k

αs

αm

resw ϕ1(w)ψm(w)w−m+s−1 αk

αs

resz ϕ2(z)f
k(z)z−s+k−1 =

∞∑

s=0

. . .

= αk

αm

resw

{
ϕ1(w)ψm(w)w−m−1

[ ∞∑

s=0

wsresz(ϕ2(z)f
k(z)zk)z−s−1

]}
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(by the substitution rule, z = w)

= αk

αm

resw{ϕ1(w)ψm(w)w−m−1[ϕ2(z)f
k(z)zk)]z=w}

= αk

αm

resw{ϕ1(w)ϕ2(w)ψm(w)f k(w)w−m+k−1},
where ϕ1, ϕ2, ψ, f ∈ L0. �
THEOREM 6 (on decomposition). A matrix (dmk) of the type R(αm, βk;ϕ, f, ψ)

splits into the product of three matrices (amk), (bmk) and (cmk) of the types

R(αm, γk;ϕ1, 1, ψ), R(γm, ξk;ϕ2, 1, 1) and R(ξm, βk;ϕ3, f, 1), (11)

where ϕ = ϕ1ϕ2ϕ3, ϕ1(0)ϕ2(0)ϕ3(0) �= 0 and sequences of nonzero numbers
{γm}, {ξk} are arbitrary.

Proof. We have

dmk =
m∑

r=0

r∑

s=0

amrbrscsk

=
m∑

r=0

r∑

s=0

γr

αm

resw ϕ1(w)ψ(w)mw−m+r−1×

× ξs

γr

resv ϕ2(v)v−r+s−1 × βk

ξs

resu ϕ3(u)f k(u)u−s+k−1

=
∞∑

r=0

∞∑

s=0

. . . �

= βk

αm

resw

{
ϕ1(w)ψ(w)mw−m−1

[ ∞∑

r=0

wrresv ϕ2(v)v−r−1×

×
( ∞∑

s=0

vsresu ϕ3(u)f k(u)u−s+k−1

)]}
.

To finish the proof, it suffices to sum over s and r by the substitution rule for the
res operator in variables u and v with changes u = v and v = w respectively. �

Remark 1. In [5], this theorem was proved with γm = ξk = 1 and ϕ2 = ϕ3 = 1
(see also [7, 8]). The above-considered theorem is stronger than the analogous
result in [5], while the scheme of the proof remains almost the same. The presence
of new weighting coefficients γm and ξk, m, k = 0, 1, 2, . . . , and represntation
ϕ = ϕ1ϕ2ϕ3 allows us to formulate new results on algebraic characterization of
pairs of Riordan type, generates new identities of Riordan type and introduces new
objects (methods) as, e.g., the Lagrange summation matrix below.

� For r > m, or s > r each added term of the sum is equal 0 according to definition of the res
operator.
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THEOREM 7 (on algebraic characterization). Let the sequence α = {αm}, αm �=
0, is fixed.

(a) The set of all matrices of the type R(αm, αk;ϕ, f, ψ) forms a subgroup
of the group T N(C) of all triangular matrices. Denote this group as R(α) =
R(α;ϕ, f, ψ). If ϕ(0) = f (0) = ψ(0) = 1, then group R(α) is unitriangular.

(b) Groups R(α;ϕ, 1, ψ) and R(α;ϕ, f, 1) are isomorphic.
(c) Every set of matrices of the types R(αm, αk;ϕ, 1, 1), R(αm, αk; 1, f, 1) and

R(αm, αk; 1, 1, ψ) forms a subgroup of the group R(α). Denote them as
R(α;ϕ, 1, 1), R(α; 1, f, 1) and R(α; 1, 1, ψ) respectively.

(d) The subgroups R(α;ϕ, 1, 1), R(α; 1, f, 1) and R(α; 1, 1, ψ) have the only
pairwise common element I = (δmk)m,k=0,1,....

(e) The group R(α;ϕ, f, ψ) decomposes into the product of its three proper
subgroups R(α; 1, 1, ψ), R(α;ϕ, 1, 1) and R(α; 1, f, 1).

Proof. Part (a) of the statement follows from the theorems on product and inver-
sion immediately if we show that the identity element I = (δmk)m,k=0,1,... belongs
to the set matrices R(α;ϕ, f, ψ). Indeed, letting ϕ(w) = f (w) = ψ(w) = 1, we
have cmk = αk

αm
resw w−m+k−1 = αk

αm
δmk.

Part (b) of the statement follows from the result of Lemma 1 which states
one-to-one correspondence between the elements of sets R(α;ϕ, f, 1) and
R(α;ϕ, 1, ψ).

(c) This statement in extended form is as follows:
(1) The set of matrices of the type R(α;ϕ, 1, 1) is a group under matrix multipli-

cation with following properties: R(α;ϕ1, 1, 1)∗R(α;ϕ2, 1, 1) = R(α;ϕ1ϕ2, 1, 1);
R(−1)(α;ϕ, 1, 1) = R({αm

αk
}; 1/ϕ, 1, 1); I = (δmk)m,k=0,1,... is the the identity

element.
(2) The set of matrices of the type R(α; 1, f, 1) is a group under matrix multi-

plication with following properties:

R(α; 1, f1, 1) ∗ R(α; 1, f2, 1) = R(α; 1, h2(h1(w))/w), 1),

where h1 = h1(w) = wf1(w) ∈ L1, h2 = h2(w) = wf2(w) ∈ L1; R(−1)(α; 1, f, 1)

= R({αm

αk
}; 1, h/w, 1); I = (δmk)m,k=0,1,... is the identity element.

(3) The set of matrices of the type R(α; 1, 1, ψ) is a group under matrix multi-
plication with following properties:

R(α; 1, 1, ψ1) ∗ R(α; 1, 1, ψ2) = R(α; 1, 1, (l1(l2(z))/z)
−1),

where l1 = l1(w) = w/ψ1(w) ∈ L1, l2 = l2(w) = w/ψ2(w) ∈ L1;
R(−1)(α; 1, 1, ψ) = R({αm

αk
}; 1, 1, z/l(z)); I = (δmk)m,k=0,1,... is the the identity

element.
These three claims are easily proved with the help of straightforward computa-

tions and inversion theorem:
(1) Let ϕ1(w), ϕ2(w) ∈ L0, A = (amk), B = (bmk), where

amk = αk

αm

resw ϕ1(w)w−m+k−1
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and

bmk = αk

αm

resz ϕ2(z)z
−m+k−1, m, k = 0, 1, 2, . . . .

Then

dm,k =
m∑

s=k

amsbsk

=
m∑

s=k

αs

αm

resw ϕ1(w)w−m+s−1 αk

αs

resz ϕ2(z)z
−s+k−1 =

∞∑

s=0

. . .

= αk

αm

resw

{
ϕ1(w)w−m−1

[ ∞∑

s=0

wsresz(z
kϕ2(z)z

−s−1)

]}

(by substitution rule, the change z = w)

= αk

αm

resw{ϕ1(w)ϕ2(w)w−m−1}.

(2) Let f1(w), f2(w) ∈ L0, A = (amk), B = (bmk), where

amk = αk

αm

resw f k
1 (w)w−m+k−1

and

bmk = αk

αm

resz f k
2 (z)z−m+k−1, m, k = 0, 1, 2, . . . .

Then

dm,k =
m∑

s=k

amsbsk

=
m∑

s=k

αs

αm

resw f s
1 (w)w−m+s−1 αk

αs

resz f k
2 (z)z−s+k−1 =

∞∑

s=0

. . .

= αk

αm

resw

{
w−m−1

[ ∞∑

s=0

(f1(w)w)sresz(z
kf k

2 (z)z−s−1)

]}

(by inversion rule, the change z = wf1(w) = h1(w) ∈ L1)

= αk

αm

resw{(h2(h1(w)))kw−m−1}

= αk

αm

resw{(h2(h1(w)/w))kw−m+k−1}.

(3) Let ψ1(w), ψ2(w) ∈ L0, A = (amk), B = (bmk), where

amk = αk

αm

resw ψm
1 (w)w−m+k−1
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and

bmk = αk

αm

resz ψm
2 (z)z−m+k−1, m, k = 0, 1, 2, . . . .

Then

dm,k =
m∑

s=k

amsbsk

=
m∑

s=k

αs

αm

resw ψm
1 (w)w−m+s−1 αk

αs

resz ψs
2(z)z

−s+k−1 =
∞∑

s=0

. . .

= αk

αm

resw

{
ψm

1 (w)w−m−1

[ ∞∑

s=0

wsresz(z
kψs

2(z)z
−s−1)

]}

(by inversion rule, the change z = l2(w) ∈ L1)

= αk

αm

resw{ψm
1 (w)w−m−1l

k

2(w)/ψ2(l2(w))l′2(l2(w))}
(by change w = l2(z) ∈ L1)

= αk

αm

resz{(l1(l2(z)))−ml−1
2 (z)zkl′2(z)/ψ2(z)l

′
2(z)}

= αk

αm

resz{(l1(l2(z)/z)−m z−m+k−1}.
The second part of each claim (1)–(3) follows from the first part.
In order to prove statement (d), we have to check the conditions under which the

matrices of the considered types are equal, i.e. under which conditions for m, k =
0, 1, 2, . . . , the following equalities hold:

αk

αm

resw ϕ(w)w−m+k−1 (12)

= αk

αm

resw f k(w)w−m+k−1 (13)

= αk

αm

resw ψm(w)w−m+k−1. (14)

By setting k = m in (12)–(14), we have resw ϕ(w)w−1 = resw f m(w)w−1 =
resw ψm(w)w−1 ⇔ ϕ(0) = f m(0) = ψm(0), m = 0, 1, 2, . . . ⇒ ϕ(0) = f (0) =
ψ(0) = 1. By setting k = 0 in (12)–(14), we have bm = resw ϕ(w)w−m−1 =
resw w−m−1 = resw ψm(w)w−m−1, m = 0, 1, 2, . . . ⇔ bm = δm0 =
resw ψm(w)w−m−1, m = 0, 1, 2, . . . . From this, the statement about R(α; 1, f, 1)∩
R(α;ϕ, 1, 1) and R(α; 1, f, 1) ∩ R(α; 1, 1, ψ) follows. In order to prove it for
R(α;ϕ, 1, 1) ∩ R(α; 1, 1, ψ), observe that bm = resw ψm(w)w−m−1, m =
0, 1, 2, . . . ⇒ ϕ(z) = ∑∞

m=0 bmzm = ∑∞
m=0 zmresw ψm(w)w−m−1 (by inversion

rule) ⇒ ϕ(z) = 1/ψ(l(z))l′(l(z)).
Setting k = 1 in (12) and (14) we have resw ϕ(w)w−m = resw ψm(w)w−m, m =

1, 2, . . . ⇔ resw ϕ(w)w−m−1 = resw ψm+1(w)w−m−1, m = 0, 1, 2, . . . ⇒ ϕ(z) =
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∑∞

m=0 zmresw ψm+1(w)w−m−1 = (by inversion rule) = 1/l′(l(z)) ⇒ ϕ(z) =
1/l′(l(z)) = 1/ψ(l(z))l′(l(z)) ⇒ ψ(l(z)) = 1 ⇒ ψ(w) = ϕ(w) = 1.

The statement (e) follows from the theorem on decomposition. �
DEFINITION. We say that the matrix (8) is a summation method of type R =
R(αm, βk;ϕ, f, ψ), if all cmk are nonnegative and limm→∞ cmk = 0 for any k. We
say that the summation methods of types R(αm, ck; 1, 1, ψ), R(cm, dk;ϕ, 1, 1) and
R(dm, βk; 1, f, 1) are summation methods of Lagrange, of Voronoy, and analytic,
respectively.

THEOREM 8. Let A(w), B(w), C(w) and D(w) be generating functions for se-
quences αm, βk, ck and dk respectively. For a summation matrix of type R to be reg-
ular ([11]), it is necessary and sufficient that A(l(w))l′(w)ψ(w) = ϕ(w)B(h(w)).

Similarly, summation matrices of Lagrange, Voronoy, and analytic will be reg-
ular, if an only if, respectively, ψ(w)l′(w)A(l(w)) = C(w), C(w) = ϕD(w) and
D(w) = B(wf (w)).

The proof follows immediately from the Toepliz–Shur theorem [11].

THEOREM 9 (on functional-theoretical characterization, [5]). The well-known
summation matrices of divergent series due to Vallée-Poussin, Obreshkov, Cezàro,
Euler, P(q, r, s), general methods of Lagrange, Voronoy, Gronwall, etc., are par-
ticular cases of the regular summation method of type R. A regular summation
method of type R splits into the product of summation methods of Lagrange, of
Voronoy, and analytic.

Remark 2. Summation method of Lagrange is introduced here for the first time.
Classic Gronwall, Voronoy, and analytic summation methods of divergent series
are the methods of type R(1/bm, 1; g(w)(1 − wf (w)), f (w), 1), R(1/bm, 1;
g(w)(1 − w), 1, 1) and R(1, 1; (1 − h(w)), f (w), 1) respectively, where g(w),

f (w) ∈ L0 and g(w) = 1+∑∞
m=1 bmwm. The second part of the last theorem is an

extension of the known result in the divergent summing theory that the Gronwall
matrix splits into the product of matrices of summing divergent series of Voronoy
and analytic.

4. Riordan Arrays and Riordan Group

The concepts of a Riordan group and Riordan Array has been introduced in 1991 by
Shapiro et al. ([26]). The group is quite easily developed but unifies many themes
in enumeration, including of the generalized concept of Renewal Array defined by
Rogers in 1978 ([28] and [1, 19–21], etc.). Their basic idea was to define a class
of infinite lower triangular arrays with properties analogous to those those of the
Pascal triangle whose elements.
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A Riordan Array is an infinite lower triangular array D = {dnk}n,k∈N , defined
by a pair of formal power series (d(t), h(t)), d(t), h(t) ∈ L0, such that the generic
element is the nth coefficient in the series d(t)(th(t))k:

dnk = [tn]d(t)(th(t))k, n, k = 0, 1, 2, . . . , dnk = 0 for k > n. (15)

Here it is always assumed that d(0) �= 0; if we also have h(0) �= 0, then the Riordan
Array is said to be proper; in the proper-case the diagonal elements dnn are different
from zero for all n ∈ N . Proper Riordan Arrays are characterized by the following
basic property ([28]): a matrix {dnk}n,k∈N is a proper Riordan Array iff there exists
a sequence A = {ai}i∈N with a0 �= 0 s.t. every element dn+1,k+1 can be expressed
as a linear combination, with coefficient in A of the elements in the preceding row,
starting from the preceding column: dn+1,k+1 = a0dn,k +a1dn,k+1 +a2dn,k+2 +· · · .

The Riordan group is a set of infinite lower triangular matrices of type (15).
Shapiro ([26], etc.) often denotes a Riordan matrix D by D = (g(x), f (x)), g(x) ∈
L0, f (x) ∈ L1. We denote the set of Riordan matrices by R∗. R∗ is a group under
matrix multiplication with the following properties: (g(x), f (x)) ∗ (u(x), v(x)) =
(g(x)u(f (x)), v(f (x))), I = (1, x) is the identity element. The inverse of D is
given by D(−1) = (1/g(f (x)), f (x)).

It was shown in [21] that the members of the Riordan group of the form
(xf ′(x)/f (x), f (x)) belong to a subgroup denoted by PW; note the following:

(i) The identity (1, x) = x(x)′/x, x) ∈ PW.
(ii) The product

(xf ′(x)/f (x), f (x)) ∗ (xh′(x)/h(x), h(x))

=
(

xf ′(x)

f (x)

f (x)h′(f (x))

h(f (x))
, h(f (x))

)

=
(

x(h(f (x)))′

h(f (x))
, h(f (x))

)
∈ PW.

(iii) The inverse of (xf ′(x)/f (x), f (x)) is

(
1

f (x)
f ′(f (x))

f (f (x))

, f (x)

)
=

(
x

(f )′(x)

f (x)
, f (x)

)
∈ PW.

Another similar early examples involving the Bell subgroup (g(x), xg(x)) are by
Jabotinsky ([13, 14], [26], p. 238).

Let f (x), g(x) ∈ L0 as usually. Let us now (following [1]) define the operation
which we call Lagrange product: f (x) ⊗ g(x) = f (x)g(xf (x)). This product is
associative, distributive, and it has an identity: f (x) ⊗ 1 = f (x) = 1 ⊗ f (x).
Let y = xf (x) ∈ L1. The inverse element of a series f (x) ∈ L0 is denoted by
f (y) = 1/f (l(y)), where x = l(y) = yf (y). The group (L0, ⊗) is called the
Lagrange group (see [1]).
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THEOREM 10 (on inclusion). Let ϕ(0) = f (0) = ψ(0) = 1. Then

(a) The Riordan group coincides with the group R({1};ϕ, f, 1), the Bell group
coincides with the group R({1}; f, f, 1), the PW group coincides with the
group R({1}; (wf (w))′/f (w), f, 1).

(b) The PW group is isomorphic to the group R({1}; 1, 1, ψ) (see Lemma 1); the
Bell group is isomorphic to the Lagrange group.

(c) The group R({1};ϕ, f, ψ) decomposes into a product of three own subgroups –
PW, Voronoy and Bell.

(d) The Riordan group decomposes into a product of two own subgroups – Voronoy
and PW, or into a product of two own subgroups – Voronoy and Bell.

Proof. (a) This statement is easily proven by comparisons of corresponding
matrices. In the first case

cmk = resz(ϕ(z)f k(z)z−m+k−1), m, k = 0, 1, 2, . . . .

In the second case

cmk = resz(f
k+1(z)z−m+k−1), m, k = 0, 1, 2, . . . .

In the third case

cmk = resz((zf (z))′f k−1(z)z−m+k−1), m, k = 0, 1, 2, . . . .

(b) After change of variable w = zf (z) = h(z) ∈ L1, z = h(w) ∈ L1, we have

cmk = resz((zf (z))′f k−1(z)z−m+k−1) = resz((w/h(w))mw−m+k−1),

m, k = 0, 1, 2, . . . .

To prove this part of statement (b), observe the following: the result of the operation
⊗ for Lagrange group (L0, ⊗) : g(x) = f (x)g(xf (x)), f (x), g(x) ∈ L0, and the
result of matrix operation am = ∑∞

k=0 cmkgk, m = 0, 1, 2, . . . do coincide. Indeed,
functional relation in this case is

A(x) =
∞∑

m=0

amxm =
∞∑

m=0

xm

{ ∞∑

k=0

cmkgk

}

=
∞∑

m=0

xm

{ ∞∑

k=0

gkresz(f
k+1(z)z−m+k−1)

}

=
∞∑

m=0

xmresz(f (z)g(wf (z)z−m−1) = f (x)g(wf (x)).

Statements (c) and (d) follow directly from the splitting theorem and the state-
ment (b). �
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EXAMPLE 2. Inverse identities of Legendre–Tshebyshev type ([23], Table 2.6,
relation 5). Let p > 0, r > 0, and in (1)

C = (cmk) =
((

rm + p

m − k

)
− (r − 1)

(
rm + p

m − k − 1

))
,

m, k = 0, 1, 2, . . . . (16)

Then:
(a) matrix (16) defines the relation of the type

R1(1, 1; (1 + z)p(1 − (r − 1)z), 1, (1 + z)r);
(b) inverse identities defined by matrix (16) are equivalent to the following

functional identities

A(z(1 + z)−r ) = (1 + z)p+1B(z), B(z) = (1 + z)−p−1A(z(1 + z)−r ).

(c) matrix D = (dmk) (inverse of the matrix (16)) is defined as

D = (dmk) =
(

(−1)m−k

(
m + p + rk − k

m − k

))
.

(d) matrices C and D can be expanded as C = ABI , D = IB−1A−1, where I

is the identity matrix,

A = (amk) =
((

mr

m − k

))
,

B = (bmk) =
((

p

m − k

)
− (r − 1)

(
p

m − k − 1

))
,

A−1 = (a
(−1)
mk ) =

(
(−1)m−k

(
m + rk − k − 1

m − k

))
,

B−1 = (b
(−1)
mk ) =

(
(−1)m−k

(
p + m − k

m − k

))
.

(e) matrix relations

CD = I, C = ABI, D = IB−1A−1,

ABB−1A−1 = I, BB−1A−1 = A−1, ABB−1 = A

generate the following combinatorial identities
m∑

s=k

(−1)s−k

{(
rm + p

m − s

)
− (r − 1)

(
rm + p

m − s − 1

)}
×

×
(

s + p + rk − k

s − k

)
= δ(m, k), m, k = 0, 1, 2, . . . ,
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m∑

s=k

(
mr

m − s

){(
p

s − k

)
− (r − 1)

(
p

s − k − 1

)}

=
((

rm + p

m − k

)
− (r − 1)

(
rm + p

m − k − 1

))
, m, k = 0, 1, 2, . . . ,

m∑

s=k

(
p + m − s

m − s

)(
s + rk − k − 1

s − k

)

=
(

m + p + rk − k

m − k

)
, m, k = 0, 1, 2, . . . ,

m∑

n=k

m∑

t=n

m∑

s=t

(−1)t−k

(
mr

m − s

)((
p

s − t

)
− (r − 1)

(
p

s − t − 1

))
×

×
(

p + t − n

t − n

)(
n + rk − k − 1

n − k

)
= δ(m, k), m, k = 0, 1, 2, . . . ,

m∑

t=k

m∑

s=t

((
p

m − s

)
− (r − 1)

(
p

m − s − 1

))
×

× (−1)s−k

(
p + s − t

s − t

)
·
(

t + rk − k − 1

t − k

)

= (−1)m−k

(
m + rk − k − 1

m − k

)
, m, k = 0, 1, 2, . . . ,

m∑

t=k

m∑

s=t

(
mr

m − s

)((
p

s − t

)
− (r − 1)

(
p

s − t − 1

))
· (−1)t−k

(
p + t − k

t − k

)

=
(

mr

m − k

)
, m, k = 0, 1, 2, . . . .

Proof. From the definition of the general term of matrix C and from the integral
representation of binomial coefficient (9) and taking into account (11), it follows
that

cmk = resz(1 + z)rm+pz−m+k−1 − (r − 1)resz(1 + z)rm+pz−m+k

= resz

(
(1 + z)rm+p(1 − (r − 1)z)z−m+k−1

)
.

Comparison of this expression for cmk with (8) proves the claim (a) of this example,
if we let

αm = βk = 1, ϕ(z) = (1 + z)p(1 − (r − 1)z),
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f (z) = 1, ψ(z) = (1 + z)r .

Other claims follow from properties of the operator res and of the relations of
type R1. �

5. Conclusion

We hope that the results of Theorems 5, 7, 8 are new in the theory of Riordan Arrays
and in the theory of Riordan groups, and that it is easy to find a combinatorial
interpretation and applications for them. Results of Theorems 2, 3, 8 and 9 are
natural and not surprising for several reasons. An integral representation of the
type R typically appears in the evaluation of combinatorial sums of different kinds
(see [5], main theorem). This allows one to give a combinatorial interpretation to
summation formulae, related to matrices of the type R. Weighting coefficients αm

and βk could be interpreted for example as a number of terms or a value of the
sum under investigation (see [2], etc., Example 3). Operations of multiplication,
substitution and inversion in Cauchy algebra of series, hidden in the construction
of matrix of the R type, also have a combinatorial interpretation (see [10, 12] and
many others), including combinatorial interpretation and various proofs for one and
multinomial inversion Lagrange formulas ([9]), explaining in every particular case
the algebraic structure of the enumeration object under investigation. The result of
Theorem 5 plays a similar role (compare to the result of Theorem 8). Example 2 of
the generation of inverse identities of Legendre–Tshebyshev type can be viewed as
an extension of the Riordan approach. The representation of combinatorial num-
bers an, n = 0, 1, 2, . . . , as well as their generating functions A(w) = ∑∞

n=0 anw
n

by an infinite triangular (semicirculant) matrices is usual procedure in combinato-
rial analysis (see, to example, [12], §1,3 and remark in [25], p. 43). Wide class of
combinatorial schemes including Riordan Arrays and Riordan groups are used in
tree enumerations.

Note that construction (8) and the results of Theorems 2–8 can be easily ex-
tended in several variants to the multidimensional case with the help of the main
theorem in [5]. Also results of this paper can be extended to a wide class of dif-
ference and q-difference relations by following the nice results of Krattenchaler
([15–18]). These results and their combinatorial interpretation is the direction of
our future investigations.
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