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Abstract

Several authors have examined connections between restricted permutations and Chebyshev polynomials of the second kind. In
this paper we prove analogues of these results for colored permutations. First we define a distinguished set of length two and length
three patterns, which contains only 312 when just one color is used. Then we give a recursive procedure for computing the generating
function for the colored permutations which avoid this distinguished set and any set of additional patterns, which we use to find a
new set of signed permutations counted by the Catalan numbers and a new set of signed permutations counted by the large Schroder
numbers. We go on to use this result to compute the generating functions for colored permutations which avoid our distinguished set
and any layered permutation with three or fewer layers. We express these generating functions in terms of Chebyshev polynomials
of the second kind and we show that they are special cases of generating functions for involutions which avoid 3412 and a layered
permutation.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction and notation

Let c denote a nonnegative integer and let C'S;, denote the set of permutations of {1, 2, ..., n}, written in one-line
notation, in which each element has an associated color from among the integers 0, 1, ..., c. We refer to the elements
of CS,, as colored permutations, and we write the colors of their entries as exponents, as in 233119 and 2919, For each
m e CS, and each i, 1 <i <n, we write (i) to denote the ith entry of 7. When ¢ = 0 we identify C'S,, with the set S,
of ordinary permutations, and we omit the color. When ¢ = 1 we identify C'S, with the set B,, of signed permutations,
and we sometimes omit the color 0 and replace the color 1 with an overbar.

Suppose 7 and ¢ are colored permutations. We say a subsequence of 7 has fype ¢ whenever it has all of the same
pairwise comparisons as ¢ and each entry of the subsequence of 7 has the same color as the corresponding entry of o.
For example, the subsequence 2!8°6%9! of the colored permutation 2!194952318970629! has type 1!39224!. We say
avoids o whenever 7 has no subsequence of type . For example, the colored permutation 2'1°495231897°629! avoids
311120 and 113222, but it has 2'8°6 as a subsequence so it does not avoid 13922, In this setting (and especially when
¢ =0) o is sometimes called a pattern or a forbidden subsequence and 7 is sometimes called a restricted permutation
or a pattern-avoiding permutation. In this paper we will be interested in colored permutations which avoid several
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patterns, so for any set R of colored permutations we write C'S,, (R) to denote the set of colored permutations of length
n which avoid every pattern in R and we write CS(R) to denote the set of all colored permutations which avoid every
pattern in R. When R ={n, ..., n,} we often write CS,(R) =CS,(n1, ..., ) and CS(R)=CS(ny, ..., ). When
we wish to discuss ordinary permutations or signed permutations, respectively, we replace CS with S or B in the above
notation.

As several authors have shown, generating functions for S, (132, 7) for various 7 can be computed recursively, and
can often be expressed nicely in terms of Chebyshev polynomials of the second kind. For example, Mansour and
Vainshtein have given [11, Theorem 2.1] the following recursive formula for fr(x) = ZzozolSn(BZ, 7)|x", which
makes it possible to compute fr(x) for any 7 which avoids 132:

Jr)=1+x Z (fri () = fri1 (%)) foi (2). ey

J=0

Here 7/~!, 7/, and ¢/ are the types of certain subsequences of w. Moreover, several authors [2,7,10] have shown that
forall k>1,

(i)

Jre=1)..21(x) = N ()
v (555)

Here U, (x) is the nth Chebyshev polynomial of the second kind, which may be defined by U, (cosx) = sin((n +
1)t)/ sin t. For additional results along these lines, see [3,5,12,14].

Although some results concerning pattern avoidance in colored permutations are known (see [9], for instance), the
topic has not received as much attention as has pattern avoidance in ordinary permutations. In this paper we prove
analogues of (1) and (2) and several similar results for pattern-avoiding colored permutations. In particular, for each
nonnegative integer ¢, let P. denote the set consisting of all patterns of the form 2¢1° where 0<a <c and 1<b<c,
together with all patterns of the form 3?192° where 0 <a <c. Observe that Py = {312}, which is the complement of
132. We prove that if Fr(x) = ZZ&OWS,,(PC, 7)|x" then

k
Fr(x) =1+ exFp) +x Y Fgar @) — Fraan () Fy e (), 3)
i=1

where the various subscripts of F on the right are the type of certain subsequences of 7, which are defined (along with
the operator @) in the next section. The recurrence in (3), which is an analogue of (1), allows one to compute Fy(x)
for any colored permutation 7. For instance, using (3) we prove that for all k> 1,

Vit (12;?)

(o)

Building on this result, which is an analogue of (2), we also show that

Frge—1)..21(x) =

Flie,n(x) = Fle+i1(x)

and
Vll—l—l2+l3 Vl] +h+3—1 T+ Vl] + Vll+l3 Vlz—i—lg,
F[ll,lz,l3](-x) = B
ﬁ‘/ll‘HZ_l Vii+13-1Vi+13-1
where [Iy, ..., ;] is the layered permutation given by

m m m—1
11,11—1,...,1,12+11,12+11—1,...,11+1,...,Zzi,Zli—1,...,Zz,~+1
i=1 i=1 i=1
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and we abbreviate V,, = U,((1 — cx)/2+/x). We have not found quite as nice a form for the generating func-
tion Fjj,,..1,1(x) when m >4, but we conjecture that Fj;, . ;,1(x) is symmetric in /1, ..., /, for all m>1 and all
l1, ..., L >1.We have verified this conjecture for m =4 and [; < 10, for m =5 and [; <6, for m = 6 and /; <4, and for
m =T and [; <3 using a Maple program.

To state the last of our main results, recall that |S,(312)| = C,, for all n >0, where C,, is the nth Catalan number,
which may be defined by setting Cp = 1 and

n
Co=) Cio1Cak (n=1).
k=1

We can generalize the Catalan numbers by defining, for each ¢ >0, the c-Schréder numbers 7, (c) by setting ro(c) = 1
and

Fa(e) = cru_1(e) + Y r1(Orak(c) (n=1). “

k=1

Observe that for all n >0 we have r,(0) = C,, and r,, (1) = ry,, the nth large Schroder number. Using (4), we routinely
find that if R.(x) =) .2 orn(c)x" then

R.(x)=14cxR.(x) + sz(x) ®)

and

l—cx —/e2x2 — Qe+ 4x +1

R. (x) = 2y

(6)

Using a simpler version of the analysis we employ to prove (3), we show that for all ¢ >0 we have |CS, (P.)| =r,(c).
When ¢ = 0 this reduces to the fact that |S,(312)| = C,,, and when we set ¢ = | we find that the signed permutations
which avoid 21, 21, 312, and 312 are counted by the large Schroder numbers. For more information concerning
pattern-avoiding permutations counted by the Schroder numbers, see [4,8,15].

2. A recurrence relation

For each ¢ >0, let P, denote the set consisting of all patterns of the form 2¢ 12 where 0<a <_ c Eld_l <b<c, together
with all patterns of the form 3¢1°2° where 0 <a <c. For example, Py = {312} and P; = {21, 21, 312, 312}. For any
set T of colored permutations we write F7(x) to denote the generating function given by

0]

Fr(x)=Y_|CSy(Pe. T)|x".
n=0

Observe that every permutation contains the empty subsequence, so F;(x) = 0, where ¢ is the empty permutation. In
addition, note that if 7 € CS,, avoids 1° then = contains no entries of color 0. If 7 also avoids P, then 7 can have
no decreases of any color combination, but 7 may have the form 19! - . . n% for any colors ay, . .., a, with 1 <a; <c.
Therefore |C S, (P., 10)| =c" and Fjo(x) = 1/(1 — cx). In this section we prove a recurrence relation which allows
one to compute Fr(x) for any 7, given these two initial values.

To state our recurrence relation, we first need some notation concerning a few simple ways colored permutations can
be put together and taken apart. In particular, suppose = € CS,, and ¢ € CS,,. We write = & ¢ to denote the colored
permutation in CS,,, given by

(i) if 1<i <m,

(neaa)(l):{o(i—m)—i—m iftm+1<i<m+n,

and we refer to 7@ o as the direct sum of w and 0. We call a colored permutation n direct sum indecomposable whenever
there do not exist nonempty colored permutations 7| and 7, such that = = 1 @ m», and we observe that every colored
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permutation 7 has a unique decomposition 7 = a1 @ - - - @ oy in which «p, ..., o are direct sum indecomposable.
Along the same lines, we write t©¢ to denote the colored permutation in CS,,4, given by

n(i)+n if1<i<m,

(rO0)(i) = {0_(1 —m) ifm+1<i<m+n,

and we refer to 1©Qo as the skew sum of m and o. We will find it useful to combine the direct and skew sums by writing
7 * ¢ to denote the colored permutation in C S, 4,41 given by

T* 0= (n@lo) ®o.
Finally, if 7 is a colored permutation such that 7 = 71; ©1° for some colored permutation 7| then we write 7 = 7. If 7
does not have this form then we set 7 = 7.
Example 2.1. Set ¢ = 2. If 1 =49211932 and ¢ = 224°1!3! then

n® o =4%2"193262805'7",

100 =8%6'5972224%1 131,
and

mx o =5"31294210729%1g! .

To prove our recurrence we will need the following result concerning the structure of those colored permutations
which avoid P..

Lemma 2.2. Fix ¢ >0 and let  denote a colored permutation in which 1 has color b.

() Suppose b>0.Then ¢ € CS(P.) ifand only if ¢ = 1° @& oy for some a1 € CS(P,).
(ii) Suppose b =0.Then ¢ € CS(P.) if and only if 6 = 01 * 62 for some 71, 62 € CS(P.).

Proof. (i) First observe that if ¢ € CS(P,) does not begin with 1% then a(1)1% is a subsequence of type 2¢ 1%, where
a is the color of ¢(1). This is a forbidden subsequence, so every element of CS(P,) in which 1 has color b > 0 begins
with 1%, and thus has the form 1° @ ¢ for some o; € CS (P.). Since no element of P, begins with 12, the fact that
a1 € CS(P,) implies 1> @ 61 € CS(P,), and (i) follows.

(ii) Suppose o € CS(P.) and there are elements x, y of ¢ such that x is to the left of 1, y is to the right of 1, and
x > y. If the color of y is not 0 then xy is a forbidden subsequence of type 2417, where a is the color of x and b is the
color of y. If the color of y is 0 then x 1 is a forbidden subsequence of type 3¢1°2°, where « is the color of x. Therefore
every element of ¢ to the left of 1 is less than every element of ¢ to the right of 1 and it follows that ¢ = ¢ * g, for
a1, 02 € CS(P,). Itis routine to verify that if o1, 0o € CS(P,) then a1 % 62 € CS(P.), and (ii) follows. [

Lemma 2.2 allows us to find the cardinality of CS, (P.).

Proposition 2.3. For alln>0 and all ¢ >0,

|CSn(Pe)l = ra(c). (N
Proof. The set CS(P,) can be partitioned into three sets: the set A| containing only the empty permutation, the set A,
of those colored permutations in which the color of 1 is positive, and the set A3 of those colored permutations in which
the color of 1 is 0.

Using Lemma 2.2, we find that the generating functions for these sets are 1, cx Fy(x), and x F %(x), respectively.
Add these generating functions to obtain

Fyp(x) =14 cxFy(x) +xF%(x).

Compare this with (5) to conclude that Fj5(x) = R.(x), and the result follows. [J
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Observe that when we set ¢ = 0 in (7) we recover the well-known result that | S, (312)| = C,, for n >0. When we set
¢ = 11in (7) we obtain the following new result:

|B,(21,21,312,312)| =r, (n=0). (8)

Now that we have found |C'S),(P.)|, we turn our attention to the promised recurrence for Fr (x). We begin with the
case in which T contains just one element.

Theorem 2.4. Fix ¢ >0 and suppose m1 = o1 @ --- @ oy is a colored permutation, where o, . .., o are direct sum
indecomposable. Then

k
Fu(x) =1+ cxFpx) +x Y (Fagan®) — Fagag 7)) Fae-a (X). )

i=1

Here f=0p® - - Doy if oy = 1% and a > 0, and f = n otherwise.

Proof. The set CS(P., m) can be partitioned into three sets: the set A| containing only the empty permutation, the set
A, of those colored permutations in which the color of 1 is positive, and the set A3 of those colored permutations in
which the color of 1 is 0.

The generating function for Ay is 1.

In view of Lemma 2.2(i), the generating function for Ay is cx Fg(x), where f =0 @ --- @ o if oy = 19 and a > 0,
and f§ = 7 otherwise.

To obtain the generating function for A3, we first observe that in view of Lemma 2.2(ii), all elements of A3 have the
form g1 * g7 for unique a1, 62 € CS(P,). Since each ¢; is direct sum indecomposable, if g1 * g7 contains a subsequence
of type «; then that subsequence is entirely contained in either o1 ©1Y or a,. As a result, A3 can be partitioned into
sets By, ..., By, where B; is the set of those colored permutations in A3 in which ¢ contains o] @ - -- @ o;_ but
avoids o] @ - - - @ o;. Now observe that if ¢ * 6o € B; then o, avoids o; @ --- @ oy, since otherwise o1 * 0
would contain (o @ --- ® ;1) D (o D --- ® o) = m. Conversely, note that if o1 contains o] & --- D o;_1 but
avoids o1 @ --- ® o; and o, avoids o; @ --- @ o then o1 * g, avoids 7. It follows that the generating function
for Aj is ZleG,- (x) Foyy ..oy (x), where G;(x) is the generating function for those permutations in CS(P.) which
containo @ --- D ;1 butavoid oy @ - -- @ . Since C Sy (Pe, o D --- D otj—1) € CSp (P, o1 & --- D o), we have
Gi(x) =x(Fyg-ay () — Fya @y (X)), and we find that the generating function for A3 is fozl (Fya—ay (X) —
Frasae () Fyo-@o (X).

Add the generating functions for A1, Ay, and A3 to obtain (9). U

Observe that when we set ¢ = 0 in Theorem 2.4 we recover [11, Theorem 2.1].
In order to state our recurrence relation for F7(x) when 7 has more than one element, we first need some additional
notation.

Definition 2.5. Fixc>0,let T ={ny, ..., m,} denote a set of colored permutations and fix direct sum indecomposable
permutations oc?, 1<i<m, 1< j<k;, suchthat «; :oc’i ®D-- -@oc}'{i.Forall i1,...,Imsuchthat 0<i; <kj, let Tirllgﬁtim =
{ccl.ll ®~-~69oc,lq,...,oc?; @~-~€9oc2”m}.ForanysubsetY C{l,...,m},set

j j j j
TyzU{ocleBmeBoc,.j_l} U {rj @@ }.
jev JEVI<<m

The general recurrence relation is an application of the inclusion—exclusion principle.
Theorem 2.6. With reference to Definition 2.5,

Fr(x)=1+cxFppx) +x > > DY ) | Fpoem (). (10)
ilyenim=1 \Y<{1,2,....,m}
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Here f(m;) = océ P “21- lfO(ll =1%and a > 0, and f(n;) = ; otherwise. Moreover, f(T) is the set of permutations
obtained by applying f to every element of T.

We omit the proof of Theorem 2.6 for the sake of brevity.

Theorems 2.4 and 2.6 allow us to enumerate many sets of pattern-avoiding colored permutations. We conclude this
section with some of the enumerations which follow from these results. The first of these is a new occurrence of the
Catalan numbers.

Corollary 2.7. For all n>0 we have

|B,(21,21,21,312)| = Cpy1.
Proof. First observe that B, (P, 21) = B, (21, 21,21, 312) for all n >0, so we compute F3, (x). To do this, set ¢ = 1
and 7 =21 in (9) to obtain

F5(x) =1+ xFz(x) + xFy(x) F5, (x). (11)

Observe that B, (21, 21,312,312, 1) = S,(312), so Fy(x) = (1 — /T — 4x)/2x. Use this to eliminate Fy(x) in (11)
and solve the resulting equation for F5, (x) to obtain

1—+4/1—4x ]

2x
X

F3(x) =
Since ZZOZOCnx” = l=ylodx Vzi_“ and Co = 1, the result follows. [

Using the same techniques one can generalize Corollary 2.7 by showing that the number of colored permutations
of {1,2,...,n} with colors 0, 1, ..., ¢ which avoid P. and 2'1° is r,,.1 (¢ — 1)/c. As an aside, it follows that r,(c) is
divisible by ¢ + 1 for all ¢ >0 and all n > 1. By setting ¢ =2 we find a new set of colored permutations counted by the
little Schroder numbers.

Next we give a new proof of an old occurrence of the Fibonacci numbers.

Corollary 2.8 (Mansour and West [13, Eq. (3.5)]). For all n >0 we have

|B, (21,21, 12)| = Fapy1.
Here F,, is the nth Fibonacci number, defined by Fo =0, F1 =1, and F,, = F,—1 + F,,—2 foralln>2.

Proof. This is similar to the proof of Corollary 2.7, withc=1and r =12. [
We conclude this section with an enumeration involving powers of 2.

Corollary 2.9. Forall n >0, the number of colored permutations of {1, 2, ..., n} with colors 0, 1, 2 which avoid 2010,
2011 2111 22112012 2112, 2212, 311020, 4nd 321920 is (227+1 4 1)/3.

Proof. This is similar to the proof of Corollary 2.7, with ¢ =2 and &= = 2010 O

The sequence which appears in Corollary 2.9 is sequence A007583 in the Encyclopedia of Integer Sequences. This
sequence is known to have several other combinatorial interpretations; for instance, its nth term is the number of walks
of length 2n + 1 between adjacent vertices in the cycle graph Ce.

3. Colored permutations and Chebyshev polynomials

In this section we use (9) to find F;(x) for certain 7. In each case we express F(x) in terms of Chebyshev polynomials
of the second kind, generalizing the results of Chow and West [2], Krattenthaler [7], and Mansour and Vainshtein [11]
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for permutations which avoid 132. However, we obtain our results in a new way, by relating our generating functions
with generating functions for involutions which avoid 3412.
We begin by recalling the Chebyshev polynomials of the second kind.

Definition 3.1. For alln> — 1, we write U, (x) to denote the nth Chebyshev polynomial of the second kind, which is
defined by U, (cost) = sin((n 4 1)t)/ sin¢. Recall that these polynomials satisfy U_1(x) =0, Up(x) = 1, and

Uy(x) =2xUp_1(x) = Up_2(x).

Throughout this section we will focus on Fy(x) when 7 is a layered permutation; we recall layered permutations
next.

Definition 3.2. Foralln>0andall ¢ >0, set[n]=n"(n — 1)0 ...2919 For any sequence !/, ..., [,, of positive integers
we write [/, ..., L] =[1]1® - & [[,,]. We call a colored permutation layered whenever it has the form [/1, ..., ;]
for some sequence Iq, ..., .

Observe that [I] =0, [n] =[n — 1] forn>2,and [I1, ..., Lyl =11, ..., ] form >2.

As we will see, the generating function Fj;,. . ;,1(x) can be neatly expressed in terms of Chebyshev polynomials
of the second kind for any layered permutation [/1, .. ., [,,]. To obtain these expressions, we exploit a new connection
between Fj;,. ... ;,1(x) and certain generating functions for involutions which avoid 3412. To describe this connection,
we first recall some results concerning these latter generating functions.

Recall that an involution 7 is a permutation such that 7(n(i)) =i for all i, let I, denote the set of involutions of length

n, and let I, (o1, . .., o) denote the set of involutions in 7, which avoid a1, ..., 0. For any permutation 7 let G (x)
be given by
o
Gr(x) =) |1,(3412, m)|x". (12)
n=0
Egge has shown [3, Corollary 5.6] that Gz (x) satisfies a recurrence relation which is similar to (9). When n=[l1, . .., [;;]

this recurrence may be written as

Gyt () = 1 + xGp(x) + x> G, —2) () Gy .1, ()
+ G ) ()Gt (X) — X Gty 21 () Gpy...,1(X)
m
+x2 ) (Gt () = Gyt 1) G .o, (). (13)
i=3
where f=[la,...,l]iflj=1and f=[l1, ..., I,] otherwise. As we show next, this recurrence enables us to express
Fuy,....,,1(x) in terms of Goy,,... 21,1 (%).
Theorem 3.3. Fix ¢>0. Forallm >0and all 1y, ..., 1, >0 we have
1 Vx
F X)=—G _ . 14
U1l 1(X) I+ Jr —ox 2., 21m]<1+ﬁ—cx) (14)

Proof. We argue by induction on m.

First suppose m = 1. In this case we argue by induction on /1. Observe that when /; =0 both sides of (14) are equal to
0, since [0] is the empty permutation, which is contained in every permutation. To handle the case /; = 1, first observe
thatif m € 1,,(3412, [2]) then m = 12...n, since [2] = 21. Therefore G2;(x) =1/(1 — x), and we see that when /; =1
both sides of (14) are equal to 1/(1 — cx). Since the result holds when /; = 0 and when [} = 1, suppose /1 >2. Set
m = 1, replace [} with 2/ in (13), and rearrange the resulting equation to obtain

(1 —x — x*Gpo1 -2 (0)) G (x) = 1.
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Now replace x with \/x/(1 4+ \/x — cx) and use induction to find
1 Jx
l—cx —xFy-n(x)) ———G — | =1 15
( =1 ))l+ﬁ—cx mll(l—i—ﬁ—cx) (15)

Now set = = [/1] in (9) and rearrange the resulting equation to obtain

(1 —cx = xFp—1(x)) Fi(x) = 1. (16)
Compare (15) with (16) to find (14) holds when m = 1.
Now suppose m >2. Replace [I1, ..., I,,] with [2]1, ..., 2l,] and x with \/x /(1 + +/x — cx) in (13), use induction

and rearrange the resulting equation to obtain

(I —cx —xF (x) Fi,,1(x)) : G —ﬁ
CcX X _ X)—X X e —
[[] 1] [lm] l \/)_C cx [2[1 ,.‘..21,71] l \/} cx

=14+ xFu &) Flu,, . 0,1(X) = xF—11() Fluo., ... .1,,1(X)

m—1

Y (Fitytd ) = Fity ity 1 CO) Fity o, 1) = X F gy gy 10 Fig (). (17)
i=3

yeees

Now set t = [l1, ..., ] in (9) and rearrange the resulting equation to obtain

(I —cx —xFpy—nx) —xFp, ) Fyy, o, (X)
=14+ xFy 1) Fli, .. 1,0 (X)) — xFy—11(0) Fluy, .11 (%)

m—1

+x Z(F[ll ,,,,, 110 = Fy i1 GOV Fgy ) (6 = X F gty (0 Fig, 1 (). (18)
i=3

Compare (17) with (18) to complete the proof. [J

Theorem 3.3 allows us to use results from [3] to obtain F(x) for various 7. In these results we abbreviate

Vi(x) = Uy (1 _Cx) .

2/x
Corollary 3.4. Fix c>0. Then for all k >0 we have
Vi—1(x)
Fio(x) = ——.
VAT

Proof. Combine (14) with [3, Eq. 37)]. O
Observe that when we set ¢ = 0 in Corollary 3.4 we recover [7, Eq. (3.4)] and [2, Theorem 3.6, second case].
Corollary 3.5. Fix ¢ >0. Then for all 11, > > 1 we have
Fiiy 1 () = Fiiy 41,1 ().
Proof. Combine (14) with [3, Eq. (42)]. O
Observe that when we set ¢ = 0 in Corollary 3.5 we recover [11, Theorem 2.4].

Corollary 3.6. Fix c>0. Then forall Iy, 1>, 13> 1 we have

Vl1+l2+l3 V11+12+13—l + Vl1+lz—l Vl1+13—l V12+13—l
\/;Vl[-f—lz V11+I3 Vlz+l3

Proof. Combine (14) with [3, Eq. (44)]. O

Fiiy 1, 151(x) = (19)
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Observe that when we set ¢ = 0 in Corollary 3.6 we recover [11, Theorem 2.5].
We have now found Fjj, .. ;,1(x) for all m <3. Although this generating function appears to be more complicated
for larger values of m, our results suggest the following conjecture.

Conjecture 3.7. Fix c20. Thenforallm>1andallly,...,[, > 1, the generating function Fy; . ;,1(x) is symmetric
inly,..., L.

We have verified Conjecture 3.7 for m =4 and /; < 10, for m =5 and [; <8, for m = 6 and /; <4, and for m =7 and
[; <3 using a Maple program. In view of Theorem 3.3, Conjecture 3.7 is a special case of the following.

Conjecture 3.8 (Egge [3, Conjecture 6.9]). Forallm>1andallly, ..., [, >1, the generating function Gy, .. 1,,1(x)
is symmetric in [/, ..., [,].

Conjectures 3.7 and 3.8 have resisted the efforts of the author and several others, and seem to require a new approach.
In the hope of fostering such a new approach we close this section by restating these conjectures combinatorially,
emphasizing their similarities with the main results of [1,6]. To state these reformulations, recall that two sets R and
R of forbidden patterns are called Wilf-equivalent (resp. involution Wilf-equivalent) whenever |C S, (R1)| =|C S, (R3)|
(resp. |1, (R1)| = |I,,(R2)|) for all n > 0. With this terminology, Conjectures 3.7 and 3.8 are equivalent, respectively, to
the following.

Conjecture 3.9. Fix ¢ >0. Then the sets

PCU{[ZI,---»lm]}

and

PeU{lly, .. i b, i i, oo ]}

are Wilf-equivalent for allm>1, all /1, ..., [, > 1, and all i with 1 <i<m — 1.

Conjecture 3.10. The sets {3412, [[1, ..., ]} and {3412, [l1, ..., li—1,lix1,0i, liy2, ..., L]} are involution Wilf-
equivalent for allm > 1 and all /1, .. .1, > 1.

References

[1] E. Babson, J. West, The permutations 123py4 - - - p;y and 321 py - - - py, are Wilf-equivalent, Graphs Combin. 16 (4) (2000) 373-380.
[2] T. Chow, J. West, Forbidden subsequences and Chebyshev polynomials, Discrete Math. 204 (1-3) (1999) 119-128.
[3] E.S. Egge, Restricted 3412-avoiding involutions, continued fractions, and Chebyshev polynomials, Adv. Appl. Math. 33 (2004) 451-475.
[4] E.S. Egge, Restricted signed permutations counted by the Schroder numbers, Discrete Math. 306 (2006) 552-563.
[5] E.S. Egge, T. Mansour, Permutations which avoid 1243 and 2143, continued fractions, and Chebyshev polynomials, Electron. J. Combin. 9 (2)
(2003) #R7.
[6] A. Jaggard, Prefix exchanging and pattern avoidance by involutions, Electron. J. Combin. 9 (2) (2003) #R16.
[7] C. Krattenthaler, Permutations with restricted patterns and Dyck paths, Adv. Appl. Math. 27 (2/3) (2001) 510-530.
[8] D. Kremer, Permutations with forbidden subsequences and a generalized Schroder number, Discrete Math. 218 (2000) 121-130.
[9] T. Mansour, Pattern avoidance in coloured permutations, Sém. Lothar. Combin. 46 (2001) Article B46g.
[10] T. Mansour, A. Vainshtein, Restricted permutations, continued fractions, and Chebyshev polynomials, Electron. J. Combin. 7 (1) (2000) #R17.
[11] T. Mansour, A. Vainshtein, Restricted 132-avoiding permutations, Adv. Appl. Math. 26 (3) (2001) 258-269.
[12] T. Mansour, A. Vainshtein, Restricted permutations and Chebyshev polynomials, Sém. Lothar. Combin. 47 (2002) Article B47c.
[13] T. Mansour, J. West, Avoiding 2-letter signed patterns, Sém. Lothar. Combin. 49 (2002) Article B49a.
[14] A. Reifegerste, On the diagram of Schroder permutations, Electron. J. Combin. 9 (2) (2003) #R8.
[15] J. West, Generating trees and the Catalan and Schroder numbers, Discrete Math. 146 (1995) 247-262.



