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Abstract
Consider the Fibonacci sequence {Fn}∞n=0 with initial conditions F0 = 0, F1 = 1 and re-

currence relation Fn = Fn−1 + Fn−2 (n ≥ 2). The Fibonacci sequence has been general-

ized in many ways, some by preserving the initial conditions, and others by preserving the

recurrence relation. In this article, we study a new generalization {qn}, with initial condi-

tions q0 = 0 and q1 = 1, which is generated by the recurrence relation qn = aqn−1 + qn−2

(when n is even) or qn = bqn−1 + qn−2 (when n is odd), where a and b are nonzero real

numbers. Some well-known sequences are special cases of this generalization. The Fi-

bonacci sequence is a special case of {qn} with a = b = 1. Pell’s sequence is {qn} with

a = b = 2 while k-Fibonacci sequence has a = b = k. We produce an extended Binet’s

formula for {qn} and, thereby, identities such as Cassini’s, Catalan’s, d’Ocagne’s, etc.

1. Introduction

The Fibonacci sequence, {Fn}∞n=0, is a series of numbers, starting with the integer
pair 0 and 1, where the value of each element is calculated as the sum of the two
preceding it. That is, Fn = Fn−1 +Fn−2 for all n ≥ 2. The first few terms of the Fi-
bonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, . . . . The Fibonacci numbers are perhaps most famous for appearing in the
rabbit-breeding problem, introduced by Leonardo de Pisa in 1202 in his book called
Liber Abaci. However, they also occur in Pascal’s triangle [18], in Pythagorean
triples [18], computer algorithms [1, 9, 33], some areas of algebra [5, 8, 31], graph
theory [2, 3], quasicrystals [34, 41], and many other areas of mathematics. They
occur in a variety of other fields such as finance, art, architecture, music, etc. (See
[10] for extensive resources on Fibonacci numbers.)

However, in this paper, we are most interested in the generalizations of the
Fibonacci sequence. Some authors [13, 15, 17, 27, 37] have generalized the Fibonacci
sequence by preserving the recurrence relation and altering the first two terms of
the sequence, while others [7, 20, 21, 22, 26, 30, 40] have generalized the Fibonacci
sequence by preserving the first two terms of the sequence but altering the recurrence
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relation slightly. One example of this latter generalization, called the k-Fibonacci
sequence, {Fk,n}∞n=0, is defined using a linear recurrence relation depending on one
real parameter (k) given by

Fk,n = kFk,n−1 + Fk,n−2 (n ≥ 2)

where Fk,0 = 0 and Fk,1 = 1. When k = 1, the classical Fibonacci sequence is
obtained. These generalizations satisfy identities that are analogous to the identities
satisfied by the classical Fibonacci sequence [18].

We now introduce a further generalization of the Fibonacci sequence; we shall
call it the generalized Fibonacci sequence. Unlike other variations, this new gener-
alization depends on two real parameters used in a non-linear recurrence relation.

Definition 1. For any two nonzero real numbers a and b, the generalized Fibonacci
sequence, say

{
F (a,b)

n

}∞
n=0

, is defined recursively by

F (a,b)
0 = 0, F (a,b)

1 = 1, F (a,b)
n =

{
aF (a,b)

n−1 + F (a,b)
n−2 , if n is even

bF (a,b)
n−1 + F (a,b)

n−2 , if n is odd
(n ≥ 2).

To avoid cumbersome notation, let us denote F (a,b)
n by qn. Thus, the sequence

{qn} satisfies

q0 = 0, q1 = 1, qn =
{

aqn−1 + qn−2, if n is even
bqn−1 + qn−2, if n is odd (n ≥ 2).

We now note that this new generalization is in fact a family of sequences where
each new choice of a and b produces a distinct sequence. When a = b = 1, we
have the classical Fibonacci sequence and when a = b = 2, we get the Pell numbers.
Even further, if we set a = b = k, for some positive integer k, we get the k-Fibonacci
numbers, the generalization of the Fibonacci numbers mentioned above.

We will describe the terms of the sequence {qn} explicitly by using a generaliza-
tion of Binet’s formula. Therefore, we will start the main content of the paper by
deriving a generalization of Binet’s formula (via generating functions) and then will
present extensions of well-known Fibonacci identities such as Catalan’s, Cassini’s,
and d’Ocagne’s. Later, we alter {qn} by allowing arbitrary initial conditions and
also consider the convergence of the ratios of successive terms of the sequence. It
is well-known that the ratios of successive Fibonacci numbers approach the golden
mean, Φ, so it is natural to ask if analogous results exist for the variations and
extensions of the Fibonacci sequence. Even for random Fibonacci sequences, there
are results related to growth and decay rates [6, 16, 29, 36, 39]. We now give a brief
word-combinatorial interpretation of the generalized Fibonacci sequence as this is
the context in which we first studied this family of sequences.
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Let 0 < α < 1 be an irrational number. Associate with α a sequence, called the
characteristic sequence of α (see [23]), which is denoted by ω = ω(α), and given by

ω = ω1ω2ω3 · · ·ωn · · · ,

where
ωn = "(n + 1)α# − "nα# (n ≥ 1).

Note that ωn ∈ {0, 1}, so that ω(α) is an infinite word consisting of 0’s and 1’s.
We now outline the relation between the characteristic sequence of α and the

continued fraction expansion of α. This connection leads us, via word combinatorics,
to the definition of the generalized Fibonacci sequences. Suppose that the continued
fraction expansion of α = [0; 1 + d1, d2, d3, . . .], and define a sequence {sn}n≥0 of
words by

s0 = 1, s1 = 0, and sn = sdn−1
n−1 sn−2, (n ≥ 2) .

Then for n ≥ 1, each sn is a prefix of ω(α) and ω(α) = lim
n→∞

sn (see [23]).

Example 2. (The infinite Fibonacci word) Let α = [0; 2, 1, 1, 1, . . .] = 1
φ2 , where φ

is the Golden Mean. Then the {sn} are

s0 = 1, s1 = 0, s2 = 01, s3 = 010, s4 = 01001, s5 = 01001010, . . . .

The limit of this sequence is the infinite word,

ω = 01001010010010100101001001010010 . . . .

Since the lengths of s0 and s1 are both 1 and sn is obtained by concatenating sn−1

and sn−2, the length of the word sn, denoted by |sn|, is Fn+1, the n+1st Fibonacci
number. Since the lengths of these subwords are Fibonacci numbers, the infinite
word ω is called the Fibonacci word.

Now we associate with the generalized Fibonacci sequence,
{
F (a,b)

n

}
= {qn}, a

unique quadratic irrational number α in the interval (0, 1), whose continued fraction
expansion has the form α = [0; a, b, a, b, . . .] = [0; a, b, a, b]. Then ω(α) = lim

n→∞
sn

where
s0 = 1, s1 = 0, s2 = 0a−11 = 000 · · · 01,

and
sn =

{
sa

n−1sn−2, if n is even
sb

n−1sn−2, if n is odd (n ≥ 3).

We next define a number sequence {rn} as follows. Let r0 = 0, rn = |sn| (n ≥ 1).
Since {rn} and {qn} satisfy the same initial conditions and have the same recursive
definitions, clearly {rn} = {qn}.
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In conclusion, every generalized Fibonacci sequence with a and b nonnegative in-
tegers has a one-to-one correspondence with a quadratic irrational α in the interval
(0, 1) having the form α = [0; a, b, a, b, . . .]. Moreover, every generalized Fibonacci
sequence is intimately connected to an infinite word called the characteristic se-
quence of α.

Example 3. Let α = [0; 1, 1, 1, 1, . . .] = 1
φ , where φ is the Golden Mean. Then the

terms of the sequence {sn} are

s0 = 1, s1 = 0, s2 = 1, s3 = 10, s4 = 101, . . . .

Observe that {rn} = {Fn}, the Fibonacci sequence and that ω(α) can be obtained
from the infinite Fibonacci word by exchanging 0’s and 1’s.

2. Generating Function for the Generalized Fibonacci Sequence

Generating functions provide a powerful technique for solving linear homogeneous
recurrence relations. Even though generating functions are typically used in con-
junction with linear recurrence relations with constant coefficients, we will systemat-
ically make use of them for linear recurrence relations with nonconstant coefficients.
In this section, we consider the generating functions for the generalized Fibonacci
sequences and derive some of the most fascinating identities satisfied by these se-
quences. As Wilf indicated in [38], “a generating function is a clothesline on which
we hang up a sequence of numbers for display.”

Theorem 4. The generating function for the generalized Fibonacci sequence {qn}
is

F (x) =
x

(
1 + ax− x2

)

1− (ab + 2)x2 + x4
.

Proof. We begin with the formal power series representation of the generating
function for {qn},

F (x) = q0 + q1x + q2x
2 + · · · + qkxk + · · · =

∞∑

m=0

qmxm.

Note that,

bxF (x) = bq0x+bq1x
2+bq2x

3+ · · ·+bqkxk+1+ · · · =
∞∑

m=0

bqmxm+1 =
∞∑

m=1

bqm−1x
m



INTEGERS: 9 (2009) 643

and

x2F (x) = q0x
2 + q1x

3 + q2x
4 + · · · + qkxk+2 + · · · =

∞∑

m=0

qmxm+2 =
∞∑

m=2

qm−2x
m.

Since q2k+1 = bq2k + q2k−1 and q0 = 0, q1 = 1, we get

(
1− bx− x2

)
F (x) = x +

∞∑

m=1

(q2m − bq2m−1 − q2m−2)x2m.

Since q2k = aq2k−1 + q2k−2, we get

(
1− bx− x2

)
F (x) = x +

∞∑

m=1

(a− b) q2m−1x
2m

(
1− bx− x2

)
F (x) = x + (a− b)x

∞∑

m=1

q2m−1x
2m−1.

Now let

f(x) =
∞∑

m=1

q2m−1x
2m−1.

Since

q2k+1 = bq2k + q2k−1 = b (aq2k−1 + q2k−2) + q2k−1

= (ab + 1) q2k−1 + bq2k−2 = (ab + 1) q2k−1 + q2k−1 − q2k−3

= (ab + 2) q2k−1 − q2k−3,

we have

(
1− (ab + 2)x2 + x4

)
f(x)

= x− x3 +
∞∑

m=3

(q2m−1 − (ab + 2)q2m−3 + q2m−5)x2m−1 = x− x3.

Therefore,

f(x) =
x− x3

1− (ab + 2)x2 + x4
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and as a result, we get

(
1− bx− x2

)
F (x) = x + (a− b)x · x− x3

1− (ab + 2)x2 + x4
.

After simplifying the above expression we get the desired result

F (x) =
x

(
1 + ax− x2

)

1− (ab + 2)x2 + x4
.

!

3. Binet’s Formula for the Generalized Fibonacci Sequence and Identities

Koshy refers to the Fibonacci numbers as one of the “two shining stars in the vast
array of integer sequences” [18]. We may guess that one reason for this reference
is the sheer quantity of interesting properties this sequence possesses. Further still,
almost all of these properties can be derived from Binet’s formula. A main objec-
tive of this paper is to demonstrate that many of the properties of the Fibonacci
sequence can be stated and proven for a much larger class of sequences, namely the
generalized Fibonacci sequence. Therefore, we will state and prove an extension
of Binet’s formula for the generalized Fibonacci sequences and so derive a number
of mathematical properties including generalizations of Cassini’s, Catalan’s, and
d’Ocagne’s identities for the ordinary Fibonacci sequence.

Theorem 5. (Generalized Binet’s formula) The terms of the generalized Fibonacci
sequence {qm} are given by

qm =
(

a1−ξ(m)

(ab)%m
2 &

)
αm − βm

α− β

where α = ab+
√

a2b2+4ab
2 , β = ab−

√
a2b2+4ab
2 , and ξ(m) := m− 2"m

2 #.

Proof. First, note that α and β are roots of the quadratic equation

x2 − abx− ab = 0

and
ξ(m) =

{
0 if m is even
1 if m is odd

is the parity function. We have seen that the generating function for the sequence
{qm} is given by (see Theorem 1)

F (x) =
x

(
1 + ax− x2

)

1− (ab + 2)x2 + x4
.
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Using the partial fraction decomposition, we rewrite F (x) as

F (x) =
1

α− β

[
a(α + 1)− αx

x2 − (α + 1)
− a(β + 1)− βx

x2 − (β + 1)

]

where α and β are as above. Since the Maclaurin series expansion of the function
A−Bz
z2−C is given by

A−Bz

z2 − C
=

∞∑

n=0

BC−n−1z2n+1 −
∞∑

n=0

AC−n−1z2n,

the generating function F (x) can be expressed as

1
α− β

[
a(α + 1)− αx

x2 − (α + 1)
− a(β + 1)− βx

x2 − (β + 1)

]

=
1

α− β

[ ∞∑

m=0

−β(α + 1)m+1 + α(β + 1)m+1

(α + 1)m+1(β + 1)m+1
x2m+1

]

+
a

α− β

[ ∞∑

m=0

(β + 1)(α + 1)m+1 − (α + 1)(β + 1)m+1

(α + 1)m+1(β + 1)m+1
x2m

]
.

We now simplify using the following properties of α and β.

(i) (α + 1)(β + 1) = 1, (ii) α + β = ab, (iii) α · β = −ab,

(iv) α + 1 = α2

ab , (v) β + 1 = β2

ab , (vi) −β(α + 1) = α,

(vii) −α(β + 1) = β.

Using the above identities, we get

F (x) =
∞∑

m=0

(
1
ab

)m+1 −βα2m+2 + αβ2m+2

α− β
x2m+1

+
∞∑

m=0

a

(
1
ab

)m+1 (β + 1)α2m+2 − (α + 1)β2m+2

α− β
x2m

=
∞∑

m=0

(
1
ab

)m α2m+1 − β2m+1

α− β
x2m+1 +

∞∑

m=0

a

(
1
ab

)m α2m − β2m

α− β
x2m.
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Combining the two sums, we get

F (x) =
∞∑

m=0

a1−ξ(m)

(
1
ab

)%m
2 & αm − βm

α− β
xm =

∞∑

m=0

qmxm.

Therefore, for all m ≥ 0, we have

qm =
(

a1−ξ(m)

(ab)%m
2 &

)
αm − βm

α− β
.

!

Note that when a = b = 1, qm = αm−βm

α−β , which is the original Binet formula for
the Fibonacci numbers.

Theorem 6. (Cassini’s identity) For any nonnegative integer n, we have

a1−ξ(n)bξ(n)qn−1qn+1 − aξ(n)b1−ξ(n)q2
n = a(−1)n.

Since Cassini’s identity is a special case of Catalan’s identity, which is stated
below, it is enough to prove Catalan’s identity.

Theorem 7. (Catalan’s identity) For any two nonnegative integers n and r, with
n ≥ r, we have

aξ(n−r)b1−ξ(n−r)qn−rqn+r − aξ(n)b1−ξ(n)q2
n = aξ(r)b1−ξ(r)(−1)n+1−rq2

r .

Proof. Using the extended Binet’s formula, we get

aξ(n−r)b1−ξ(n−r)qn−rqn+r

= aξ(n−r)b1−ξ(n−r)

(
a1−ξ(n−r)

(ab)%
n−r

2 &

)(
a1−ξ(n+r)

(ab)%
n+r

2 &

)
αn−r − βn−r

α− β

αn+r − βn+r

α− β

=
(

a2−ξ(n−r)b1−ξ(n−r)

(ab)n−ξ(n−r)

)
αn−r − βn−r

α− β

αn+r − βn+r

α− β

=
(

a

(ab)n−1

)
α2n − (αβ)n−r(α2r + β2r) + β2n

(α− β)2

and

aξ(n)b1−ξ(n)q2
n = aξ(n)b1−ξ(n)

(
a2−2ξ(n)

(ab)2%n
2 &

)
α2n − 2(αβ)n + β2n

(α− β)2

=
(

a

(ab)2%n
2 &+ξ(n)−1

)
α2n − 2(αβ)n + β2n

(α− β)2

=
(

a

(ab)n−1

)
α2n − 2(αβ)n + β2n

(α− β)2
.
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Therefore,

aξ(n−r)b1−ξ(n−r)qn−rqn+r − aξ(n)b1−ξ(n)q2
n

=
(

a

(ab)n−1

)
2(αβ)n − (αβ)n−r(α2r + β2r)

(α− β)2

=
(

−a

(ab)n−1

)
(αβ)n−r α2r − 2αrβr + β2r

(α− β)2

=
(

−a

(ab)n−1

)
(−ab)n−r

(
αr − βr

α− β

)2

= (−1)n+1−r a

(ab)r−1
· (ab)2% r

2 &

a2−2ξ(r)
q2
r

= (−1)n+1−ra2ξ(r)−1(ab)1−ξ(r)q2
r

= (−1)n+1−raξ(r)b1−ξ(r)q2
r .

!

Theorem 8. (d’Ocagne’s identity) For any two nonnegative integers m and n with
m ≥ n, we have

aξ(mn+m)bξ(mn+n)qmqn+1 − aξ(mn+n)bξ(mn+m)qm+1qn = (−1)naξ(m−n)qm−n.

Proof. First note that

ξ(m + 1) + ξ(n)− 2ξ(mn + n) = ξ(m) + ξ(n + 1)− 2ξ(mn + m) = 1− ξ(m− n)

and
ξ(m− n) = ξ(mn + m) + ξ(mn + n).

Using the extended Binet’s formula and the above identities, we obtain:

aξ(mn+m)bξ(mn+n)qmqn+1

=

(
a(ab)−n

(ab)
m−n−ξ(m−n)

2

)
αm+n+1 + βm+n+1 − (αβ)n(βαm−n + αβm−n)

(α− β)2

and

aξ(mn+n)bξ(mn+m)qm+1qn

=

(
a(ab)−n

(ab)
m−n−ξ(m−n)

2

)
αm+n+1 + βm+n+1 − (αβ)n(αm−n+1 + βm−n+1)

(α− β)2
.
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Therefore,

aξ(mn+m)b1−ξ(mn+m)qmqn+1 − aξ(mn−n)b1−ξ(mn−n)qm+1qn

=

(
(−1)na

(ab)
m−n−ξ(m−n)

2

)(
αm−n − βm−n

α− β

)

= (−1)naaξ(m−n)−1qm−n

= (−1)naξ(m−n)qm−n.

!

Theorem 9. (Additional identities) (i) For any two nonnegative integers m and n,

aξ(mn+m)bξ(mn+n)qmqn+1 + aξ(mn+n)bξ(mn+m)qm−1qn = aξ(m+n)qm+n.

This identity is equivalent to the Convolution Property given by

aξ(km)bξ(km+k)qmqk−m+1 + aξ(km+k)bξ(km)qm−1qk−m = aξ(k)qk.

(ii) For any two nonnegative integers n and k with n ≥ k,
(
a1−ξ(n+k)bξ(n+k)

)
q2
n+k+1 +

(
aξ(n−k)b1−ξ(n−k)

)
q2
n−k = aq2n+1q2k+1.

(iii) For any natural number n,

2n∑

k=1

aqk−1qk = q2
2n

and
2n+1∑

k=1

aqk−1qk =
(a

b

) [
q2
2n+1 − 1

]
.

(iv) If m | n, then qm | qn.
(v) For any two natural numbers n and m, we have gcd (qm, qn) = qgcd(m,n).
(vi) For any nonnegative integer n,

q2
n+2 − q2

n = a1−ξ(n)bξ(n)q2n+2 and q2
n+2 + q2

n = a1−ξ(n)bξ(n)q2n+2 + 2q2
n.

Consequently,
(
a1−ξ(n)bξ(n)q2n+2

)2
+ (2qnqn+2)

2 =
(
a1−ξ(n)bξ(n)q2n+2 + 2q2

n

)2
.

This identity produces Pythagorean triples involving generalized Fibonacci numbers.
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For any three nonnegative integers n, k, j with k ≥ j,

a(−1)nξ(j)ξ(n+k)b−(−1)nξ(j)ξ(n+k)qkqn+j

−a(−1)nξ(k)ξ(n+j)b−(−1)nξ(k)ξ(n+j)qjqn+k = (−1)jqnqk−j .

Proof. We leave the proofs to the reader, since they are similar to the proof of the
previous theorem.

Theorem 10. (Sums Involving Binomial Coefficients). For any nonnegative integer
n we have

n∑

k=0

(
n

k

)
aξ(k)(ab)%

k
2 &qk = q2n

and

n∑

k=0

(
n

k

)
aξ(k+1)(ab)%

k+1
2 &qk+1 = aq2n+1.

Proof. First note that

a
αk − βk

α− β
= (ab)%

k
2 &aξ(k)qk

for any nonnegative integer k. Therefore,

n∑

k=0

(
n

k

)
aξ(k)(ab)%

k
2 &qk =

n∑

k=0

(
n

k

)
a
αk − βk

α− β

=
a

α− β

[
n∑

k=0

(
n

k

)
αk −

n∑

k=0

(
n

k

)
βk

]

=
a

α− β
[(α + 1)n − (β + 1)n]

=
a

α− β

[(
α2

ab

)n

−
(

β2

ab

)n]

=
a

(ab)n

(
α2n − β2n

α− β

)

= q2n.
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Also,

n∑

k=0

(
n

k

)
aξ(k+1)(ab)%

k+1
2 &qk+1 =

n∑

k=0

(
n

k

)
a
αk+1 − βk+1

α− β

=
a

α− β

[
α

n∑

k=0

(
n

k

)
αk − β

n∑

k=0

(
n

k

)
βk

]

=
a

α− β
[α(α + 1)n − β(β + 1)n]

=
a

α− β

[
α

(
α2

ab

)n

− β

(
β2

ab

)n]

=
a

(ab)n

(
α2n+1 − β2n+1

α− β

)

= aq2n+1.

!

Remark 11 The last two identities can be combined and generalized as follows. For
any nonnegative integer r, one can easily verify (either using the generating function
together with the differential operator or the extended Binet Formula) that

n∑

k=0

(
n

k

)
aξ(k+r)(ab)%

k
2 &+ξ(k)ξ(r)qk+r = aξ(r)q2n+r.

4. A Further Generalization, Convergence Properties, and an Open
Problem

Now, we may take the generalized Fibonacci sequence a bit further by allowing
arbitrary initial conditions. So, consider the sequence {Qn}, where Q0 = C,Q1 =
D, and

Qn =
{

aQn−1 + Qn−2, if n is even
bQn−1 + Qn−2, if n is odd (n ≥ 2).

The following theorem states a relationship between the terms of {Qn} and the
terms of {qn}, the generalized Fibonacci sequence. In addition, the generating
function for the {Qn} is given. First part of this theorem can be proven by induction.

Theorem 12. Let the sequence {Qn} satisfy the above initial conditions and re-
currence relation. Then

Qn = Dqn + C

(
b

a

)ξ(n)

qn−1
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for all n ≥ 1. Moreover, its generating function is given by

G(x) =
∞∑

n=0

Qnxn =
C + Dx + (aD − abC − C)x2 + (bC −D)x3

1− (ab + 2)x2 + x4
.

The {qn}-identities we studied in this article can be extended to the sequence
{Qn} with minor modifications.
Remark 13 (On Convergence Properties). For the classical Fibonacci sequence
{Fn}, (which is {qm} with a = b = 1), it is well-known that the ratios of successive
terms

{
Fn+1
Fn

}
converge to the golden ratio, or golden mean, φ = 1+

√
5

2 . Consider
the generalization obtained when a = b. From Theorem 2, we get

qm+1

qm
=

1
a

· αm+1 − βm+1

αm − βm
=

α

a
·
1−

(
β
α

)m+1

1−
(

β
α

)m .

As a result, qm+1
qm

converges to α
a = a+

√
a2+4
2 . Of course, when a = 1, the quadratic

irrational α
a is called the golden mean. V. W. de Spinadel in [4] gives the names

silver mean and bronze mean to the cases when a = 2 and a = 3, respectively.
Now, if a &= b, the ratios of successive terms do not converge since

qm+1

qm
= aξ(m)b1−ξ(m) +

qm−1

qm

and
{
aξ(m)b1−ξ(m)

}
oscillates between a and b. Therefore, for most sequences in

the family of generalized Fibonacci sequences, the ratios of successive terms do not
converge. However, it is not hard to see that

q2m

q2m−1
−→ α

b
,

q2m+1

q2m
−→ α

a
, and

qm+2

qm
−→ α + 1.

Remark 14 (An Open Problem). Let a1, a2, . . . , ak be positive integers and define
a sequence {qm} as follows. Set

q0 = 0, q1 = 1,

and for all m ≥ 2,

qm = atqm−1 + qm−2 where m ≡ t + 1 (mod k) for some t ∈ {1, . . . , k} .

When k = 2, {qm} is the family of generalized Fibonacci sequences we studied in
this paper. It remains open to find a closed form of the generating function and a
Binet-like formula for {qm}, provided they exist.
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